To meet the bandwidth requirement for the multicasting data flow in ad hoc networks, a distributed on- demand bandwidth-constrained multicast routing (BCMR) protocol for wireless ad hoc networks is proposed. With th...To meet the bandwidth requirement for the multicasting data flow in ad hoc networks, a distributed on- demand bandwidth-constrained multicast routing (BCMR) protocol for wireless ad hoc networks is proposed. With this protocol, the resource reservation table of each node will record the bandwidth requirements of data flows, which access itself, its neighbor nodes and hidden nodes, and every node calculates the remaining available bandwidth by deducting the bandwidth reserved in the resource reservation table from the total available bandwidth of the node. Moreover, the BCMR searches in a distributed manner for the paths with the shortest delay conditioned by the bandwidth constraint. Simulation results demonstrate the good performance of BCMR in terms of packet delivery reliability and the delay. BCMR can meet the requirements of real time communication and can be used in the multicast applications with low mobility in wireless ad hoc networks.展开更多
The performance of Rayleigh fading channels is substantially impacted by the impacts of relays, antennas, and the number of branches. Opportunistic relaying is a potent technique for enhancing the effects of the afore...The performance of Rayleigh fading channels is substantially impacted by the impacts of relays, antennas, and the number of branches. Opportunistic relaying is a potent technique for enhancing the effects of the aforementioned factors while enhancing the performance of fading channels. Due to these issues, a secure wireless multicasting scenario using opportunistic relaying over Rayleigh fading channel in the presence of multiple wiretappers is taken into consideration in this study. So the investigation of a secure wireless multicasting scenario using opportunistic relaying over Rayleigh fading channel in the presence of multiple wiretappers is the focus of this paper. The primary goals of this study are to maximize security in wireless multicasting while minimizing security loss caused by the effects of relays, branches at destinations and wiretappers, as well as multicast users and wiretappers through opportunistic relaying. To comprehend the insight effects of prior parameters, the closed form analytical expressions are constructed for the probability of non-zero secrecy multicast capacity (PNSMC), ergodic secrecy multicast capacity (ESMC), and secure outage probability for multicasting (SOPM). The findings demonstrate that opportunistic relaying is a successful method for reducing the loss of security in multicasting.展开更多
The capacity of wireless networks is fundamentally limited by interference. A few research has focused on the study of the simultaneous effect of interference and correlation, and less attention has been paid to the t...The capacity of wireless networks is fundamentally limited by interference. A few research has focused on the study of the simultaneous effect of interference and correlation, and less attention has been paid to the topic of canceling simultaneous effect of interference and correlation until recently. This paper considers a secure wireless multicasting scenario through multicellular networks over spatially correlated Nakagami-<i>m</i> fading channel in the presence of multiple eavesdroppers. Authors are interested to protect the desired signals from eavesdropping considering the impact of perfect channel estimation (PCE) with interference and correlation. The protection of eavesdropping is also made strong reducing the simultaneous impact of interference and correlation on the secrecy multicast capacity employing opportunistic relaying technique. In terms of the signal-to-interference plus noise ratio (SINR), fading parameter, correlation coefficient, the number of multicast users and eavesdroppers and the number of antennas at the multicast users and eavesdroppers, the closed-form analytical expressions are derived for the probability of non-zero secrecy multicast capacity and the secure outage probability for multicasting to understand the insight of the effects of aforementioned parameters. The results show that the simultaneous effects of correlation and interference at the multicast users degrade security in multicasting. Moreover, the security in multicasting degrades with the intensity of fading and the number of multicast users, eavesdroppers and antennas at the eavesdroppers. The effects of these parameters on the security in multicasting can be significantly reduced by using opportunistic relaying technique with PCE. Finally, the analytical results are verified via Monte-Carlo simulation to justify the validity of derived closed-form analytical expressions.展开更多
The effects of scatterers, fluctuation parameter and propagation clusters significantly affect the performance of κ-μ shadowed fading channel. On the other hand, opportunistic relaying is an efficient technique to i...The effects of scatterers, fluctuation parameter and propagation clusters significantly affect the performance of κ-μ shadowed fading channel. On the other hand, opportunistic relaying is an efficient technique to improve the performance of fading channels reducing the effects of aforementioned parameters. Motivated by these issues, in this paper, a secure wireless multicasting scenario through κ-μ shadowed fading channel is considered in the presence of multiple eavesdroppers with opportunistic relaying. The main purpose of this paper is to ensure the security level in wireless multicasting compensating the loss of security due to the effects of power ratio between dominant and scattered waves, fluctuation parameter, and the number of propagation clusters, multicast users and eavesdroppers, by opportunistic relaying technique. The closed-form analytical expressions are derived for the probability of non-zero secrecy multicast capacity (PNSMC) and the secure outage probability for multicasting (SOPM) to understand the insight of the effects of above parameters. The results show that the loss of security in multicasting through κ-μ shadowed fading channel can be significantly enhanced using opportunistic relaying technique by compensating the effects of scatterers, fluctuation parameter, and the number of propagation clusters, multicast users and eavesdroppers.展开更多
Beginning with the simple introduction of socket which is the most commonly used application program interfaces in UNIX/LINUX communication domain, the concrete programming procedures to realize multicast and broadcas...Beginning with the simple introduction of socket which is the most commonly used application program interfaces in UNIX/LINUX communication domain, the concrete programming procedures to realize multicast and broadcast based on socket is provided, according to TCP/IP protocol in LINUX system. The acquiring and converting of broadcast destination address and multicast address, the setting of multicast options, the joining in and withdrawing from the multicast group, and the receiving and sending of datagram are all demonstrated in it, the related system calls and simple explication of C programming are also included.展开更多
In the distributed networks,many applications send information from a source node to multiple destination nodes.To support these applications requirements,the paper presents a multi-objective algorithm based on ant co...In the distributed networks,many applications send information from a source node to multiple destination nodes.To support these applications requirements,the paper presents a multi-objective algorithm based on ant colonies to construct a multicast tree for data transmission in a computer network.The proposed algorithm simultaneously optimizes total weight(cost,delay and hop)of the multicast tree.Experimental results prove the proposed algorithm outperforms a recently published Multi-objective Multicast Algorithm specially designed for solving the multicast routing problem.Also,it is able to find a better solution with fast convergence speed and high reliability.展开更多
基金The Natural Science Foundation of Zhejiang Province(No.Y1090232)
文摘To meet the bandwidth requirement for the multicasting data flow in ad hoc networks, a distributed on- demand bandwidth-constrained multicast routing (BCMR) protocol for wireless ad hoc networks is proposed. With this protocol, the resource reservation table of each node will record the bandwidth requirements of data flows, which access itself, its neighbor nodes and hidden nodes, and every node calculates the remaining available bandwidth by deducting the bandwidth reserved in the resource reservation table from the total available bandwidth of the node. Moreover, the BCMR searches in a distributed manner for the paths with the shortest delay conditioned by the bandwidth constraint. Simulation results demonstrate the good performance of BCMR in terms of packet delivery reliability and the delay. BCMR can meet the requirements of real time communication and can be used in the multicast applications with low mobility in wireless ad hoc networks.
文摘The performance of Rayleigh fading channels is substantially impacted by the impacts of relays, antennas, and the number of branches. Opportunistic relaying is a potent technique for enhancing the effects of the aforementioned factors while enhancing the performance of fading channels. Due to these issues, a secure wireless multicasting scenario using opportunistic relaying over Rayleigh fading channel in the presence of multiple wiretappers is taken into consideration in this study. So the investigation of a secure wireless multicasting scenario using opportunistic relaying over Rayleigh fading channel in the presence of multiple wiretappers is the focus of this paper. The primary goals of this study are to maximize security in wireless multicasting while minimizing security loss caused by the effects of relays, branches at destinations and wiretappers, as well as multicast users and wiretappers through opportunistic relaying. To comprehend the insight effects of prior parameters, the closed form analytical expressions are constructed for the probability of non-zero secrecy multicast capacity (PNSMC), ergodic secrecy multicast capacity (ESMC), and secure outage probability for multicasting (SOPM). The findings demonstrate that opportunistic relaying is a successful method for reducing the loss of security in multicasting.
文摘The capacity of wireless networks is fundamentally limited by interference. A few research has focused on the study of the simultaneous effect of interference and correlation, and less attention has been paid to the topic of canceling simultaneous effect of interference and correlation until recently. This paper considers a secure wireless multicasting scenario through multicellular networks over spatially correlated Nakagami-<i>m</i> fading channel in the presence of multiple eavesdroppers. Authors are interested to protect the desired signals from eavesdropping considering the impact of perfect channel estimation (PCE) with interference and correlation. The protection of eavesdropping is also made strong reducing the simultaneous impact of interference and correlation on the secrecy multicast capacity employing opportunistic relaying technique. In terms of the signal-to-interference plus noise ratio (SINR), fading parameter, correlation coefficient, the number of multicast users and eavesdroppers and the number of antennas at the multicast users and eavesdroppers, the closed-form analytical expressions are derived for the probability of non-zero secrecy multicast capacity and the secure outage probability for multicasting to understand the insight of the effects of aforementioned parameters. The results show that the simultaneous effects of correlation and interference at the multicast users degrade security in multicasting. Moreover, the security in multicasting degrades with the intensity of fading and the number of multicast users, eavesdroppers and antennas at the eavesdroppers. The effects of these parameters on the security in multicasting can be significantly reduced by using opportunistic relaying technique with PCE. Finally, the analytical results are verified via Monte-Carlo simulation to justify the validity of derived closed-form analytical expressions.
文摘The effects of scatterers, fluctuation parameter and propagation clusters significantly affect the performance of κ-μ shadowed fading channel. On the other hand, opportunistic relaying is an efficient technique to improve the performance of fading channels reducing the effects of aforementioned parameters. Motivated by these issues, in this paper, a secure wireless multicasting scenario through κ-μ shadowed fading channel is considered in the presence of multiple eavesdroppers with opportunistic relaying. The main purpose of this paper is to ensure the security level in wireless multicasting compensating the loss of security due to the effects of power ratio between dominant and scattered waves, fluctuation parameter, and the number of propagation clusters, multicast users and eavesdroppers, by opportunistic relaying technique. The closed-form analytical expressions are derived for the probability of non-zero secrecy multicast capacity (PNSMC) and the secure outage probability for multicasting (SOPM) to understand the insight of the effects of above parameters. The results show that the loss of security in multicasting through κ-μ shadowed fading channel can be significantly enhanced using opportunistic relaying technique by compensating the effects of scatterers, fluctuation parameter, and the number of propagation clusters, multicast users and eavesdroppers.
文摘Beginning with the simple introduction of socket which is the most commonly used application program interfaces in UNIX/LINUX communication domain, the concrete programming procedures to realize multicast and broadcast based on socket is provided, according to TCP/IP protocol in LINUX system. The acquiring and converting of broadcast destination address and multicast address, the setting of multicast options, the joining in and withdrawing from the multicast group, and the receiving and sending of datagram are all demonstrated in it, the related system calls and simple explication of C programming are also included.
文摘In the distributed networks,many applications send information from a source node to multiple destination nodes.To support these applications requirements,the paper presents a multi-objective algorithm based on ant colonies to construct a multicast tree for data transmission in a computer network.The proposed algorithm simultaneously optimizes total weight(cost,delay and hop)of the multicast tree.Experimental results prove the proposed algorithm outperforms a recently published Multi-objective Multicast Algorithm specially designed for solving the multicast routing problem.Also,it is able to find a better solution with fast convergence speed and high reliability.