期刊文献+
共找到2,281篇文章
< 1 2 115 >
每页显示 20 50 100
Micro LED车灯投影光学系统设计与优化 被引量:1
1
作者 李香兰 金霞 +7 位作者 吕金光 郑凯丰 陈宇鹏 赵百轩 赵莹泽 秦余欣 王惟彪 梁静秋 《中国光学(中英文)》 EI CAS CSCD 北大核心 2024年第1期89-99,共11页
本文提出了一种基于Micro LED阵列的车灯投影方案,设计了以像素尺寸为80μm×80μm的200×150白光Micro LED阵列作为显示光源,视场角为16°×34°的车灯投影光学系统,并对物面倾斜角度和光学系统结构进行了优化。此... 本文提出了一种基于Micro LED阵列的车灯投影方案,设计了以像素尺寸为80μm×80μm的200×150白光Micro LED阵列作为显示光源,视场角为16°×34°的车灯投影光学系统,并对物面倾斜角度和光学系统结构进行了优化。此外,分别采用反向畸变处理方法和像素灰度调制方法用以解决车灯投影图像的梯形畸变和照度均匀性问题,并搭建了投影实验平台,对图像校正方法进行了验证。实验结果表明:校正后图像梯形畸变系数p1,p2分别从0.0932和0.3680下降至0.0835和0.0373,像面照度均匀性从83.2%提高到93.2%。本文通过对基于Micro LED的倾斜投影车灯光学系统进行优化设计及采用图像校正方法,实现了高光效、低畸变的车灯投影。 展开更多
关键词 车灯投影光学系统 光学设计 micro LED 照度均匀性 梯形畸变
下载PDF
光子晶体Micro LED微显示阵列加工及光学特性分析 被引量:1
2
作者 孟媛 肖秧 +4 位作者 冯晓雨 何龙振 张鹏喆 宁平凡 刘宏伟 《半导体技术》 CAS 北大核心 2024年第8期719-725,共7页
Micro LED器件具有高亮度、低功耗和高可靠性等优点,但Micro LED显示像素巨量转移和光提取效率低的问题为其应用带来挑战。开发了具有高转移效率和出光效率的单片64×64 Micro LED微显示阵列,提出了倒装型GaN基单片Micro LED微显示... Micro LED器件具有高亮度、低功耗和高可靠性等优点,但Micro LED显示像素巨量转移和光提取效率低的问题为其应用带来挑战。开发了具有高转移效率和出光效率的单片64×64 Micro LED微显示阵列,提出了倒装型GaN基单片Micro LED微显示阵列芯片和Si基驱动电路的设计方法及集成工艺。通过时域有限差分(FDTD)方法对Micro LED微显示阵列光学特性进行了建模分析,设计了一种提高Micro LED微显示阵列出光效率的光提取结构。结合仿真结果,开发了一种在Micro LED蓝宝石衬底表面制备光子晶体结构的聚焦离子束(FIB)微纳加工工艺,并进行了器件加工。测试结果表明,蓝宝石衬底上加工的光子晶体结构可以提高Micro LED器件的表面出光效率,光功率平均值提升了16.36%,对Micro LED微显示阵列加工及微显示像素光提取问题具有借鉴意义。 展开更多
关键词 micro LED 微显示阵列 光子晶体结构 聚焦离子束(FIB) 出光效率
下载PDF
Micro segment analysis of supercritical methane thermal-hydraulic performance and pseudo-boiling in a PCHE straight channel 被引量:2
3
作者 Qian Li Zi-Jie Lin +3 位作者 Liu Yang Yue Wang Yue Li Wei-Hua Cai 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1275-1289,共15页
The printed circuit heat exchanger(PCHE) is receiving wide attention as a new kind of compact heat exchanger and is considered as a promising vaporizer in the LNG process. In this paper, a PCHE straight channel in the... The printed circuit heat exchanger(PCHE) is receiving wide attention as a new kind of compact heat exchanger and is considered as a promising vaporizer in the LNG process. In this paper, a PCHE straight channel in the length of 500 mm is established, with a semicircular cross section in a diameter of 1.2 mm.Numerical simulation is employed to investigate the flow and heat transfer performance of supercritical methane in the channel. The pseudo-boiling theory is adopted and the liquid-like, two-phase-like, and vapor-like regimes are divided for supercritical methane to analyze the heat transfer and flow features.The results are presented in micro segment to show the local convective heat transfer coefficient and pressure drop. It shows that the convective heat transfer coefficient in segments along the channel has a significant peak feature near the pseudo-critical point and a heat transfer deterioration when the average fluid temperature in the segment is higher than the pseudo-critical point. The reason is explained with the generation of vapor-like film near the channel wall that the peak feature related to a nucleateboiling-like state and heat transfer deterioration related to a film-boiling-like state. The effects of parameters, including mass flow rate, pressure, and wall heat flux on flow and heat transfer were analyzed.In calculating of the averaged heat transfer coefficient of the whole channel, the traditional method shows significant deviation and the micro segment weighted average method is adopted. The pressure drop can mainly be affected by the mass flux and pressure and little affected by the wall heat flux. The peak of the convective heat transfer coefficient can only form at high mass flux, low wall heat flux, and near critical pressure, in which condition the nucleate-boiling-like state is easier to appear. Moreover,heat transfer deterioration will always appear, since the supercritical flow will finally develop into a filmboiling-like state. So heat transfer deterioration should be taken seriously in the design and safe operation of vaporizer PCHE. The study of this work clarified the local heat transfer and flow feature of supercritical methane in microchannel and contributed to the deep understanding of supercritical methane flow of the vaporization process in PCHE. 展开更多
关键词 Printed circuit heat exchanger Vaporization Supercritical methane Pseudo-boiling micro segment analysis
下载PDF
Advances in microfluidic-based DNA methylation analysis 被引量:1
4
作者 Jiwen Li Tiechuan Li Xuexin Duan 《Nanotechnology and Precision Engineering》 EI CAS CSCD 2024年第1期116-134,共19页
DNA methylation has been extensively investigated in recent years,not least because of its known relationship with various diseases.Progress in analytical methods can greatly increase the relevance of DNA methylation ... DNA methylation has been extensively investigated in recent years,not least because of its known relationship with various diseases.Progress in analytical methods can greatly increase the relevance of DNA methylation studies to both clinical medicine and scientific research.Microflu-idic chips are excellent carriers for molecular analysis,and their use can provide improvements from multiple aspects.On-chip molecular analysis has received extensive attention owing to its advantages of portability,high throughput,low cost,and high efficiency.In recent years,the use of novel microfluidic chips for DNA methylation analysis has been widely reported and has shown obvious superiority to conventional methods.In this review,wefirst focus on DNA methylation and its applications.Then,we discuss advanced microfluidic-based methods for DNA methylation analysis and describe the great progress that has been made in recent years.Finally,we summarize the advantages that microfluidic technology brings to DNA methylation analysis and describe several challenges and perspectives for on-chip DNA methylation analysis.This review should help researchers improve their understanding and make progress in developing microfluidic-based methods for DNA methylation analysis. 展开更多
关键词 microfluidic chip DNA methylation analysis Molecular analysis High throughput Low cost
下载PDF
基于Micro CT的铜导线短路熔痕孔洞特征分析
5
作者 陈克 郭宇航 +3 位作者 邓松华 王轩磊 张亮亮 张斌 《消防科学与技术》 CAS 北大核心 2024年第4期566-571,共6页
导线短路是造成电气火灾的重要原因之一。现行国家标准中将导线短路熔痕分为起火前发生的一次短路熔痕和起火后造成的二次短路熔痕,然而现行国家标准中的鉴定仅停留在定性判断的阶段。火灾现场铜导线短路熔痕特征的量化分析研究是国内... 导线短路是造成电气火灾的重要原因之一。现行国家标准中将导线短路熔痕分为起火前发生的一次短路熔痕和起火后造成的二次短路熔痕,然而现行国家标准中的鉴定仅停留在定性判断的阶段。火灾现场铜导线短路熔痕特征的量化分析研究是国内外研究人员主要关注的重点。本文应用Micro CT技术对铜导线短路熔痕进行断层扫描检测并重构铜导线短路熔痕的3D图像数据,在此基础上统计、归纳、总结铜导线短路熔痕内部孔洞形态及分布等孔洞特征。研究表明,Micro CT能够全面采集铜导线短路熔痕的整体形态和内部孔洞特征,一次短路熔痕与二次短路熔痕内部孔洞半径、表面积、紧密度的特征数据存在差别,可为短路熔痕定性和定量分析判据研究提供新的理论依据。 展开更多
关键词 micro CT 短路熔痕 孔洞特征 火灾物证鉴定
下载PDF
Micro RNAs与急性心肌梗死关系的研究进展
6
作者 薛婷匀 闫贞蓉 +2 位作者 李广妹 赵佳叶 孙启玉 《承德医学院学报》 2024年第1期66-70,共5页
急性心肌梗死(acute myocardial infarction,AMI)是冠状动脉疾病最严重的表现,其引起的心肌组织损伤可促进心力衰竭的发展。尽管近些年由于生活方式的改变、治疗方式(如经皮冠状动脉介入治疗)的发展使AMI的预后得到了改善,但是AMI依旧... 急性心肌梗死(acute myocardial infarction,AMI)是冠状动脉疾病最严重的表现,其引起的心肌组织损伤可促进心力衰竭的发展。尽管近些年由于生活方式的改变、治疗方式(如经皮冠状动脉介入治疗)的发展使AMI的预后得到了改善,但是AMI依旧每年危害着全球700多万人的身心健康,AMI仍然是世界范围内高发病率和高死亡率的主要疾病之一[1]。微小RNA(micro RNAs,miRNAs)是在20世纪90年代被发现的,mi RNAs的研究已经迅速发展成为一个成熟而广阔的领域。mi RNAs存在于几乎所有类型的细胞和细胞的病理生理活动中,包括与心血管系统相关的细胞。本文将mi RNAs对AMI病理生理进程的影响进行综述,希望为临床治疗提供新思路。 展开更多
关键词 micro RNAs 急性心肌梗死 作用机制 预后
下载PDF
Flexible planar micro supercapacitor diode
7
作者 Yihui Ma Pei Tang +7 位作者 Zhenyuan Miao Wuyang Tan Qijun Wang Yuecong Chen Guosheng Li Qingyun Dou Xingbin Yan Lingling Shui 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期429-435,I0011,共8页
Supercapacitor diode is a novel ion device that performs both supercapacitor energy storage and ion diode rectification functions.However,previously reported devices are limited by their large size and complex process... Supercapacitor diode is a novel ion device that performs both supercapacitor energy storage and ion diode rectification functions.However,previously reported devices are limited by their large size and complex processes.In this work,we demonstrate a screen-printed micro supercapacitor diode(MCAPode)that based on the insertion of a finger mode with spinel ZnCo_(2)O_(4) as cathode and activated carbon as anode for the first time,and featuring an excellent area specific capacitance(1.21 mF cm^(-2)at 10 mV s^(-1))and high rectification characteristics(rectification ratioⅠof 11.99 at 40 mV s^(-1)).Taking advantage of the ionic gel electrolyte,which provides excellent stability during repeated flexing and at high temperatures.In addition,MCAPode exhibits excellent electrochemical performance and rectification capability in"AND"and"OR"logic gates.These findings provide practical solutions for future expansion of micro supercapacitor diode applications. 展开更多
关键词 micro devices Supercapacitor diodes Screen-printing RECTIFICATION Logic gates
下载PDF
Macroscopic and microscopic mechanical behavior and seepage characteristics of coal under hydro-mechanical coupling
8
作者 GAO Ming-zhong GAO Zheng +6 位作者 YANG Ben-gao XIE Jing WANG Ming-yao HAO Hai-chun WU Yan ZHOU Lang WANG Jing-yu 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第8期2765-2779,共15页
Understanding the physical,mechanical behavior,and seepage characteristics of coal under hydro-mechanical coupling holds significant importance for ensuring the stability of surrounding rock formations and preventing ... Understanding the physical,mechanical behavior,and seepage characteristics of coal under hydro-mechanical coupling holds significant importance for ensuring the stability of surrounding rock formations and preventing gas outbursts.Scanning electron microscopy,uniaxial tests,and triaxial tests were conducted to comprehensively analyze the macroscopic and microscopic physical and mechanical characteristics of coal under different soaking times.Moreover,by restoring the stress path and water injection conditions of the protective layer indoors,we explored the coal mining dynamic behavior and the evolution of permeability.The results show that water causes the micro-surface of coal to peel off and cracks to expand and develop.With the increase of soaking time,the uniaxial and triaxial strengths were gradually decreased with nonlinear trend,and decreased by 63.31%and 30.95%after soaking for 240 h,respectively.Under different water injection pressure conditions,coal permeability undergoes three stages during the mining loading process and ultimately increases to higher values.The peak stress of coal,the deviatoric stress and strain at the permeability surge point all decrease with increasing water injection pressure.The results of this research can help improve the understanding of the coal mechanical properties and seepage evolution law under hydro-mechanical coupling. 展开更多
关键词 COAL water intrusion mechanical properties PERMEABILITY macro and micro features
下载PDF
Dynamic Resistance and Energy Absorption of Sandwich Beam via a Micro-Topology Optimization
9
作者 Shiqiang Li Yuwei Li +3 位作者 Xiaomin Ma Jianguang Fang Zhifang Liu Zhihua Wang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第4期146-162,共17页
The current research of sandwich structures under dynamic loading mainly focus on the response characteristic of structure.The micro-topology of core layers would sufficiently influence the property of sandwich struct... The current research of sandwich structures under dynamic loading mainly focus on the response characteristic of structure.The micro-topology of core layers would sufficiently influence the property of sandwich structure.However,the micro deformation and topology mechanism of structural deformation and energy absorption are unclear.In this paper,based on the bi-directional evolutionary structural optimization method and periodic base cell(PBC)technology,a topology optimization frame work is proposed to optimize the core layer of sandwich beams.The objective of the present optimization problem is to maximize shear stiffness of PBC with a volume constraint.The effects of the volume fraction,filter radius,and initial PBC aspect ratio on the micro-topology of the core were discussed.The dynamic response process,core compression,and energy absorption capacity of the sandwich beams under blast impact loading were analyzed by the finite element method.The results demonstrated that the overpressure action stage was coupled with the core compression stage.Under the same loading and mass per unit area,the sandwich beam with a 20%volume fraction core layer had the best blast resistance.The filter radius has a slight effect on the shear stiffness and blast resistances of the sandwich beams.But increasing the filter radius could slightly improve the bending stiffness.Upon changing the initial PBC aspect ratio,there are three ways for PBC evolution:The first is to change the angle between the adjacent bars,the second is to further form holes in the bars,and the third is to combine the first two ways.However,not all three ways can improve the energy absorption capacity of the structure.Changing the aspect ratio of the PBC arbitrarily may lead to worse results.More studies are necessary for further detailed optimization.This research proposes a new topology sandwich beam structure by micro-topology optimization,which has sufficient shear stiffness.The micro mechanism of structural energy absorption is clarified,it is significant for structural energy absorption design. 展开更多
关键词 Topology optimization Sandwich beam Impact loading Dynamic resistance Energy absorption micro mechanism
下载PDF
Three‐dimensional(3D)‐printed MXene high‐voltage aqueous micro‐supercapacitors with ultrahigh areal energy density and low‐temperature tolerance
10
作者 Yuanyuan Zhu Qingxiao Zhang +6 位作者 Jiaxin Ma Pratteek Das Liangzhu Zhang Hanqing Liu Sen Wang Hui Li Zhong‐Shuai Wu 《Carbon Energy》 SCIE EI CAS CSCD 2024年第8期36-48,共13页
The rapid advancement in the miniaturization,integration,and intelligence of electronic devices has escalated the demand for customizable microsupercapacitors(MSCs)with high energy density.However,efficient microfabri... The rapid advancement in the miniaturization,integration,and intelligence of electronic devices has escalated the demand for customizable microsupercapacitors(MSCs)with high energy density.However,efficient microfabrication of safe and high‐energy MXene MSCs for integrating microelectronics remains a significant challenge due to the low voltage window in aqueous electrolytes(typically≤0.6 V)and limited areal mass loading of MXene microelectrodes.Here,we tackle these challenges by developing a highconcentration(18mol kg^(−1))“water‐in‐LiBr”(WiB)gel electrolyte for MXene symmetric MSCs(M‐SMSCs),demonstrating a record high voltage window of 1.8 V.Subsequently,additive‐free aqueous MXene ink with excellent rheological behavior is developed for three‐dimensional(3D)printing customizable all‐MXene microelectrodes on various substrates.Leveraging the synergy of a highvoltage WiB gel electrolyte and 3D‐printed microelectrodes,quasi‐solid‐state MSMSCs operating stably at 1.8 V are constructed,and achieve an ultrahigh areal energy density of 1772μWhcm^(−2) and excellent low‐temperature tolerance,with a long‐term operation at−40℃.Finally,by extending the 3D printing protocol,M‐SMSCs are integrated with humidity sensors on a single planar substrate,demonstrating their reliability in miniaturized integrated microsystems. 展开更多
关键词 3D printing aqueous electrolyte high voltage micro‐supercapacitors MXene
下载PDF
Effect of wire diameter compression ratio on drawing deformation of micro copper wire
11
作者 Tao HUANG Han-jiang WU +3 位作者 Ke-xing SONG Yan-min ZHANG Yan-jun ZHOU Shao-lin LI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第8期2605-2618,共14页
A crystal plasticity finite element model was developed for the drawing deformation of pure copper micro wire,based on rate-dependent crystal plasticity theory.The impact of wire diameter compression ratio on the micr... A crystal plasticity finite element model was developed for the drawing deformation of pure copper micro wire,based on rate-dependent crystal plasticity theory.The impact of wire diameter compression ratio on the micro-mechanical deformation behavior during the wire drawing process was investigated.Results indicate that the internal deformation and slip of the drawn wire are unevenly distributed,forming distinct slip and non-slip zones.Additionally,horizontal strain concentration bands develop within the drawn wire.As the wire diameter compression ratio increases,the strength of the slip systems and the extent of slip zones inside the deformation zone also increase.However,the fluctuating stress state,induced by contact pressure and frictional stress,results in a rough and uneven wire surface and diminishes the stability of the drawing process. 展开更多
关键词 micro copper wire drawing deformation crystal plasticity finite element slip mode
下载PDF
Micro defects formation and dynamic response analysis of steel plate of quasi-cracking area subjected to explosive load
12
作者 Zheng-qing Zhou Ze-chen Du +5 位作者 Xiao Wang Hui-ling Jiang Qiang Zhou Yu-long Zhang Yu-zhe Liu Pei-ze Zhang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期580-593,共14页
As the protective component,steel plate had attracted extensive attention because of frequently threats of explosive loads.In this paper,the evolution of microstructure and the mechanism of damage in the quasi-crackin... As the protective component,steel plate had attracted extensive attention because of frequently threats of explosive loads.In this paper,the evolution of microstructure and the mechanism of damage in the quasi-cracking area of steel plate subjected to explosive load were discussed and the relationships between micro defects and dynamic mechanical response were revealed.After the explosion experiment,five observation points were selected equidistant from the quasi-cracking area of the section of the steel plate along the thickness direction,and the characteristics of micro defects at the observation points were analyzed by optical microscope(OM),scanning electron microscope(SEM) and electron backscattered diffraction(EBSD).The observation result shows that many slip bands(SBs) appeared,and the grain orientation changed obviously in the steel plate,the two were the main damage types of micro defects.In addition,cracks,peeling pits,grooves and other lager micro defects were appeared in the lower area of the plate.The stress parameters of the observation points were obtained through an effective numerical model.The mechanism of damage generation and crack propagation in the quasicracking area were clarified by comparing the specific impulse of each observation point with the corresponding micro defects.The result shows that the generation and expansion of micro defects are related to the stress area(i.e.the upper compression area,the neutral plane area,and the lower tension area).The micro defects gather and expand at the grain boundary,and will become macroscopic damage under the continuous action of tensile stress.Besides,the micro defects at the midpoint of the section of the steel plate in the direction away from the explosion center(i.e.the horizontal direction) were also studied.It was found that the specific impulse at these positions were much smaller than that in the thickness direction,the micro defects were only SBs and a few micro cracks,and the those decreased with the increase of the distance from the explosion center. 展开更多
关键词 Explosive load Quasi-cracking area micro defects Steel plate Dynamic response Numerical simulation
下载PDF
Untethered Micro/Nanorobots for Remote Sensing:Toward Intelligent Platform
13
作者 Qianqian Wang Shihao Yang Li Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期450-483,共34页
Untethered micro/nanorobots that can wirelessly control their motion and deformation state have gained enormous interest in remote sensing applications due to their unique motion characteristics in various media and d... Untethered micro/nanorobots that can wirelessly control their motion and deformation state have gained enormous interest in remote sensing applications due to their unique motion characteristics in various media and diverse functionalities.Researchers are developing micro/nanorobots as innovative tools to improve sensing performance and miniaturize sensing systems,enabling in situ detection of substances that traditional sensing methods struggle to achieve.Over the past decade of development,significant research progress has been made in designing sensing strategies based on micro/nanorobots,employing various coordinated control and sensing approaches.This review summarizes the latest developments on micro/nanorobots for remote sensing applications by utilizing the self-generated signals of the robots,robot behavior,microrobotic manipulation,and robot-environment interactions.Providing recent studies and relevant applications in remote sensing,we also discuss the challenges and future perspectives facing micro/nanorobots-based intelligent sensing platforms to achieve sensing in complex environments,translating lab research achievements into widespread real applications. 展开更多
关键词 micro/nanorobot Remote sensing Wireless control SELF-PROPULSION Actuation at small scales
下载PDF
Microscopic defects formation and dynamic mechanical response analysis of Q345 steel plate subjected to explosive load
14
作者 Zhengqing Zhou Zechen Du +6 位作者 Yulong Zhang Guili Yang Ruixiang Wang Yuzhe Liu Peize Zhang Yaxin Zhang Xiao Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期430-442,共13页
As the basic protective element, steel plate had attracted world-wide attention because of frequent threats of explosive loads. This paper reports the relationships between microscopic defects of Q345 steel plate unde... As the basic protective element, steel plate had attracted world-wide attention because of frequent threats of explosive loads. This paper reports the relationships between microscopic defects of Q345 steel plate under the explosive load and its macroscopic dynamics simulation. Firstly, the defect characteristics of the steel plate were investigated by stereoscopic microscope(SM) and scanning electron microscope(SEM). At the macroscopic level, the defect was the formation of cave which was concentrated in the range of 0-3.0 cm from the explosion center, while at the microscopic level, the cavity and void formation were the typical damage characteristics. It also explains that the difference in defect morphology at different positions was the combining results of high temperature and high pressure. Secondly, the variation rules of mechanical properties of steel plate under explosive load were studied. The Arbitrary Lagrange-Euler(ALE) algorithm and multi-material fluid-structure coupling method were used to simulate the explosion process of steel plate. The accuracy of the method was verified by comparing the deformation of the simulation results with the experimental results, the pressure and stress at different positions on the surface of the steel plate were obtained. The simulation results indicated that the critical pressure causing the plate defects may be approximately 2.01 GPa. On this basis, it was found that the variation rules of surface pressure and microscopic defect area of the Q345 steel plate were strikingly similar, and the corresponding mathematical relationship between them was established. Compared with Monomolecular growth fitting models(MGFM) and Logistic fitting models(LFM), the relationship can be better expressed by cubic polynomial fitting model(CPFM). This paper illustrated that the explosive defect characteristics of metal plate at the microscopic level can be explored by analyzing its macroscopic dynamic mechanical response. 展开更多
关键词 Explosive load Q345 steel micro defect Finite element simulation Dynamic response Data fitting
下载PDF
MXene confined microcapsules for uremic toxins elimination
15
作者 Xiaomin Ye Chaoyu Yang +3 位作者 Li Wang Qihui Fan Luoran Shang Fangfu Ye 《Aggregate》 EI CAS 2024年第4期236-244,共9页
Adsorbents with high adsorption efficiency and excellent biosafety for biomedical applications are highly required.MXene is a promising candidate owning these advantages,yet pristine MXene faces dilemmas including insu... Adsorbents with high adsorption efficiency and excellent biosafety for biomedical applications are highly required.MXene is a promising candidate owning these advantages,yet pristine MXene faces dilemmas including insufficient utility of sur-face site as well as limited processibility.Here,we develop MXene-encapsulated porous microcapsules via microfluidics.The microcapsules have a biomass hydrogel shell that provides robust support for MXene in the core,by which the microcapsules are endowed with high MXene dosage and remarkable biosafety.Additionally,the MXene nanoflakes assemble into a three-dimensional network via metal ion-induced gelation,thereby avoiding restacking and significantly improving surface utiliza-tion.Moreover,a freeze-pretreatment of the microcapsules during preparation results in the formation of a macroporous structure in the shell,which can facilitate the diffusion of the target molecules.These features,combined with additional magneto-responsiveness rendered by the incorporation of magnetic nanoparticles,contribute to prominent performances of the microcapsules in cleaning uremia toxins including creatinine,urea,and uric acid.Thus,it is anticipated that the MXene-encapsulated microcapsules will be promising adsorbents in dialysis-related applications,and the combination of microfluidic encapsulation with metal ion gelation will provide a novel approach for construction of hybrid MXene materials with desired functions. 展开更多
关键词 ADSORPTION microCAPSULES microfluidics MXene uremic toxins
原文传递
Engineering the spectra of photon triplets generated from micro/nanofiber
16
作者 瞿川 郭东琴 +4 位作者 李笑笑 刘振旗 赵义 张胜海 卫正统 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期408-414,共7页
Quantum light sources are the core resources for photonics-based quantum information processing.We investigate the spectral engineering of photon triplets generated by third-order spontaneous parametric down-conversio... Quantum light sources are the core resources for photonics-based quantum information processing.We investigate the spectral engineering of photon triplets generated by third-order spontaneous parametric down-conversion in micro/nanofiber.The phase mismatching at one-third pump frequency gives rise to non-degenerate photon triplets,the joint spectral intensity of which has an elliptical locus with a fixed eccentricity of√6/3.Therefore,we propose a frequency-division scheme to separate non-degenerate photon triplets into three channels with high heralding efficiency for the first time.Choosing an appropriate pump wavelength can compensate for the fabrication errors of micro/nanofiber and also generate narrowband,non-degenerate photon triplet sources with a high signal-to-noise ratio.Furthermore,the long-period micro/nanofiber grating introduces a new controllable degree of freedom to tailor phase matching,resulting from the periodic oscillation of dispersion.In this scheme,the wavelength of photon triplets can be flexibly tuned using quasi-phase matching.We study the generation of photon triplets from this novel perspective of spectrum engineering,and we believe that this work will accelerate the practical implementation of photon triplets in quantum information processing. 展开更多
关键词 photon triplets micro/nanofiber spectrum engineering
下载PDF
Bio-inspired temporospatial catalytic cascades systems based on ultrasound-triggered multicomponent piezoelectric microparticles
17
作者 Danqing Huang Jinglin Wang +2 位作者 Xiao Fu Yuanjin Zhao Lingyun Sun 《Aggregate》 EI CAS 2024年第4期165-172,共8页
Reactive oxygen species(ROS)have certain effect in cancer treatment,thus many studies have been focused on developing functional systems to generate ROS in tumor.Here,inspired by the multi-enzyme biocatalysis in organ... Reactive oxygen species(ROS)have certain effect in cancer treatment,thus many studies have been focused on developing functional systems to generate ROS in tumor.Here,inspired by the multi-enzyme biocatalysis in organisms,novel ultrasound-triggered temporospatial catalytic cascades systems are presented based on barium titanate(BTO)and platinum(Pt)co-loaded multi-component micropar-ticles(Pt/BTO@MCMPs)to successively achieve oxygen and ROS production for tumor sonodynamic therapy.By using a customized capillary microfluidic device,the Pt/BTO@MCMPs are fabricated with Pt nanoparticles located in their core part and BTO nanocubes located in their peripheral part,alternating with blank porous hydrogel components for increasing interaction areas between the encap-sulated nanomaterials and the ambient substrates.In the microparticles,the Pt can catalyze hydrogen peroxide from the tumor microenvironment to generate O2 and H2O serving as substrates for piezoelectric catalytic reactions,contributing to additional generation of ROS under US activation.Based on the system,it is demon-strated that the Pt/BTO@MCMPs are featured with excellent biocompatibility under normal biological conditions and show desired tumor eradication properties under ultrasound irradiation in mice carrying pancreatic tumors.These results indicate that the proposed ultrasound-triggered temporospatial catalytic cascades systems are promising for clinic anti-tumor applications. 展开更多
关键词 ANTI-TUMOR barium titanate microfluidics platinum temporospatial catalysis ULTRASOUND
原文传递
On-Chip Micro Temperature Controllers Based on Freestanding Thermoelectric Nano Films for Low-Power Electronics
18
作者 Qun Jin Tianxiao Guo +4 位作者 Nicolas Perez Nianjun Yang Xin Jiang Kornelius Nielsch Heiko Reith 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第7期98-108,共11页
Multidimensional integration and multifunctional com-ponent assembly have been greatly explored in recent years to extend Moore’s Law of modern microelectronics.However,this inevitably exac-erbates the inhomogeneity ... Multidimensional integration and multifunctional com-ponent assembly have been greatly explored in recent years to extend Moore’s Law of modern microelectronics.However,this inevitably exac-erbates the inhomogeneity of temperature distribution in microsystems,making precise temperature control for electronic components extremely challenging.Herein,we report an on-chip micro temperature controller including a pair of thermoelectric legs with a total area of 50×50μm^(2),which are fabricated from dense and flat freestanding Bi2Te3-based ther-moelectric nano films deposited on a newly developed nano graphene oxide membrane substrate.Its tunable equivalent thermal resistance is controlled by electrical currents to achieve energy-efficient temperature control for low-power electronics.A large cooling temperature difference of 44.5 K at 380 K is achieved with a power consumption of only 445μW,resulting in an ultrahigh temperature control capability over 100 K mW^(-1).Moreover,an ultra-fast cooling rate exceeding 2000 K s^(-1) and excellent reliability of up to 1 million cycles are observed.Our proposed on-chip temperature controller is expected to enable further miniaturization and multifunctional integration on a single chip for microelectronics. 展开更多
关键词 Temperature control Low-power electronics On-chip micro temperature controller Freestanding thermoelectric nano films Temperature-sensitive components
下载PDF
Multifunctional inverse opal microcarriers-based cytokines delivery system with stem cell homing capability for osteoarthritis treatment
19
作者 Lingyu Sun Jingjing Gan +3 位作者 Lijun Cai Feika Bian Wei Xu Yuanjin Zhao 《Aggregate》 EI CAS 2024年第4期199-207,共9页
Osteoarthritis has been regarded as a complex and serious degenerative disease.Attempts in this area are focused on improving the curative effect of stem cell-based therapies.In this work,we present a novel inverse op... Osteoarthritis has been regarded as a complex and serious degenerative disease.Attempts in this area are focused on improving the curative effect of stem cell-based therapies.In this work,we present a novel inverse opal microcarriers-based cytokines delivery system to induce autologous stem cell homing for osteoarthritis treatment.Considering their important role in stem cell recruitment and chondro-genic differentiation respectively,platelet-derived growth factor BB(PDGF-BB)and transforming growth factorβ3(TGF-β3)are loaded into inverse opal microcarriers as model cytokines.Since cytokine release induces the corresponding variations in characteristic reflection spectra and structural colors,the inverse opal microcarriers possess the optical self-reporting capacity to monitor the release process.In vitro cell experiments reveal that inverse opal microcarriers could successfully recruit the gathering of mesenchymal stem cells through the release of loaded cytokines.Based on these features,we have demonstrated the enhanced therapeutic effect of PDGF-BB and TGF-β3 loaded inverse opal microcarriers in the treatment of rat osteoarthritis models.These results indicate that the multifunctional inverse opal microcarriers-based cytokines delivery system wouldfind broad prospects in osteoarthritis treatment and other biomedicalfields. 展开更多
关键词 CYTOKINE HYDROGEL inverse opal microfluidics OSTEOARTHRITIS stem cell homing
原文传递
Ignition processes and characteristics of charring conductive polymers with a cavity geometry in precombustion chamber for applications in micro/nano satellite hybrid rocket motors
20
作者 Zhiyuan Zhang Hanyu Deng +2 位作者 Wenhe Liao Bin Yu Zai Yu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期55-66,共12页
The arc ignition system based on charring polymers has advantages of simple structure,low ignition power consumption and multiple ignitions,which bringing it broadly application prospect in hybrid propulsion system of... The arc ignition system based on charring polymers has advantages of simple structure,low ignition power consumption and multiple ignitions,which bringing it broadly application prospect in hybrid propulsion system of micro/nano satellite.However,charring polymers alone need a relatively high input voltage to achieve pyrolysis and ignition,which increases the burden and cost of the power system of micro/nano satellite in practical application.Adding conductive substance into charring polymers can effectively decrease the conducting voltage which can realize low voltage and low power consumption repeated ignition of arc ignition system.In this paper,a charring conductive polymer ignition grain with a cavity geometry in precombustion chamber,which is composed of PLA and multiwall carbon nanotubes(MWCNT)was proposed.The detailed ignition processes were analyzed and two different ignition mechanisms in the cavity of charring conductive polymers were revealed.The ignition characteristics of charring conductive polymers were also investigated at different input voltages,ignition grain structures,ignition locations and injection schemes in a visual ignition combustor.The results demonstrated that the ignition delay and external energy required for ignition were inversely correlated with the voltages applied to ignition grain.Moreover,the incremental depth of cavity shortened the ignition delay and external energy required for ignition while accelerated the propagation of flame.As the depth of cavity increased from 2 to 6 mm(at 50 V),the time of flame propagating out of ignition grain changed from 235.6 to 108 ms,and values of mean ignition delay time and mean external energy required for ignition decreased from 462.8 to 320 ms and 16.2 to 10.75 J,respectively.The rear side of the cavity was the ideal ignition position which had a shorter ignition delay and a faster flame propagation speed in comparison to other ignition positions.Compared to direct injection scheme,swirling injection provided a more favorable flow field environment in the cavity,which was beneficial to ignition and initial flame propagation,but the ignition position needed to be away from the outlet of swirling injector.At last,the repeated ignition characteristic of charring conductive polymers was also investigated.The ignition delay time and external energy required for ignition decreased with repeated ignition times but the variation was decreasing gradually. 展开更多
关键词 micro/nano satellite hybrid propulsion Arc ignition Charring conductive polymer Ignition mechanism Ignition characteristic Repeated ignition
下载PDF
上一页 1 2 115 下一页 到第
使用帮助 返回顶部