Organic lead halide compounds with perovskite structure become a promising photovoltaic material for low- cost thin film solar cells in recent years. The property of perovskite/metal interface is a fundamental topic f...Organic lead halide compounds with perovskite structure become a promising photovoltaic material for low- cost thin film solar cells in recent years. The property of perovskite/metal interface is a fundamental topic for the effective charge transfer at metal electrodes. In this work, we develop an interface modification method of lithium bis(trifluoromethane sulfonimide) (LiTFSI) solution treatment, which can effectively decrease the charge transfer resistance at the CH3NHaPbI3_xClx/Au interface. After the solution treatment, uniform nan- odots are formed at the surface of CHaNH3PbI3_xCIx films, and the barrier height at CH3NH3PbI3_xCIx/Au interface reduces from 0.51 V to 0.08 V. As a consequence, the efficiency of hole conductor free solar cells with CH3NHaPbI3-xCIx harvester increase from 4.0% to 7.6% under one sun condition. It is also found that the hole conductor free perovskite solar cell can work in a photodetector mode, which has the same output prop- erties with phototransistors. After the LiTFSI solution treatment, the sensitivity of this photodetector can be improved for about one time.展开更多
The effect of carbonation treatment and mixing method on the mechanical properties and interfacial transition zone(ITZ) properties of recycled aggregate concrete(RAC) was investigated. Properties of recycled concr...The effect of carbonation treatment and mixing method on the mechanical properties and interfacial transition zone(ITZ) properties of recycled aggregate concrete(RAC) was investigated. Properties of recycled concrete aggregate(RCA) were tested firstly. Then, five types of concretes were made and slump of fresh concrete was measured immediately after mixing. Compressive strength and splitting tensile strength of hardened concrete were measured at 28 d. Meanwhile, the microstructure of RAC was analyzed by backscattered electron(BSE) image. It was found that the water absorption ratio of carbonated recycled concrete aggregate(CRCA) was much lower when compared to the untreated RCA. Comparatively, the apparent density of CRCA was not significantly modified. The concrete strength results indicate that the mix CRAC-2 prepared with CRCA by adopting two-stage mixing approach shows the highest compressive strength value compared to the other mixes. The microstructural analysis demonstrate that the mix CRAC-2 has a much denser old ITZ than the untreated RAC because of the chemical reaction between CO2 and the hydration products of RCA. This study confirms that the ITZ microstructure of RAC can be efficiently modified by carbonation treatment of RCA and encourages broadening the application of construction and demolition wastes.展开更多
基金supported by the National Natural Science Foundation of China (51273079,11404133)the Science Development Program of Jilin Province (20150519021JH)the Fundamental Research Funds for Central Universities at Jilin University
文摘Organic lead halide compounds with perovskite structure become a promising photovoltaic material for low- cost thin film solar cells in recent years. The property of perovskite/metal interface is a fundamental topic for the effective charge transfer at metal electrodes. In this work, we develop an interface modification method of lithium bis(trifluoromethane sulfonimide) (LiTFSI) solution treatment, which can effectively decrease the charge transfer resistance at the CH3NHaPbI3_xClx/Au interface. After the solution treatment, uniform nan- odots are formed at the surface of CHaNH3PbI3_xCIx films, and the barrier height at CH3NH3PbI3_xCIx/Au interface reduces from 0.51 V to 0.08 V. As a consequence, the efficiency of hole conductor free solar cells with CH3NHaPbI3-xCIx harvester increase from 4.0% to 7.6% under one sun condition. It is also found that the hole conductor free perovskite solar cell can work in a photodetector mode, which has the same output prop- erties with phototransistors. After the LiTFSI solution treatment, the sensitivity of this photodetector can be improved for about one time.
基金Funded by the National Natural Science Foundation of China(Nos.51278073,51678081,51678143)State Key Laboratory for Geo-mechanics and Deep Underground Engineering,China University of Mining&Technology(No.SKLGDUEK1704)
文摘The effect of carbonation treatment and mixing method on the mechanical properties and interfacial transition zone(ITZ) properties of recycled aggregate concrete(RAC) was investigated. Properties of recycled concrete aggregate(RCA) were tested firstly. Then, five types of concretes were made and slump of fresh concrete was measured immediately after mixing. Compressive strength and splitting tensile strength of hardened concrete were measured at 28 d. Meanwhile, the microstructure of RAC was analyzed by backscattered electron(BSE) image. It was found that the water absorption ratio of carbonated recycled concrete aggregate(CRCA) was much lower when compared to the untreated RCA. Comparatively, the apparent density of CRCA was not significantly modified. The concrete strength results indicate that the mix CRAC-2 prepared with CRCA by adopting two-stage mixing approach shows the highest compressive strength value compared to the other mixes. The microstructural analysis demonstrate that the mix CRAC-2 has a much denser old ITZ than the untreated RAC because of the chemical reaction between CO2 and the hydration products of RCA. This study confirms that the ITZ microstructure of RAC can be efficiently modified by carbonation treatment of RCA and encourages broadening the application of construction and demolition wastes.