期刊文献+
共找到3,171篇文章
< 1 2 159 >
每页显示 20 50 100
Refractory lipoatrophy treated with autologous whole blood injection:A case report
1
作者 Wonnam Kim Jun Su Park En Hyung Kim 《World Journal of Clinical Cases》 SCIE 2025年第2期33-38,共6页
BACKGROUND Intramuscular corticosteroid injection may cause adverse effects such as dermal and/or subcutaneous atrophy,alopecia,hypopigmentation,and hyperpigmentation.Although cutaneous atrophy can spontaneously resol... BACKGROUND Intramuscular corticosteroid injection may cause adverse effects such as dermal and/or subcutaneous atrophy,alopecia,hypopigmentation,and hyperpigmentation.Although cutaneous atrophy can spontaneously resolve,several treatment options have been suggested for this condition.CASE SUMMARY In this paper,we report a case of corticosteroid injection induced lipoatrophy treated with autologous whole blood(AWB)injection,as the condition had been unresponsive to fractional laser therapy.A 29-year-old female patient visited the dermatology clinic complaining of skin depression on her right buttock area,which had appeared six months earlier.There had been only subtle improvement at the margins after fractional CO_(2) laser treatment;therefore,after obtaining informed consent from the patient,AWB treatment was initiated.One month after the first AWB injection,the size and depth of the lesion had noticeably improved,and a slight improvement was also observed in discoloration.CONCLUSION Close observation is the initial treatment of choice for steroid induced skin atrophy;however,for patients in need of immediate cosmetic improvement,AWB injection may be a safe and cost-effective alternative. 展开更多
关键词 ATROPHY CORTICOSTEROID Subcutaneous fat Autologous whole blood injection Laser therapy Case report
下载PDF
Numerical Simulation of Asphaltene Precipitation and Deposition during Natural Gas and CO_(2) Injection
2
作者 Shasha Feng Yi Liao +3 位作者 Weixin Liu Jianwen Dai Mingying Xie Li Li 《Fluid Dynamics & Materials Processing》 EI 2024年第2期275-292,共18页
Asphaltene deposition is a significant problem during gas injection processes,as it can block the porous medium,the wellbore,and the involved facilities,significantly impacting reservoir productivity and ultimate oil re... Asphaltene deposition is a significant problem during gas injection processes,as it can block the porous medium,the wellbore,and the involved facilities,significantly impacting reservoir productivity and ultimate oil recovery.Only a few studies have investigated the numerical modeling of this potential effect in porous media.This study focuses on asphaltene deposition due to natural gas and CO_(2) injection.Predictions of the effect of gas injection on asphaltene deposition behavior have been made using a 3D numerical simulation model.The results indicate that the injection of natural gas exacerbates asphaltene deposition,leading to a significant reduction in permeability near the injection well and throughout the reservoir.This reduction in permeability strongly affects the ability of gas toflow through the reservoir,resulting in an improvement of the displacement front.The displacement effi-ciency of the injection gas process increases by up to 1.40%when gas is injected at 5500 psi,compared to the scenario where the asphaltene model is not considered.CO_(2) injection leads to a miscible process with crude oil,extracting light and intermediate components,which intensifies asphaltene precipitation and increases the viscosity of the remaining crude oil,ultimately reducing the recovery rate. 展开更多
关键词 Reservoir simulation asphaltenes deposition natural gas injection CO_(2)injection
下载PDF
Permanent Magnet Temperature Estimation for PMSMs Using Virtual Position-offset Injection 被引量:2
3
作者 Beichen Ding Yuting Lu +2 位作者 Kaide Huang Guodong Feng Chunyan Lai 《CES Transactions on Electrical Machines and Systems》 EI CSCD 2024年第1期51-60,共10页
This paper proposes a virtual position-offset injection based permanent magnet temperature estimation approach for permanent magnet synchronous machines(PMSMs). The concept of virtual position-offset injection is math... This paper proposes a virtual position-offset injection based permanent magnet temperature estimation approach for permanent magnet synchronous machines(PMSMs). The concept of virtual position-offset injection is mathematically transforming the machine model to a virtual frame with a position-offset. The virtual frame temperature estimation model is derived to calculate the permanent magnet temperature(PMT) directly from the measurements with computation efficiency. The estimation model involves a combined inductance term, which can simplify the establishment of saturation compensation model with less measurements. Moreover, resistance and inverter distorted terms are cancelled in the estimation model, which can improve the robustness to the winding temperature rise and inverter distortion. The proposed approach can achieve simplified computation in temperature estimation and reduced memory usage in saturation compensation. While existing model-based approaches could be affected by either the need of resistance and inverter information or complex saturation compensation. Experiments are conducted on the test machine to verify the proposed approach under various operating conditions. 展开更多
关键词 PMSM Magnet temperature estimation Virtual position offset injection Inverter nonlinearity
下载PDF
Cross-upgrading of biomass hydrothermal carbonization and pyrolysis for high quality blast furnace injection fuel production:Physicochemical characteristics and gasification kinetics analysis 被引量:1
4
作者 Han Dang Runsheng Xu +2 位作者 Jianliang Zhang Mingyong Wang Jinhua Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第2期268-281,共14页
The paper proposes a biomass cross-upgrading process that combines hydrothermal carbonization and pyrolysis to produce high-quality blast furnace injection fuel.The results showed that after upgrading,the volatile con... The paper proposes a biomass cross-upgrading process that combines hydrothermal carbonization and pyrolysis to produce high-quality blast furnace injection fuel.The results showed that after upgrading,the volatile content of biochar ranged from 16.19%to 45.35%,and the alkali metal content,ash content,and specific surface area were significantly reduced.The optimal route for biochar pro-duction is hydrothermal carbonization-pyrolysis(P-HC),resulting in biochar with a higher calorific value,C=C structure,and increased graphitization degree.The apparent activation energy(E)of the sample ranges from 199.1 to 324.8 kJ/mol,with P-HC having an E of 277.8 kJ/mol,lower than that of raw biomass,primary biochar,and anthracite.This makes P-HC more suitable for blast furnace injection fuel.Additionally,the paper proposes a path for P-HC injection in blast furnaces and calculates potential environmental benefits.P-HC of-fers the highest potential for carbon emission reduction,capable of reducing emissions by 96.04 kg/t when replacing 40wt%coal injec-tion. 展开更多
关键词 blast furnace injection BIOMASS cross-upgrading hydrothermal carbonization PYROLYSIS physicochemical properties gasific-ation properties
下载PDF
A Probabilistic Trust Model and Control Algorithm to Protect 6G Networks against Malicious Data Injection Attacks in Edge Computing Environments 被引量:1
5
作者 Borja Bordel Sánchez Ramón Alcarria Tomás Robles 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期631-654,共24页
Future 6G communications are envisioned to enable a large catalogue of pioneering applications.These will range from networked Cyber-Physical Systems to edge computing devices,establishing real-time feedback control l... Future 6G communications are envisioned to enable a large catalogue of pioneering applications.These will range from networked Cyber-Physical Systems to edge computing devices,establishing real-time feedback control loops critical for managing Industry 5.0 deployments,digital agriculture systems,and essential infrastructures.The provision of extensive machine-type communications through 6G will render many of these innovative systems autonomous and unsupervised.While full automation will enhance industrial efficiency significantly,it concurrently introduces new cyber risks and vulnerabilities.In particular,unattended systems are highly susceptible to trust issues:malicious nodes and false information can be easily introduced into control loops.Additionally,Denialof-Service attacks can be executed by inundating the network with valueless noise.Current anomaly detection schemes require the entire transformation of the control software to integrate new steps and can only mitigate anomalies that conform to predefined mathematical models.Solutions based on an exhaustive data collection to detect anomalies are precise but extremely slow.Standard models,with their limited understanding of mobile networks,can achieve precision rates no higher than 75%.Therefore,more general and transversal protection mechanisms are needed to detect malicious behaviors transparently.This paper introduces a probabilistic trust model and control algorithm designed to address this gap.The model determines the probability of any node to be trustworthy.Communication channels are pruned for those nodes whose probability is below a given threshold.The trust control algorithmcomprises three primary phases,which feed themodel with three different probabilities,which are weighted and combined.Initially,anomalous nodes are identified using Gaussian mixture models and clustering technologies.Next,traffic patterns are studied using digital Bessel functions and the functional scalar product.Finally,the information coherence and content are analyzed.The noise content and abnormal information sequences are detected using a Volterra filter and a bank of Finite Impulse Response filters.An experimental validation based on simulation tools and environments was carried out.Results show the proposed solution can successfully detect up to 92%of malicious data injection attacks. 展开更多
关键词 6G networks noise injection attacks Gaussian mixture model Bessel function traffic filter Volterra filter
下载PDF
Horizontal well spacing optimization and gas injection simulation for the ultra-low-permeability Yongjin reservoir 被引量:1
6
作者 Yao Zhang Chengyuan Lv +3 位作者 Zengmin Lun Shuxia Zhao Yingfu He Ran Gao 《Energy Geoscience》 EI 2024年第1期196-203,共8页
Optimal spacing for vertical wells can be effectively predicted with several published methods,but methods suitable for assessing the proper horizontal well spacing are rare.This work proposes a method for calculating... Optimal spacing for vertical wells can be effectively predicted with several published methods,but methods suitable for assessing the proper horizontal well spacing are rare.This work proposes a method for calculating the optimal horizontal well spacing for an ultra-low permeability reservoir e the Yongjin reservoir in the Juggar Basin,northwestern China.The result shows that a spacing of 640m is the most economical for the development of the reservoir.To better develop the reservoir,simulation approaches are used and a new model is built based on the calculated well spacing.Since the reservoir has an ultralow permeability,gas injection is regarded as the preferred enhanced oil recovery(EOR)method.Injection of different gases including carbon dioxide,methane,nitrogen and mixed gas are modelled.The results show that carbon dioxide injection is the most efficient and economical for the development of the reservoir.However,if the reservoir produces enough methane,reinjecting methane is even better than injecting carbon dioxide. 展开更多
关键词 Ultra-low-permeability reservoir Well spacing optimization Numerical simulation Gas injection EOR
下载PDF
Shenqi Fuzheng injection alleviates chemotherapy-induced cachexia by restoring glucocorticoid signaling in hypothalamus
7
作者 Entezar Berik Zijia Zhang +16 位作者 Wei Li Yawen Liu Sihan Chen Wenyong Wu Zhaojun Wang Xinqin Kong Wenqiang Pei Huiqing Dong Huali Long Min Lei Jennifer Yiyang Wang Liangfeng Liu Jinjun Hou Jing Feng Zhaoxia Li Wanying Wu De-an Guo 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2024年第3期431-434,共4页
Chemotherapy-induced cachexia(CIC)is a debilitating condition characterized by weight loss,muscle atrophy,and anorexia[1].While peripheral mechanisms of cachexia have been extensively studied,the involvement of the ce... Chemotherapy-induced cachexia(CIC)is a debilitating condition characterized by weight loss,muscle atrophy,and anorexia[1].While peripheral mechanisms of cachexia have been extensively studied,the involvement of the central nervous system(CNS)in CIC is often overlooked.Chemotherapeutic drugs cause stress responses and inflammation,which may impact the hypothalamus and disrupt systemic energy and neuroendocrine functions.Understanding hypothalamic roles in regulating these processes can provide insights into CIC's mechanisms and aid in developing novel therapies. 展开更多
关键词 injection DRUGS GLUCOCORTICOID CHEMOTHERAPY
下载PDF
Heat front propagation in shale oil reservoirs during air injection:Experimental and numerical studies
8
作者 Shuai Zhao Chun-Yun Xu +4 位作者 Wan-Fen Pu Qing-Yuan Chen Cheng-Dong Yuan Mikhail A.Varfolomeev Vladislav Sudakov 《Petroleum Science》 SCIE EI CAS CSCD 2024年第5期3379-3389,共11页
Air injection technique for developing shale oil has gained significant attention. However, the ability of the heat front to consistently propagate within the shale during air injection remains uncertain. To address t... Air injection technique for developing shale oil has gained significant attention. However, the ability of the heat front to consistently propagate within the shale during air injection remains uncertain. To address this, we investigated the heat front propagation within oil-detritus mixtures, shale cores, and fractured shale cores using a self-designed combustion tube(CT) and experimental schemes. By integrating the results obtained from high-pressure differential scanning calorimetry and CT, we developed a comprehensive reaction kinetics model to accurately analyze the main factors influencing the heat front propagation within fractured shale. The findings revealed that in the absence of additional fractures, the heat front failed to propagate within the tight shale. The flow of gases and liquids towards the shale core was impeded, resulting in the formation of a high-pressure zone at the front region of the shale. This pressure buildup significantly hindered air injection, leading to inadequate oxygen supply and the extinguishment of the heat front. However, the study demonstrated the stable propagation of the heat front within the oil-detritus mixtures, indicating the good combustion activity of the shale oil.Furthermore, the heat front successfully propagated within the fractured shale, generating a substantial amount of heat that facilitated the creation of fractures and enhanced gas injection and shale oil flow. It was important to note that after the heat front passed through the shale, the combustion intensity decreased. The simulation results indicated that injecting air into the main fracturing layers of the shale oil reservoir enabled the establishment of a stable heat front. Increasing the reservoir temperature(from 63 to 143℃) and oxygen concentration in the injected gas(from 11% to 21%) promoted notable heat front propagation and increased the average temperature of the heat front. It was concluded that temperature and oxygen concentration had the most important influence on the heat front propagation, followed by pressure and oil saturation. 展开更多
关键词 Heat front propagation Shale oil Kinetics model Combustion tube Air injection
下载PDF
Experimental study of the influencing factors and mechanisms of the pressure-reduction and augmented injection effect by nanoparticles in ultra-low permeability reservoirs
9
作者 Pan Wang Yu-Hang Hu +8 位作者 Liao-Yuan Zhang Yong Meng Zhen-Fu Ma Tian-Ru Wang Zi-Lin Zhang Ji-Chao Fang Xiao-Qiang Liu Qing You Yan Zhang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第3期1915-1927,共13页
Nanoparticles(NPs)have gained significant attention as a functional material due to their ability to effectively enhance pressure reduction in injection processes in ultra-low permeability reservoirs.NPs are typically... Nanoparticles(NPs)have gained significant attention as a functional material due to their ability to effectively enhance pressure reduction in injection processes in ultra-low permeability reservoirs.NPs are typically studied in controlled laboratory conditions,and their behavior in real-world,complex environments such as ultra-low permeability reservoirs,is not well understood due to the limited scope of their applications.This study investigates the efficacy and underlying mechanisms of NPs in decreasing injection pressure under various injection conditions(25—85℃,10—25 MPa).The results reveal that under optimal injection conditions,NPs effectively reduce injection pressure by a maximum of 22.77%in core experiment.The pressure reduction rate is found to be positively correlated with oil saturation and permeability,and negatively correlated with temperature and salinity.Furthermore,particle image velocimetry(PIV)experiments(25℃,atmospheric pressure)indicate that the pressure reduction is achieved by NPs through the reduction of wall shear resistance and wettability change.This work has important implications for the design of water injection strategies in ultra-low permeability reservoirs. 展开更多
关键词 NANOPARTICLE Pressure reduction Augmented injection Ultra-low permeability reservoir
下载PDF
Oxygen variation in titanium powder and metal injection molding
10
作者 Junping Shen Chang Liu +7 位作者 Muhammad Dilawer Hayat Jianan Chen Hanqing Tian Fusheng Xin Gang Chen Fei Yang Mingli Qin Xuanhui Qu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第12期2706-2713,共8页
The control of oxygen is paramount in achieving high-performance titanium(Ti)parts by powder metallurgy such as metal in-jection molding(MIM).In this study,we purposely selected the Ti and Ti-6Al-4V powders as the ref... The control of oxygen is paramount in achieving high-performance titanium(Ti)parts by powder metallurgy such as metal in-jection molding(MIM).In this study,we purposely selected the Ti and Ti-6Al-4V powders as the reference materials since these two are the most representative Ti materials in the industry.Herein,hydride-dehydride(HDH)Ti powders were pre-oxidized to examine the ef-fect of oxygen variation on the characteristics of oxide layer on the particle surface and its resultant color feature.The results indicate that the thickness and Ti oxide level(Ti^(0)→Ti^(4+))of the oxide layer on the HDH Ti powders increased as the oxygen content increased,lead-ing to the transition of color appearance from grey,brown to blue.This work aids in the powder feedstock selection at the initial stage in powder metallurgy.In addition,the development of oxygen content was comprehensively studied during the MIM process using the gas-atomized(GA)Ti-6Al-4V powders.Particularly,the oxygen variation in the form of oxide layer,the change of oxygen content in the powders,and the relevant parts were investigated during the processes of kneading,injection,debinding,and sintering.The oxygen vari-ation was mainly concentrated in the sintering stage,and the content increased with the increase of sintering temperature.The variation of oxygen content during the MIM process demonstrates the crucial role of powder feedstock and sintering stage in controlling oxygen con-tent.This work provides a piece of valuable information on oxygen detecting,control,and manipulation for the powder and processing in the industry of Ti and its alloys by powder metallurgy. 展开更多
关键词 titanium alloys OXYGEN metal injection molding powder metallurgy
下载PDF
Numerical analysis of hydraulic fracture propagation in deep shale reservoir with different injection strategies
11
作者 Yingjie Xia Mingyu Yao +2 位作者 Tianjiao Li Hai Yang Chun'an Tang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第9期3558-3574,共17页
Deep shale reservoirs are characterized by elevated breakdown pressures,diminished fracture complexity,and reduced modified volumes compared to medium and shallow reservoirs.Therefore,it is urgent to investigate parti... Deep shale reservoirs are characterized by elevated breakdown pressures,diminished fracture complexity,and reduced modified volumes compared to medium and shallow reservoirs.Therefore,it is urgent to investigate particular injection strategies that can optimize breakdown pressure and fracturing efficiency to address the increasing demands for deep shale reservoir stimulation.In this study,the efficiency of various stimulation strategies,including multi-cluster simultaneous fracturing,modified alternating fracturing,alternating shut-in fracturing,and cyclic alternating fracturing,was evaluated.Subsequently,the sensitivity of factors such as the cycle index,shut-in time,cluster spacing,and horizontal permeability was investigated.Additionally,the flow distribution effect within the wellbore was discussed.The results indicate that relative to multi-cluster simultaneous fracturing,modified alternating fracturing exhibits reduced susceptibility to the stress shadow effect,which results in earlier breakdown,extended hydraulic fracture lengths,and more consistent propagation despite an increase in breakdown pressure.The alternating shut-in fracturing benefits the increase of fracture length,which is closely related to the shut-in time.Furthermore,cyclic alternating fracturing markedly lowers breakdown pressure and contributes to uniform fracture propagation,in which the cycle count plays an important role.Modified alternating fracturing demonstrates insensitivity to variations in cluster spacing,whereas horizontal permeability is a critical factor affecting fracture length.The wellbore effect restrains the accumulation of pressure and flow near the perforation,delaying the initiation of hydraulic fractures.The simulation results can provide valuable numerical insights for optimizing injection strategies for deep shale hydraulic fracturing. 展开更多
关键词 Fracture propagation Numerical simulation Hydraulic fracturing Rock failure process analysis(RFPA) injection strategy
下载PDF
Modeling injection-induced fault slip using long short-term memory networks
12
作者 Utkarsh Mital Mengsu Hu +2 位作者 Yves Guglielmi James Brown Jonny Rutqvist 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第11期4354-4368,共15页
Stress changes due to changes in fluid pressure and temperature in a faulted formation may lead to the opening/shearing of the fault.This can be due to subsurface(geo)engineering activities such as fluid injections an... Stress changes due to changes in fluid pressure and temperature in a faulted formation may lead to the opening/shearing of the fault.This can be due to subsurface(geo)engineering activities such as fluid injections and geologic disposal of nuclear waste.Such activities are expected to rise in the future making it necessary to assess their short-and long-term safety.Here,a new machine learning(ML)approach to model pore pressure and fault displacements in response to high-pressure fluid injection cycles is developed.The focus is on fault behavior near the injection borehole.To capture the temporal dependencies in the data,long short-term memory(LSTM)networks are utilized.To prevent error accumulation within the forecast window,four critical measures to train a robust LSTM model for predicting fault response are highlighted:(i)setting an appropriate value of LSTM lag,(ii)calibrating the LSTM cell dimension,(iii)learning rate reduction during weight optimization,and(iv)not adopting an independent injection cycle as a validation set.Several numerical experiments were conducted,which demonstrated that the ML model can capture peaks in pressure and associated fault displacement that accompany an increase in fluid injection.The model also captured the decay in pressure and displacement during the injection shut-in period.Further,the ability of an ML model to highlight key changes in fault hydromechanical activation processes was investigated,which shows that ML can be used to monitor risk of fault activation and leakage during high pressure fluid injections. 展开更多
关键词 Machine learning Long short-term memory networks FAULT Fluid injection
下载PDF
Wetting front migration model of ion-adsorption rare earth during the multi-hole unsaturated liquid injection
13
作者 Yu Wang Xiaojun Wang +8 位作者 Yuchen Qiu Hao Wang Gang Li Kaijian Hu Wen Zhong Zhongqun Guo Bing Li Chunlei Zhang Guangxiang Ye 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期483-496,共14页
In the process of ion-adsorption rare earth ore leaching,the migration characteristics of the wetting front in multi-hole injection holes and the influence of wetting front intersection effect on the migration distanc... In the process of ion-adsorption rare earth ore leaching,the migration characteristics of the wetting front in multi-hole injection holes and the influence of wetting front intersection effect on the migration distance of wetting fronts are still unclear.Besides,wetting front migration distance and leaching time are usually required to optimize the leaching process.In this study,wetting front migration tests of ionadsorption rare earth ores during the multi-hole fluid injection(the spacing between injection holes was 10 cm,12 cm and 14 cm)and single-hole fluid injection were completed under the constant water head height.At the pre-intersection stage,the wetting front migration laws of ion-adsorption rare earth ores during the multi-hole fluid injection and single-hole fluid injection were identical.At the postintersection stage,the intersection accelerated the wetting front migration.By using the Darcy’s law,the intersection effect of wetting fronts during the multi-hole liquid injection was transformed into the water head height directly above the intersection.Finally,based on the Green-Ampt model,a wetting front migration model of ion-adsorption rare earth ores during the multi-hole unsaturated liquid injection was established.Error analysis results showed that the proposed model can accurately simulate the infiltration process under experimental conditions.The research results enrich the infiltration law and theory of ion-adsorption rare earth ores during the multi-hole liquid injection,and this study provides a scientific basis for optimizing the liquid injection well pattern parameters of ion-adsorption rare earth in situ leaching in the future. 展开更多
关键词 Ion-adsorption rare earth ore Multi-hole unsaturated liquid injection In situ leaching Intersection effect Calculation model
下载PDF
Tofacitinib combined with local low-dose ixekizumab injection benefits those with peripheral psoriatic arthritis
14
作者 Yours Sincerely Ruiyuan Xia +2 位作者 Weixin Zhang Jing Hang Zhiqiang Yin 《The Journal of Biomedical Research》 CAS CSCD 2024年第1期92-94,共3页
Dear Editor,Treating psoriatic arthritis(PsA)is always difficult.Systemic treatments can be administered either orally or through intramuscular and intra-articular injection,including conventional synthetics,biologics... Dear Editor,Treating psoriatic arthritis(PsA)is always difficult.Systemic treatments can be administered either orally or through intramuscular and intra-articular injection,including conventional synthetics,biologics and targeted synthetic disease-modifying antirheumatic drugs[1].The alternatives,topical external therapies,are not effective on joint lesions due to drug permeability issues.Drugs injected into the articular cavity are also unsuitable for small peripheral joint lesions,the most common manifestations of PsA.The limited treatment options for PsA present a challenge. 展开更多
关键词 injection DRUGS cavity treatment
下载PDF
Personalized laparoscopic radical resection of gallbladder cancer by staining of the liver draining area through ICG injection into the cholecystic artery
15
作者 Xu Bao Dongyang Li Wei Zhang 《Cancer Biology & Medicine》 SCIE CAS CSCD 2024年第10期844-848,共5页
Gallbladder cancer(GBC)is a common malignant tumor often diagnosed in advanced stages.Surgery is among the most important treatments for GBC.Radical resection of GBC involves removal of the gallbladder and the gallbla... Gallbladder cancer(GBC)is a common malignant tumor often diagnosed in advanced stages.Surgery is among the most important treatments for GBC.Radical resection of GBC involves removal of the gallbladder and the gallbladder bed[liver segments(S)4b and 5],and hepatoduodenal ligament regional lymphadenectomy.The main GBC metastasis modes are blood and lymph node metastases.The scope of resection/wedge resection or regular S4b and S5 hepatectomy for blood metastasis is a matter of debate.A variety of hepatectomy methods have been proposed for T2 stage GBC,but no consensus has been reached regarding the scope of radical resection.Currently,the liver resection range is determined by branches of the portal vein.S4b and S5 hepatectomy is determined according to the liver portal vein branch perfusion area,but the rationale for liver resection for GBC is to eliminate potential metastasis from the cystic vein reflux area to the liver.In the case described herein,we used a novel technique and theoretical framework to conduct laparoscopic radical resection of gallbladder cancer(LRRGC)facilitated by staining of the liver draining area with an indocyanine green(ICG)injection into the cholecystic artery. 展开更多
关键词 GALLBLADDER injection Surgery
下载PDF
Does HSP27 injection induce glaucoma damage in mice?
16
作者 Stephanie C.Joachim Sabrina Reinehr 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第11期2347-2348,共2页
In a further aging society,excellent eyesight is an integral part of overall well-being and quality of life.Preserving good vision is crucial to maintaining mobility,independence,and mental health.There can be several... In a further aging society,excellent eyesight is an integral part of overall well-being and quality of life.Preserving good vision is crucial to maintaining mobility,independence,and mental health.There can be several reasons for visual impairment in elderly people,these include age-related macular degeneration,the leading cause of vision loss among older adults,cataract,glaucoma,diabetic retinopathy,retinal detachment,and others. 展开更多
关键词 HSP27 injection DAMAGE
下载PDF
Large-scale physical simulation of injection and production of hot dry rock in Gonghe Basin,Qinghai Province,China
17
作者 ZHAO Peng ZHU Haiyan +4 位作者 LI Gensheng CHEN Zuo CHEN Shijie SHANGGUAN Shuantong QI Xiaofei 《Petroleum Exploration and Development》 SCIE 2024年第3期741-752,共12页
Based on the independently developed true triaxial multi-physical field large-scale physical simulation system of in-situ injection and production,we conducted physical simulation of long-term multi-well injection and... Based on the independently developed true triaxial multi-physical field large-scale physical simulation system of in-situ injection and production,we conducted physical simulation of long-term multi-well injection and production in the hot dry rocks of the Gonghe Basin,Qinghai Province,NW China.Through multi-well connectivity experiments,the spatial distribution characteristics of the natural fracture system in the rock samples and the connectivity between fracture and wellbore were clarified.The injection and production wells were selected to conduct the experiments,namely one injection well and two production wells,one injection well and one production well.The variation of several physical parameters in the production well was analyzed,such as flow rate,temperature,heat recovery rate and fluid recovery.The results show that under the combination of thermal shock and injection pressure,the fracture conductivity was enhanced,and the production temperature showed a downward trend.The larger the flow rate,the faster the decrease.When the local closed area of the fracture was gradually activated,new heat transfer areas were generated,resulting in a lower rate of increase or decrease in the mining temperature.The heat recovery rate was mainly controlled by the extraction flow rate and the temperature difference between injection and production fluid.As the conductivity of the leak-off channel increased,the fluid recovery of the production well rapidly decreased.The influence mechanisms of dominant channels and fluid leak-off on thermal recovery performance are different.The former limits the heat exchange area,while the latter affects the flow rate of the produced fluid.Both of them are important factors affecting the long-term and efficient development of hot dry rock. 展开更多
关键词 hot dry rock simulation of injection and production heat extraction performance CONDUCTIVITY dominant channel fluid leak-off
下载PDF
Background diseases and the number of previous intravitreal aflibercept injections on immediate intraocular pressure increase and vitreous reflux rate in phakic eyes
18
作者 Tetsuya Muto Shigeki Machida Shinichiro Imaizumi 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第3期545-550,共6页
●AIM:To evaluate the effect of background diseases and number of previous intravitreal aflibercept injections(IVAIs)on immediate intraocular pressure(IOP)increase and vitreous reflux(VR)rate and to evaluate the corre... ●AIM:To evaluate the effect of background diseases and number of previous intravitreal aflibercept injections(IVAIs)on immediate intraocular pressure(IOP)increase and vitreous reflux(VR)rate and to evaluate the correlation of both age and axial length with immediate IOP increase and VR rate.●METHODS:This study included 105 patients with cystoid macular edema secondary to retinal vein occlusion,35 patients with diabetic macular edema,69 patients with neovascular age-related macular degeneration(nAMD),and 12 patients with myopic choroidal neovascularization,which underwent first-time IVAI.The correlation of immediate IOP increase and VR rates with the four background diseases was investigated.Moreover,the correlation of age with immediate IOP increase and VR rate as well as correlation of axial length with immediate IOP increase and VR rate were evaluated.Further,54 patients with nAMD were treated with IVAI>10 times(multiple IVAIs).Moreover,the correlation of immediate IOP increase and VR rates with first-time and multiple IVAIs in nAMD was determined.●RESULTS:The immediate IOP increase(P=0.16)and VR rates(P=0.50)were almost similar among the four background diseases.The immediate postinjection IOP and age,VR rate and age,immediate postinjection IOP and axial length,or VR rate and axial length were not correlated in the four background diseases.The immediate IOP increase(P=0.66)and VR rates(P=0.28)did not significantly differ between first-time and multiple IVAIs in nAMD.●CONCLUSION:Background diseases and number of previous IVAIs have no effect on immediate IOP increase and VR rate.Further,age and axial length have no correlation on immediate IOP increase and VR rate. 展开更多
关键词 AFLIBERCEPT intraocular pressure vitreous reflux intravitreal injection
下载PDF
Short-term fluctuation of intraocular pressure and influencing factors following intravitreal injection in patients with retinal vascular diseases
19
作者 Jing-Peng Miao Yi-Yun Zeng +1 位作者 Xin-Ming Gu Xin-Yuan Zhang 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第11期2052-2059,共8页
AIM:To investigate the patterns of short-term intraocular pressure(IOP)fluctuations and identify the contributing factors following intravitreal injection in patients with retinal vascular diseases.METHODS:Totally 81 ... AIM:To investigate the patterns of short-term intraocular pressure(IOP)fluctuations and identify the contributing factors following intravitreal injection in patients with retinal vascular diseases.METHODS:Totally 81 patients were enrolled in this case control study.Eyes were categorized into 7 groups,including age-related macular degeneration(AMD),polypoidal choroidal vasculopathy(PCV),idiopathic choroidal neovascularization(CNV),proliferative diabetic retinopathy(PDR),diabetic macular edema(DME),macular edema secondary to branch(BVOME)and central(CVOME)retinal vein occlusion.IOP was measured in all patients using rebound tonometer at 7 preset time points perioperatively.Additionally,based on the administered medication,the eyes were classified into three treatment groups,including dexamethasone intravitreal implant(IVO),intravitreal conbercept(IVC),and intravitreal ranibizumab(IVR).To compare IOP values at various time points across groups,we employed one-way ANOVA,independent sample t-test or χ^(2) test and multivariate logistic regression analysis.RESULTS:Peak IOP values across all groups were observed at 40s,and 5min after intravitreal injection.Statistical differences in IOP were detected at the 5min among the 7 indication groups(F=2.50,P=0.029).When examing the impact of medications,the IVO group exhibited lower average IOP values at both 40s and 5min compared to the IVC and IVR groups(P<0.001;P=0.007).The IOP values at 40s and 5min were significantly higher in BVOME and CVOME group compared to non-retinal vein occlusionsecondary macular edema(RVOME)group(P<0.001).Multivariate logistic regression analysis further confirmed that IOP measurement at 40s was significantly higher in CVOME group than in non-RVOME group(OR=1.64,95%CI:1.09-2.47;P=0.018).CONCLUSION:Needle size plays a crucial role in the transient changes of IOP following intravitreal injection.Before administering intravitreal injection to patients with central retinal vein occlusion,it is essential to exclude any underlysing causes of increased IOP. 展开更多
关键词 intravitreal injection rebound tonometer intraocular pressure retinal vein occlusion ocular fundus diseases
下载PDF
A New Heat Transfer Model for Multi-Gradient Drilling with Hollow Sphere Injection
20
作者 Jiangshuai Wang Chuchu Cai +3 位作者 Pan Fu Jun Li Hongwei Yang Song Deng 《Fluid Dynamics & Materials Processing》 EI 2024年第3期537-546,共10页
Multi-gradient drilling is a new offshore drilling method.The accurate calculation of the related wellbore temperature is of great significance for the prediction of the gas hydrate formation area and the precise cont... Multi-gradient drilling is a new offshore drilling method.The accurate calculation of the related wellbore temperature is of great significance for the prediction of the gas hydrate formation area and the precise control of the wellbore pressure.In this study,a new heat transfer model is proposed by which the variable mass flow is properly taken into account.Using this model,the effects of the main factors influencing the wellbore temperature are analyzed.The results indicate that at the position where the separation injection device is installed,the temperature increase of the fluid in the drill pipe is mitigated due to the inflow/outflow of hollow spheres,and the temperature drop of the fluid in the annulus also decreases.In addition,a lower separation efficiency of the device,a shallower installation depth and a smaller circulating displacement tend to increase the temperature near the bottom of the annulus,thereby helping to reduce the hydrate generation area and playing a positive role in the prevention and control of hydrates in deepwater drilling. 展开更多
关键词 Multi-gradient drilling wellbore temperature HYDRATE separate injection device variable mass
下载PDF
上一页 1 2 159 下一页 到第
使用帮助 返回顶部