In recent years, the increasing application of nonlinear and unbalanced electronic equipment and large single phase loads have made voltage imbalance a serious problem in power distribution systems. A novel approach h...In recent years, the increasing application of nonlinear and unbalanced electronic equipment and large single phase loads have made voltage imbalance a serious problem in power distribution systems. A novel approach has been proposed to eliminate voltage imbalance and disturbances. The main strategy of this scheme is based on series active filter. By improving control circuit toward existing schemes and proposing a new strategy to control the voltage amplitude, simultaneous elimination of voltage imbalance, faults, voltage harmonics and also compensation of voltage drop in transmission lines become possible. Eventually, the voltage on the load side is a perfectly balanced three phase voltage with specific proper amplitude. The proposed scheme has been simulated in a test network and the results show high capability of this scheme for the complete elimination of imbalance without phase shift.展开更多
Fast and accurate acquisition of positive sequence components of unbalanced grid voltage is an essential requirement to ensure the safety operation of the grid-connected inverter.To improve the extraction speed of pos...Fast and accurate acquisition of positive sequence components of unbalanced grid voltage is an essential requirement to ensure the safety operation of the grid-connected inverter.To improve the extraction speed of positive sequence components of unbalanced voltage,this study proposes a sampling period delay filter(SPDF)to quickly separate positive and negative sequence components by delaying two sampling periods of grid voltage in dq frame.With the SPDF method,only one coordinate transformation is required and the computational burden can be reduced apparently.Then,the noise immunity performance of the proposed SPDF algorithm is investigated;and the corresponding solution,operation period delay filter(OPDF),can guarantee the desired fast response performance under the premise of limiting the amplified noise within the acceptable range.Finally,the feasibility and priority of the above two algorithms have been verified by the simulation and experimental results.展开更多
This paper proposes a method to improve the spu-rious-free dynamic ranges(SFDRs)of 1-bit sampled signals greatly,which is very beneficial to multi-tone signals detection.Firstly,the relationship between the fundamenta...This paper proposes a method to improve the spu-rious-free dynamic ranges(SFDRs)of 1-bit sampled signals greatly,which is very beneficial to multi-tone signals detection.Firstly,the relationship between the fundamental component and the third harmonic component of 1-bit sampled signals is analyzed for determining four contiguous special frequency bands,which do not contain any third harmonics inside and co-ver 77.8%of the whole Nyquist sampling frequency band.Then,we present a special 4-channel monobit receiver model,where appropriate filter banks are used to obtain four desired pass bands before 1-bit quantization and each channel can sample and process sampled data independently to achieve a good in-stantaneous dynamic range without sacrificing the real-time per-formance or computing resources.The simulation results show that the proposed method effectively eliminates the effect of the most harmonics on SFDRs and the mean SFDR is increased to to 20 dB.Besides,the multi-signals simulation results indicate that the maximum amplitude separation(dynamic range)of two signals in each channel is 12 dB while the proposed monobit re-ceiver can deal with up to eight simultaneous arrival signals.In general,the designing method proposed in this paper has a po-tential engineering value.展开更多
To analyze the influence of _+400 kV Q^nghai-Tibet HVDC transmission system on transmission- line protections in Qjnghai AG power system, a closed-loop simulation system was constructed by combing HyperSim system wit...To analyze the influence of _+400 kV Q^nghai-Tibet HVDC transmission system on transmission- line protections in Qjnghai AG power system, a closed-loop simulation system was constructed by combing HyperSim system with HVDG control protection devices. Various faults on double-circuit 750 kV and multi- circuit 330 kV AC transmission lines in Qjnghai power system were simulated. The impedance characteristics and harmonic components at Qjnghai side of Qjng-Tibet DG transmission line were analyzed. The harmonic proportion in voltages and currents were studied for faults that took place at different locations near the DG system. The inflence of Qing-Tibet DG system on the directional components of protections, differential protections and distance protections of AC transmission lines was discussed and drew the conclusions that the DC sytem had little influence on differential protections, while had great inflence on directional components and distance protection. The conclusions can provide reference for studying the interaction between AC and DG systems.展开更多
文摘In recent years, the increasing application of nonlinear and unbalanced electronic equipment and large single phase loads have made voltage imbalance a serious problem in power distribution systems. A novel approach has been proposed to eliminate voltage imbalance and disturbances. The main strategy of this scheme is based on series active filter. By improving control circuit toward existing schemes and proposing a new strategy to control the voltage amplitude, simultaneous elimination of voltage imbalance, faults, voltage harmonics and also compensation of voltage drop in transmission lines become possible. Eventually, the voltage on the load side is a perfectly balanced three phase voltage with specific proper amplitude. The proposed scheme has been simulated in a test network and the results show high capability of this scheme for the complete elimination of imbalance without phase shift.
基金The work was supported by the National Natural Science Foundation of China(51707091).
文摘Fast and accurate acquisition of positive sequence components of unbalanced grid voltage is an essential requirement to ensure the safety operation of the grid-connected inverter.To improve the extraction speed of positive sequence components of unbalanced voltage,this study proposes a sampling period delay filter(SPDF)to quickly separate positive and negative sequence components by delaying two sampling periods of grid voltage in dq frame.With the SPDF method,only one coordinate transformation is required and the computational burden can be reduced apparently.Then,the noise immunity performance of the proposed SPDF algorithm is investigated;and the corresponding solution,operation period delay filter(OPDF),can guarantee the desired fast response performance under the premise of limiting the amplified noise within the acceptable range.Finally,the feasibility and priority of the above two algorithms have been verified by the simulation and experimental results.
文摘This paper proposes a method to improve the spu-rious-free dynamic ranges(SFDRs)of 1-bit sampled signals greatly,which is very beneficial to multi-tone signals detection.Firstly,the relationship between the fundamental component and the third harmonic component of 1-bit sampled signals is analyzed for determining four contiguous special frequency bands,which do not contain any third harmonics inside and co-ver 77.8%of the whole Nyquist sampling frequency band.Then,we present a special 4-channel monobit receiver model,where appropriate filter banks are used to obtain four desired pass bands before 1-bit quantization and each channel can sample and process sampled data independently to achieve a good in-stantaneous dynamic range without sacrificing the real-time per-formance or computing resources.The simulation results show that the proposed method effectively eliminates the effect of the most harmonics on SFDRs and the mean SFDR is increased to to 20 dB.Besides,the multi-signals simulation results indicate that the maximum amplitude separation(dynamic range)of two signals in each channel is 12 dB while the proposed monobit re-ceiver can deal with up to eight simultaneous arrival signals.In general,the designing method proposed in this paper has a po-tential engineering value.
文摘To analyze the influence of _+400 kV Q^nghai-Tibet HVDC transmission system on transmission- line protections in Qjnghai AG power system, a closed-loop simulation system was constructed by combing HyperSim system with HVDG control protection devices. Various faults on double-circuit 750 kV and multi- circuit 330 kV AC transmission lines in Qjnghai power system were simulated. The impedance characteristics and harmonic components at Qjnghai side of Qjng-Tibet DG transmission line were analyzed. The harmonic proportion in voltages and currents were studied for faults that took place at different locations near the DG system. The inflence of Qing-Tibet DG system on the directional components of protections, differential protections and distance protections of AC transmission lines was discussed and drew the conclusions that the DC sytem had little influence on differential protections, while had great inflence on directional components and distance protection. The conclusions can provide reference for studying the interaction between AC and DG systems.