Organic semiconductor is one of the most promising luminescent and lasing materials that can be chemically synthesized with a controllable performance and possess high cross-section of stimulated emission . Organic se...Organic semiconductor is one of the most promising luminescent and lasing materials that can be chemically synthesized with a controllable performance and possess high cross-section of stimulated emission . Organic semiconductor laser diodes (OSLDs) can be prepared by simple processing technologies and integrated easily with other optoelectronic devices. As a result, OSLDs would have appealing applications in low cost, compact, flexible and tunable lasers with spectral region from ultraviolet to near infrared . Although lasing has been widely demonstrated under optical pumping, electrically pumped OSLDs are rather difficult to realize because the expected high threshold current is hard to reach in low electrical conductivity organic semiconductors and electroluminescence (EL) efficiency is much decreased under high current.展开更多
We report on a vortex laser chirped-pulse amplification(CPA)system that delivers pulses with a peak power of 45 TW.A focused intensity exceeding 1019 W/cm2 has been demonstrated for the first time by the vortex amplif...We report on a vortex laser chirped-pulse amplification(CPA)system that delivers pulses with a peak power of 45 TW.A focused intensity exceeding 1019 W/cm2 has been demonstrated for the first time by the vortex amplification scheme.Compared with other schemes of strong-field vortex generation with high energy flux but narrowband vortex-converting elements at the end of the laser,an important advantage of our scheme is that we can use a broadband but size-limited q-plate to realize broadband mode-converting in the front end of the CPA system,and achieve high-power amplification with a series of amplifiers.This method is low cost and can be easily implemented in an existing laser system.The results have verified the feasibility to obtain terawatt and even petawatt vortex laser amplification by a CPA system,which has important potential applications in strong-field laser physics,for example,generation of vortex particle beams with orbital angular momentum,fast ignition for inertial confinement fusion and simulation of the extreme astrophysical environment.展开更多
基金supported by the CAS Innovation Program, the National Natural Science Foundation of China (51503196, 61775211, 61704170, 61405195 and 61774154)the financial support from the State Key Laboratory of Luminescence and Applications
文摘Organic semiconductor is one of the most promising luminescent and lasing materials that can be chemically synthesized with a controllable performance and possess high cross-section of stimulated emission . Organic semiconductor laser diodes (OSLDs) can be prepared by simple processing technologies and integrated easily with other optoelectronic devices. As a result, OSLDs would have appealing applications in low cost, compact, flexible and tunable lasers with spectral region from ultraviolet to near infrared . Although lasing has been widely demonstrated under optical pumping, electrically pumped OSLDs are rather difficult to realize because the expected high threshold current is hard to reach in low electrical conductivity organic semiconductors and electroluminescence (EL) efficiency is much decreased under high current.
基金supported by the National Natural Science Foundation of China(Nos.92050203,61925507,12174264,12004261,62075138,and 61827815)the Natural Science Foundation of Guangdong Province(Nos.2021A1515011909 and 2022A1515011457)the Shenzhen Fundamental Research Projects(Nos.JCYJ20200109105606426,JCYJ20190808164007485,JCYJ20190808121817100,JCYJ20190808143419622,and JCYJ20190808115601653).
文摘We report on a vortex laser chirped-pulse amplification(CPA)system that delivers pulses with a peak power of 45 TW.A focused intensity exceeding 1019 W/cm2 has been demonstrated for the first time by the vortex amplification scheme.Compared with other schemes of strong-field vortex generation with high energy flux but narrowband vortex-converting elements at the end of the laser,an important advantage of our scheme is that we can use a broadband but size-limited q-plate to realize broadband mode-converting in the front end of the CPA system,and achieve high-power amplification with a series of amplifiers.This method is low cost and can be easily implemented in an existing laser system.The results have verified the feasibility to obtain terawatt and even petawatt vortex laser amplification by a CPA system,which has important potential applications in strong-field laser physics,for example,generation of vortex particle beams with orbital angular momentum,fast ignition for inertial confinement fusion and simulation of the extreme astrophysical environment.