The purpose of this study was to examine the relaxation effect of CY on the vascular smooth muscle (VSM) from rabbits. Experiments were carried out on isolated thoracic aorta of rabbits. CY (3 x 103 mM- 3 mM) coul...The purpose of this study was to examine the relaxation effect of CY on the vascular smooth muscle (VSM) from rabbits. Experiments were carried out on isolated thoracic aorta of rabbits. CY (3 x 103 mM- 3 mM) could relax the VSM preparations pre-contracted by adrenaline (AD), noradrenaline (NE), high-K^+ solution or BaCl2 with respective EC50 values of (0.3 1±0.11) mM, 0.19±0.03 mM, 0.20±0.04 mM and 0.25±0.04 mM. Moreover, CY (10-2 mM, 0.1 mM and 1 mM) inhibited norepinephrine (NE), CaCl2 and KCl-induced vasoconstriction in a concentration dependent manner. The phasic contraction produced by NE was concentration dependently attenuated with CY (10^-2 mM, 0.1 mM and 1 mM) in calcium-free medium, similar to that caused by verapamil. The present findings suggest that CY relaxed thoracic aortic rings by blocking voltage-dependent Ca^2+ channels. The inhibition of intracellular Ca^2+ release may be one of the main vasorelaxant mechanisms of CY.展开更多
Apoptosis is a form of genetically programmed cell death, which plays a key role in regulation of cellularity in a variety of tissue and cell types including the cardiovascular tissues. Under both physiological and pa...Apoptosis is a form of genetically programmed cell death, which plays a key role in regulation of cellularity in a variety of tissue and cell types including the cardiovascular tissues. Under both physiological and pathophysiological conditions, various biophysiological and biochemical factors, including mechanical forces, reactive oxygen and nitrogen species, cytokines, growth factors, oxidized lipoproteins, etc., may influence apoptosis of vascular cells. The Fas/Fas ligand/caspase death-signaling pathway, Bcl-2 protein family/mitochondria, the tumor suppressive gene p53, and the proto-oncogene c-myc may be activated in atherosclerotic lesions, and mediates vascular apoptosis during the development of atherosclerosis. Abnormal expression and dysfunction of these apoptosis-regulating genes may attenuate or accelerate vascular cell apoptosis and affect the integrity and stability of atherosclerotic plaques. Clarification of the molecular mechanism that regulates apoptosis may help design a new strategy for treatment of atherosclerosis and its major complication, the acute vascular syndromes.展开更多
文摘The purpose of this study was to examine the relaxation effect of CY on the vascular smooth muscle (VSM) from rabbits. Experiments were carried out on isolated thoracic aorta of rabbits. CY (3 x 103 mM- 3 mM) could relax the VSM preparations pre-contracted by adrenaline (AD), noradrenaline (NE), high-K^+ solution or BaCl2 with respective EC50 values of (0.3 1±0.11) mM, 0.19±0.03 mM, 0.20±0.04 mM and 0.25±0.04 mM. Moreover, CY (10-2 mM, 0.1 mM and 1 mM) inhibited norepinephrine (NE), CaCl2 and KCl-induced vasoconstriction in a concentration dependent manner. The phasic contraction produced by NE was concentration dependently attenuated with CY (10^-2 mM, 0.1 mM and 1 mM) in calcium-free medium, similar to that caused by verapamil. The present findings suggest that CY relaxed thoracic aortic rings by blocking voltage-dependent Ca^2+ channels. The inhibition of intracellular Ca^2+ release may be one of the main vasorelaxant mechanisms of CY.
文摘Apoptosis is a form of genetically programmed cell death, which plays a key role in regulation of cellularity in a variety of tissue and cell types including the cardiovascular tissues. Under both physiological and pathophysiological conditions, various biophysiological and biochemical factors, including mechanical forces, reactive oxygen and nitrogen species, cytokines, growth factors, oxidized lipoproteins, etc., may influence apoptosis of vascular cells. The Fas/Fas ligand/caspase death-signaling pathway, Bcl-2 protein family/mitochondria, the tumor suppressive gene p53, and the proto-oncogene c-myc may be activated in atherosclerotic lesions, and mediates vascular apoptosis during the development of atherosclerosis. Abnormal expression and dysfunction of these apoptosis-regulating genes may attenuate or accelerate vascular cell apoptosis and affect the integrity and stability of atherosclerotic plaques. Clarification of the molecular mechanism that regulates apoptosis may help design a new strategy for treatment of atherosclerosis and its major complication, the acute vascular syndromes.