期刊文献+
共找到21篇文章
< 1 2 >
每页显示 20 50 100
Framework for internal sensation of pleasure using constraints from disparate findings in nucleus accumbens
1
作者 Kunjumon Ittira Vadakkan 《World Journal of Psychiatry》 SCIE 2021年第10期681-695,共15页
It is necessary to find a mechanism that generates first-person inner sensation of pleasure to understand what causes addiction and associated behaviour by drugs of abuse.The actual mechanism is expected to explain se... It is necessary to find a mechanism that generates first-person inner sensation of pleasure to understand what causes addiction and associated behaviour by drugs of abuse.The actual mechanism is expected to explain several disparate findings in nucleus accumbens(NAc),a brain region associated with pleasure,in an interconnected manner.Previously,it was possible to derive a mechanism for natural learning and explain:(1)Generation of inner sensation of memory using changes generated by learning;and(2)Long-term potentiation as an experimental delayed scaled-up change by the same mechanism that occur during natural learning.By extending these findings and by using disparate third person observations in NAc from several studies,present work provides a framework of a mechanism that generates internal sensation of pleasure that can provide interconnected explanations for:(1)Ability to induce robust long-term depression(LTD)in NAc from naïve animals;(2)Impaired ability to induce LTD in“addicted”state;(3)Attenuation of postsynaptic potentials by cocaine;and(4)Reduced firing of medium spiny neurons in response to cocaine or dopamine.Findings made by this work are testable. 展开更多
关键词 PLEASURE Internal sensation MIND Memory Long-term potentiation Longterm depression nucleus accumbens Drug addiction
下载PDF
Targeting cAMP in D1-MSNs in the nucleus accumbens, a new rapid antidepressant strategy
2
作者 Yue Zhang Jingwen Gao +18 位作者 Na Li Peng Xu Shimeng Qu Jinqian Cheng Mingrui Wang Xueru Li Yaheng Song Fan Xiao Xinyu Yang Jihong Liu Hao Hong Ronghao Mu Xiaotian Li Youmei Wang Hui Xu Yuan Xie Tianming Gao Guangji Wang Jiye Aa 《Acta Pharmaceutica Sinica B》 SCIE CAS CSCD 2024年第2期667-681,共15页
Studies have suggested that the nucleus accumbens(NAc)is implicated in the pathophysiology of major depression;however,the regulatory strategy that targets the NAc to achieve an exclusive and outstanding anti-depressi... Studies have suggested that the nucleus accumbens(NAc)is implicated in the pathophysiology of major depression;however,the regulatory strategy that targets the NAc to achieve an exclusive and outstanding anti-depression benefit has not been elucidated.Here,we identified a specific reduction of cyclic adenosine monophosphate(cAMP)in the subset of dopamine D1 receptor medium spiny neurons(D1-MSNs)in the NAc that promoted stress susceptibility,while the stimulation of cAMP production in NAc D1-MSNs efficiently rescued depression-like behaviors.Ketamine treatment enhanced cAMP both in D1-MSNs and dopamine D2 receptor medium spiny neurons(D2-MSNs)of depressed mice,however,the rapid antidepressant effect of ketamine solely depended on elevating cAMP in NAc D1-MSNs.We discovered that a higher dose of crocin markedly increased cAMP in the NAc and consistently relieved depression 24 h after oral administration,but not a lower dose.The fast onset property of crocin was verified through multicenter studies.Moreover,crocin specifically targeted at D1-MSN cAMP signaling in the NAc to relieve depression and had no effect on D2-MSN.These findings characterize a new strategy to achieve an exclusive and outstanding anti-depression benefit by elevating cAMP in D1-MSNs in the NAc,and provide a potential rapid antidepressant drug candidate,crocin. 展开更多
关键词 CAMP nucleus accumbens DEPRESSION D1-MSN D2-MSN
原文传递
The Nucleus Accumbens CRH–CRHR1 System Mediates Early-Life Stress-Induced Sleep Disturbance and Dendritic Atrophy in the Adult Mouse
3
作者 Ting Wang Yu-Nu Ma +8 位作者 Chen-Chen Zhang Xiao Liu Ya-Xin Sun Hong-Li Wang Han Wang Yu-Heng Zhong Yun-Ai Su Ji-Tao Li Tian-Mei Si 《Neuroscience Bulletin》 SCIE CAS CSCD 2023年第1期41-56,共16页
Adverse experiences in early life have long-lasting negative impacts on behavior and the brain in adulthood,one of which is sleep disturbance.As the corticotropin-releasing hormone(CRH)–corticotropin-releasing hormon... Adverse experiences in early life have long-lasting negative impacts on behavior and the brain in adulthood,one of which is sleep disturbance.As the corticotropin-releasing hormone(CRH)–corticotropin-releasing hormone receptor 1(CRHR1)system and nucleus accumbens(NAc)play important roles in both stress responses and sleep-wake regulation,in this study we investigated whether the NAc CRH–CRHR1 system mediates early-life stress-induced abnormalities in sleep-wake behavior in adult mice.Using the limited nesting and bedding material paradigm from postnatal days 2 to 9,we found that early-life stress disrupted sleep-wake behaviors during adulthood,including increased wakefulness and decreased non-rapid eye movement(NREM)sleep time during the dark period and increased rapid eye movement(REM)sleep time during the light period.The stress-induced sleep disturbances were accompanied by dendritic atrophy in the NAc and both were largely reversed by daily systemic administration of the CRHR1 antagonist antalarmin during stress exposure.Importantly,Crh overexpression in the NAc reproduced the effects of early-life stress on sleep-wake behavior and NAc morphology,whereas NAc Crhr1 knockdown reversed these effects(including increased wakefulness and reduced NREM sleep in the dark period and NAc dendritic atrophy).Together,our findings demonstrate the negative influence of early-life stress on sleep architecture and the structural plasticity of the NAc,and highlight the critical role of the NAc CRH–CRHR1 system in modulating these negative outcomes evoked by early-life stress. 展开更多
关键词 Early-life stress SLEEP CRH-CRHR1 nucleus accumbens MORPHOLOGY
原文传递
Extracellular Signal-Regulated Kinase in Nucleus Accumbens Mediates Propofol Self-Administration in Rats 被引量:12
4
作者 Benfu Wang Xiaowei Yang +7 位作者 Anna Sun Lanman Xu Sicong Wang Wenxuan Lin Miaojun Lai Huaqiang Zhu Wenhua Zhou Qingquan Lian 《Neuroscience Bulletin》 SCIE CAS CSCD 2016年第6期531-537,共7页
Clinical and animal studies have indicated that propofol has potential for abuse, but the specific neurobi- ological mechanism underlying propofol reward is not fully understood. The purpose of this study was to inves... Clinical and animal studies have indicated that propofol has potential for abuse, but the specific neurobi- ological mechanism underlying propofol reward is not fully understood. The purpose of this study was to inves- tigate the role of extracellular signal-regulated kinase (ERK) signal transduction pathways in the nucleus accumbens (NAc) in propofol self-administration. We tested the expression of p-ERK in the NAc following the maintenance of propofol self-administration in rats. We also assessed the effect of administration of SCH23390, an antagonist of the D1 dopamine receptor, on the expression of p-ERK in the NAc in propofol self-administering rats, and examined the effects of intra-NAc injection of U0126, an MEK inhibitor, on propofol reinforcement in rats. The results showed that the expression of p-ERK in the NAc increased significantly in rats maintained on propofol, and pre-treatment with SCH23390 inhibited the propofol self- administration and diminished the expression of p-ERK in the NAc. Moreover, intra-NAc injection of U0126 (4 μg/ side) attenuated the propofol self-administration. The data suggest that ERK signal transduction pathways coupledwith D1 dopamine receptors in the NAc may be involved in the maintenance of propofol self-administration and its rewarding effects. 展开更多
关键词 Keywords Dopamine receptor Drug reward ERK ANESTHESIOLOGY nucleus accumbens
原文传递
Projections from D2 Neurons in Different Subregions of Nucleus Accumbens Shell to Ventral Pallidum Play Distinct Roles in Reward and Aversion 被引量:3
5
作者 Yun Yao Ge Gao +4 位作者 Kai Liu Xin Shi Mingxiu Cheng Yan Xiong Sen Song 《Neuroscience Bulletin》 SCIE CAS CSCD 2021年第5期623-640,共18页
The nucleus accumbens shell(NAcSh) plays an important role in reward and aversion. Traditionally, NAc dopamine receptor 2-expressing(D2) neurons are assumed to function in aversion. However, this has been challenged b... The nucleus accumbens shell(NAcSh) plays an important role in reward and aversion. Traditionally, NAc dopamine receptor 2-expressing(D2) neurons are assumed to function in aversion. However, this has been challenged by recent reports which attribute positive motivational roles to D2 neurons. Using optogenetics and multiple behavioral tasks, we found that activation of D2 neurons in the dorsomedial NAcSh drives preference and increases the motivation for rewards, whereas activation of ventral NAcSh D2 neurons induces aversion. Stimulation of D2 neurons in the ventromedial NAcSh increases movement speed and stimulation of D2 neurons in the ventrolateral NAc Sh decreases movement speed. Combining retrograde tracing and in situ hybridization, we demonstrated that glutamatergic and GABAergic neurons in the ventral pallidum receive inputs differentially from the dorsomedial and ventral NAcSh. All together, these findings shed light on the controversy regarding the function of NAcSh D2 neurons, and provide new insights into understanding the heterogeneity of the NAcSh. 展开更多
关键词 nucleus accumbens shell Ventral pallidum D2 neurons REWARD AVERSION MOTIVATION
原文传递
CCL2/CCR2 Contributes to the Altered Excitatory-inhibitory Synaptic Balance in the Nucleus Accumbens Shell Following Peripheral Nerve Injury-induced Neuropathic Pain 被引量:2
6
作者 Xiao-Bo Wu Qian Zhu Yong-Jing Gao 《Neuroscience Bulletin》 SCIE CAS CSCD 2021年第7期921-933,共13页
The medium spiny neurons(MSNs)in the nucleus accumbens(NAc)integrate excitatory and inhibitory synaptic inputs and gate motivational and emotional behavior output.Here we report that the relative intensity of excitato... The medium spiny neurons(MSNs)in the nucleus accumbens(NAc)integrate excitatory and inhibitory synaptic inputs and gate motivational and emotional behavior output.Here we report that the relative intensity of excitatory and inhibitory synaptic inputs to MSNs of the NAc shell was decreased in mice with neuropathic pain induced by spinal nerve ligation(SNL).SNL increased the frequency,but not the amplitude of spontaneous inhibitory postsynaptic currents(sIPSCs),and decreased both the frequency and amplitude of spontaneous excitatory postsynaptic currents(sEPSCs)in the MSNs.SNL also decreased the paired-pulse ratio(PPR)of evoked IPSCs but increased the PPR of evoked EPSCs.Moreover,acute bath application of C–C motif chemokine ligand 2(CCL2)increased the frequency and amplitude of sIPSCs and sEPSCs in the MSNs,and especially strengthened the amplitude of N-methyl-D-aspartate receptor(NMDAR)-mediated miniature EPSCs.Further Ccl2 overexpression in the NAc in vivo decreased the peak amplitude of the sEPSC/sIPSC ratio.Finally,Ccr2 knock-down improved the impaired induction of NMDAR-dependent long-term depression(LTD)in the NAc after SNL.These results suggest that CCL2/CCR2 signaling plays a role in the integration of excitatory/inhibitory synaptic transmission and leads to an increase of the LTD induction threshold at the synapses of MSNs during neuropathic pain. 展开更多
关键词 E/I balance Synaptic transmission LTD CCL2 CCR2 nucleus accumbens Neuropathic pain
原文传递
Noninvasive ultrasound deep brain stimulation of nucleus accumbens induces behavioral avoidance 被引量:2
7
作者 Lili Niu Yanchen Guo +7 位作者 Zhengrong Lin Zhe Shi Tianyuan Bian Lin Qi Long Meng Anthony AGrace Hairong Zheng Ti-Fei Yuan 《Science China(Life Sciences)》 SCIE CAS CSCD 2020年第9期1328-1336,共9页
Ultrasound stimulation is an emerging noninvasive option in treating neuropsychiatric disorders. The present study investigates the behavioral alterations resulting from ultrasound stimulation on the nucleus accumbens... Ultrasound stimulation is an emerging noninvasive option in treating neuropsychiatric disorders. The present study investigates the behavioral alterations resulting from ultrasound stimulation on the nucleus accumbens(NAc) in freely moving mice. Our results show that an acute ultrasound stimulation on the NAc, rather than the visual cortex or auditory cortex, led to a pronounced avoidance behavior, while repeated NAc ultrasound stimulation resulted in an obvious conditioned place aversion with changes in synaptic protein(Glu A1/2 subunit) expression. Notably, NAc ultrasound stimulation suppressed the morphine-induced conditioned place preference. The results provide evidence that NAc ultrasound stimulation can be applied as a potential noninvasive therapeutic option in treating psychiatric disorders. 展开更多
关键词 ULTRASOUND nucleus accumbens ADDICTION synaptic plasticity brain stimulation
原文传递
Clinical observation of physiological and psychological reactions to electric stimulation of the amygdaloid nucleus and the nucleus accumbens in heroin addicts after detoxification 被引量:2
8
作者 FANG Jun GU Jian-wen +2 位作者 YANG Wen-tao QIN Xue-ying HU Yong-hua 《Chinese Medical Journal》 SCIE CAS CSCD 2012年第1期63-66,共4页
Background Stereotactic surgery has been used to treat heroin abstinence in China since 2000 by ablating the amygdaloid nucleus (AMY) and the nucleus accumbens (NAc),which also provides opportunity to identify the... Background Stereotactic surgery has been used to treat heroin abstinence in China since 2000 by ablating the amygdaloid nucleus (AMY) and the nucleus accumbens (NAc),which also provides opportunity to identify the relationship between these nuclei and addiction.Our study aimed to explore the physiological and psychological effects of electrically stimulating the AMY and the NAc in herein addicts after detoxification by observing changes of heart rate,arterial pressure and occurrence of euphoria similar to heroin induced euphoria.Methods A total of 70 heroin addicts after detoxification were recruited,and 61 of them were eligible to be given stereotactic surgery for heroin abstinence.The operation was carried out after determining the coordinates of all target nucleuses,and stimulation was performed at the AMY and the NAc solely or jointly.Heart rate,arterial pressure and occurrence of euphoria similar to heroin induced euphoria were recorded and analyzed.Results The average heat rate was (66±10) beats/min before electric stimulation,and significantly increased to (84±14) beats/min during stimulation,and changed to (73±12) beats/min 10 minutes after stimulation.There was a significant elevation of the average arterial pressure from 83 mmHg before stimulation to 98 mmHg during the stimulation,and it then decreased to 90 mmHg after stimulation.Forty-three of the 61 patients showed intense euphoria similar to heroin induced euphoria.The largest number (118/186) of euphoric responses occurred when the AMY and the NAc were stimulated at the same time.Odds ratio was 5.4 (95% CI: 2.4-11.9,P 〈0.0001) to quantify the association.Results from a Logistic regression model showed a positive correlation between unilateral stimulation of either the AMY or NAC and induction of euphoria (OR 〉1 ),especially when the left AMY or left NAc was stimulated (P 〈0.05).Conclusions Our data are consistent with existing results that the AMY and the NAc are related to addiction.Different roles in drug dependence would be suggested according to the location of the AMY and NAc. 展开更多
关键词 the amygdaloid nucleus the nucleus accumbens heroin dependence electric stimulation
原文传递
Reduced Firing of Nucleus Accumbens Parvalbumin Interneurons Impairs Risk Avoidance in DISC1 Transgenic Mice
9
作者 Xinyi Zhou Bifeng Wu +12 位作者 Wenhao Liu Qian Xiao Wei He Ying Zhou Pengfei Wei Xu Zhang Yue Liu Jie Wang Jufang He Zhigang Zhang Weidong Li Liping Wang Jie Tu 《Neuroscience Bulletin》 SCIE CAS CSCD 2021年第9期1325-1338,共14页
A strong animal survival instinct is to approach objects and situations that are of benefit and to avoid risk.In humans,a large proportion of mental disorders are accompanied by impairments in risk avoidance.One of th... A strong animal survival instinct is to approach objects and situations that are of benefit and to avoid risk.In humans,a large proportion of mental disorders are accompanied by impairments in risk avoidance.One of the most important genes involved in mental disorders is disrupted-in-schizophrenia-1(DISC1),and animal models in which this gene has some level of dysfunction show emotion-related impairments.However,it is not known whether DISC1 mouse models have an impairment in avoiding potential risks.In the present study,we used DISC1-N terminal truncation(DISC1-N^(TM))mice to investigate risk avoidance and found that these mice were impaired in risk avoidance on the elevated plus maze(EPM)and showed reduced social preference in a three-chamber social interaction test.Following EPM tests,c-Fos expression levels indicated that the nucleus accumbens(NAc)was associated with risk-avoidance behavior in DISC1-N^(TM)mice.In addition,in vivo electrophysiological recordings following tamoxifen administration showed that the firing rates of fast-spiking neurons(FS)in the NAc were significantly lower in DISC1-N^(TM)mice than in wild-type(WT)mice.In addition,in vitro patch clamp recording revealed that the frequency of action potentials stimulated by current injection was lower in parvalbumin(PV)neurons in the NAc of DISC1-N^(TM)mice than in WT controls.The impairment of risk avoidance in DISC1-N^(TM)mice was rescued using optogenetic tools that activated NAcPV neurons.Finally,inhibition of the activity of NAcPV neurons in PV-Cre mice mimicked the risk-avoidance impairment found in DISC1-N^(TM)mice during tests on the elevated zero maze.Taken together,our findings confirm an impairment in risk avoidance in DISC1-N^(TM)mice and suggest that reduced excitability of NAc^(PV) neurons is responsible. 展开更多
关键词 DISC1 Risk avoidance PARVALBUMIN nucleus accumbens
原文传递
Inhibition of the reinstatement of morphine-induced place preference in rats by high-frequency stimulation of the bilateral nucleus accumbens
10
作者 MAYu CHEN Ning +2 位作者 WANG Hui-min Meng Fan-gang ZHANG Jian-guo 《Chinese Medical Journal》 SCIE CAS CSCD 2013年第10期1939-1943,共5页
Background Opiate addiction remains intractable in a large percentage of patients, and relapse is the biggest hurdle to recovery. Many studies have identified a central role of the nucleus accumbens (NAc) in addicti... Background Opiate addiction remains intractable in a large percentage of patients, and relapse is the biggest hurdle to recovery. Many studies have identified a central role of the nucleus accumbens (NAc) in addiction. Deep brain stimulation (DBS) has the advantages of being reversible, adjustable, and minimally invasive, and it has become a potential neurobiological intervention for addiction. The purpose of our study was to investigate whether high-frequency DBS in the NAc effectively attenuates the reinstatement of morphine seeking in morphine-primed rats. Methods A morphine-dependent group of rats was given increasing doses of morphine during conditioned place preference training. A control group of rats was given equal volumes of saline. After the establishment of this model, withdrawal syndromes were precipitated in these two groups by administering naloxone, and the differences in withdrawal symptoms between the groups were analyzed. Electrodes for DBS were implanted in the bilateral shell of the NAc in the experimental group. The rats were stimulated daily in the NAc for 5 hours per day over 30 days. Changes in the conditioned place preference test and withdrawal symptoms in the rats were investigated and place navigation studies were performed using the Morris water maze. The data were assessed statistically with one-way analysis of variance (ANOVA) followed by Tukey's tests for multiple post hoc comparisons. Results High-frequency stimulation of the bilateral NAc prevented the morphine-induced reinstatement of morphine seeking in the conditioned place preference test. The time spent in the white compartment by rats following 30 days of DBS ((268.25±25.07) seconds) was not significantly different compared with the time spent in the white compartment after relapse was induced by morphine administration ((303.29±34.22) seconds). High-frequency stimulation of the bilateral NAc accelerated the innate decay of drug craving in morphine-dependent rats without significantly influencing learning and memory. Conclusion Bilateral high-frequency stimulation of the shell of the NAc may be useful as a novel therapeutic modality for the treatment of severe morphine addiction. 展开更多
关键词 stimulation nucleus accumbens morphine drug dependency
原文传递
Brain region-specific roles of brain-derived neurotrophic factor in social stress-induced depressive-like behavior
11
作者 Man Han Deyang Zeng +7 位作者 Wei Tan Xingxing Chen Shuyuan Bai Qiong Wu Yushan Chen Zhen Wei Yufei Mei Yan Zeng 《Neural Regeneration Research》 SCIE CAS 2025年第1期159-173,共15页
Brain-derived neurotrophic factor is a key factor in stress adaptation and avoidance of a social stress behavioral response.Recent studies have shown that brain-derived neurotrophic factor expression in stressed mice ... Brain-derived neurotrophic factor is a key factor in stress adaptation and avoidance of a social stress behavioral response.Recent studies have shown that brain-derived neurotrophic factor expression in stressed mice is brain region–specific,particularly involving the corticolimbic system,including the ventral tegmental area,nucleus accumbens,prefrontal cortex,amygdala,and hippocampus.Determining how brain-derived neurotrophic factor participates in stress processing in different brain regions will deepen our understanding of social stress psychopathology.In this review,we discuss the expression and regulation of brain-derived neurotrophic factor in stress-sensitive brain regions closely related to the pathophysiology of depression.We focused on associated molecular pathways and neural circuits,with special attention to the brain-derived neurotrophic factor–tropomyosin receptor kinase B signaling pathway and the ventral tegmental area–nucleus accumbens dopamine circuit.We determined that stress-induced alterations in brain-derived neurotrophic factor levels are likely related to the nature,severity,and duration of stress,especially in the above-mentioned brain regions of the corticolimbic system.Therefore,BDNF might be a biological indicator regulating stress-related processes in various brain regions. 展开更多
关键词 AMYGDALA chronic mild stress chronic social defeat stress corticolimbic system DEPRESSION HIPPOCAMPUS medial prefrontal cortex nucleus accumbens social stress models ventral tegmental area
下载PDF
Adolescent social isolation influences cognitive function in adult rats 被引量:2
12
作者 Feng Shao Xiao Han +1 位作者 Shuang Shao Weiwen Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第11期1025-1030,共6页
Adolescence is a critical period for neurodevelopment. Evidence from animal studies suggests that isolated rearing can exert negative effects on behavioral and brain development. The present study aimed to investigate... Adolescence is a critical period for neurodevelopment. Evidence from animal studies suggests that isolated rearing can exert negative effects on behavioral and brain development. The present study aimed to investigate the effects of adolescent social isolation on latent inhibition and brain-derived neurotrophic factor levels in the forebrain of adult rats. Male Wistar rats were randomly divided into adolescent isolation (isolated housing, 38-51 days of age) and social groups. Latent inhibition was tested at adulthood. Brain-derived neurotrophic factor levels were measured in the medial prefrontal cortex and nucleus accumbens by an enzyme-linked immunosorbent assay. Adolescent social isolation impaired latent inhibition and increased brain-derived neurotrophic factor levels in the medial prefrontal cortex of young adult rats. These data suggest that adolescent social isolation has a profound effect on cognitive function and neurotrophin levels in adult rats and may be used as an animal model of neurodevelopmental disorders. 展开更多
关键词 neural regeneration ADOLESCENCE social isolation latent inhibition brain-derived neurotrophicfactor medial prefrontal cortex nucleus accumbens ADULT cognitive function neurodevelopmentaldisorders grants-supported paper NEUROREGENERATION
下载PDF
Intravenous morphine self-administration alters accumbal microRNA profiles in the mouse brain 被引量:1
13
作者 Juhwan Kim Heh-In Im Changjong Moon 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第1期77-85,共9页
A significant amount of evidence indicates that microRNAs (miRNAs) play an important role in drug addiction. The nucleus accumbens (NAc) is a critical part of the brain’s reward circuit and is involved in a varie... A significant amount of evidence indicates that microRNAs (miRNAs) play an important role in drug addiction. The nucleus accumbens (NAc) is a critical part of the brain’s reward circuit and is involved in a variety of psychiatric disorders, including depression, anxiety, and drug addiction. However, few studies have examined the expression of miRNAs and their functional roles in the NAc under conditions of morphine addiction. In this study, mice were intravenously infused with morphine (0.01, 0.03, 0.3, 1 and 3 mg/kg/infusion) and showed inverted U-shaped response. After morphine self-administration, NAc was used to analyze the functional networks of altered miRNAs and their putative target mRNAs in the NAc following intravenous self-administration of morphine. We utilized several bioinformatics tools, including Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway mapping and CyTargetLinker. We found that 62 miRNAs were altered and exhibited differential expression patterns. The putative targets were related to diverse regulatory functions, such as neurogenesis, neurodegeneration, and synaptic plasticity, as well as the pharmacological effects of morphine (receptor internalization/endocytosis). The present findings provide novel insights into the regulatory mechanisms of accumbal molecules under conditions of morphine addiction and identify several novel biomarkers associated with morphine addiction. 展开更多
关键词 nerve regeneration nucleus accumbens MICRORNA MORPHINE SELF-ADMINISTRATION BIOINFORMATICS neural regeneration
下载PDF
Attenuation of opioid addiction in mice lacking aquaporin 4
14
作者 LYU Yang JING Man-yi +5 位作者 ZHAO Tai-yun PANG Chong WU Ning HU Gang 宋睿 LI Jin 《中国药理学与毒理学杂志》 CAS CSCD 北大核心 2017年第5期479-479,共1页
OBJECTIVE To examine the effects of aquaporin 4(AQP4) on opioid addiction and underlie the mechanism behind it. METHODS(1) In the heroin-induced self-administration(SA) experiment,we explored the role of AQP4 on heroi... OBJECTIVE To examine the effects of aquaporin 4(AQP4) on opioid addiction and underlie the mechanism behind it. METHODS(1) In the heroin-induced self-administration(SA) experiment,we explored the role of AQP4 on heroin-induced psychological addiction. After the mice were trained to learn heroin-induced SA under a fixedratio1(FR1) reinforcement program for 7 d,we randomly switched the heroin doses to 0.00625,0.0125,0.025,0.05 or 0.1 mg·kg^(-1)per infusion to counterbalance assignment design. In the end,all mice underwent extinction training and reinstatement testing.(2) In oral sucrose self-administration,5% sucrose solution was used for the mice and the procedures were similar to heroin SA.(3) In morphine-induced hyperactivity test,mice were habituated in the test apparatus for 30 min and then were given saline(10 mL·kg^(-1),sc) or morphine(10 or 20 mg·kg^(-1),sc) to record the locomotion for 1.5 h.(4) For the in vivo microdialysis experiment,mice were surgically implanted with intracranial guide cannula into nucleus accumbens(AP +1.4 mm,ML ±0.9 mm,DV-3.8 mm from bregma). After 5 d of recovery from surgery,the mice were challenged by saline(10 mL·kg^(-1),sc)or morphine(10 mg·kg^(-1),sc),and then samples were collected every 20 min. RESULTS We found that AQP4 deletion had no effects on sucrose-seeking and sucrose-taking,but it significantly attenuated heroin-taking and heroin-seeking behaviors in heroin self-administration. Besides these,AQP4 deletion had no effects on basal level of locomotion,but dramatically decreased morphine-induced hyperactivity.Furthermore,the in vivo microdialysis studies showed that AQP4 deficiency inhibited morphine(10mg · kg^(-1),sc)-induced elevation of extracellular dopamine levels in nucleus accumbens in mice.CONCLUSION Our present findings demonstrate that AQP4 was potentially involved in the properties of opioid rewarding by inhibiting dopamine release in nucleus accumbens(NAc). 展开更多
关键词 aquaporin 4 opioid addiction HYPERACTIVITY nucleus accumbens
下载PDF
Integration of animal behaviors under stresses with different time courses
15
作者 Lun Zheng Xigeng Zheng 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第15期1464-1473,共10页
We used animal models of "forced swim stress" and "chronic unpredictable stress", and tried to reveal whether a passive coping style of high flotation behavior in forced swim stress predicts an- hedonia behavior a... We used animal models of "forced swim stress" and "chronic unpredictable stress", and tried to reveal whether a passive coping style of high flotation behavior in forced swim stress predicts an- hedonia behavior after chronic unpredictable stress, and whether the dopamine system regulates floating and anhedonia behaviors. Our results confirmed that depression-prone rats use "floating behavior" as a coping strategy in forced swim stress and more readily suffer from anhedonia during chronic unpredictable stress. Intraperitoneal injection or nucleus accumbens microin- jection of the dopamine 2/3 receptor subtype agonist ropinirole reduced floating behaviors in depression-prone animals, but increased sucrose preference in rats showing anhedonia. These data indicate that floating behavior is a defensive mode that is preferred by susceptible individ- uals under conditions of acute stress. Simultaneously, these animals more readily experienced anhedonia under long-term stress; that is, they were more readily affected by depression. Our results suggest that dopamine 2/3 receptor subtypes in the nucleus accumbens play an important role in floating behaviors and anhedonia. 展开更多
关键词 nerve regeneration brain injury DEPRESSION stress resistance susceptible to depression chronic unpredictable stress forced swim DOPAMINE nucleus accumbens NSFC grant neural regeneration
下载PDF
Attenuated inhibition of medium spiny neurons participates in the pathogenesis of childhood depression
16
作者 Dan Liu Linghan Hu +2 位作者 Junqi Zhang Ping Zhang Shengtian Li 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第10期1079-1088,共10页
Accumulating evidence suggests that the nucleus accumbens, which is involved in mechanisms of reward and addiction, plays a role in the pathogenesis of depression and in the action of anti-depressants. In the current ... Accumulating evidence suggests that the nucleus accumbens, which is involved in mechanisms of reward and addiction, plays a role in the pathogenesis of depression and in the action of anti-depressants. In the current study, intraperitoneal injection of nomifensine, a dopamine reuptake inhibitor, decreased depression-like behaviors in the Wistar Kyoto rat model of depression in the sucrose-preference and forced swim tests. Nomifensine also reduced membrane excitability in medium spiny neurons in the core of the nucleus accumbens in the childhood Wistar Kyoto rats as evaluated by electrophysiological recording. In addition, the expression of dopamine D2-like receptor mRNA was downregulated in the nucleus accumbens, striatum and hippocampus of nomifensine-treated childhood Wistar Kyoto rats. These experimental ifndings indicate that impaired inhibition of medium spiny neurons, mediated by dopamine D2-like receptors, may be involved in the formation of depression-like behavior in childhood Wistar Kyoto rats, and that nomifensine can alleviate depressive behaviors by reducing medium spiny neuron membrane excitability. 展开更多
关键词 nerve regeneration brain injury NEUROPHYSIOLOGY MSNs dopamine D2-like receptors childhood depression Wistar Kyoto rats nucleus accumbens excitatory inhibition neural plasticity nomifensine NSFC grant neural regeneration
下载PDF
Local infusion of low, but not high, doses of alcohol into the anterior ventral tegmental area causes release of accumbal dopamine
17
作者 Elisabet Jerlhag Jorgen A. Engel 《Open Journal of Psychiatry》 2014年第1期53-59,共7页
The mesolimbic dopamine system consisting of dopaminergic neurons projecting from the ventral tegmental area (VTA) to the nucleus accumbens (N.Acc.) mediates the reinforcing effects of addictive drugs including alcoho... The mesolimbic dopamine system consisting of dopaminergic neurons projecting from the ventral tegmental area (VTA) to the nucleus accumbens (N.Acc.) mediates the reinforcing effects of addictive drugs including alcohol. Given that VTA is a heterogeneous area and that alcohol, in rather low doses, interacts directly with ligand-gated ion channels, we hypothesised that low, rather than high, doses of alcohol into the VTA activate the mesolimbic dopamine system and that alcohol may have different effects in the anterior and posterior parts of the VTA. The present study was undertaken to investigate this hypothesis. The present series of experiment show that infusion of a low dose of alcohol (20 mM) into the anterior, but not posterior, part of the VTA increases accumbal dopamine release in rats. In addition, higher doses of alcohol (100 or 300 mM) into the anterior or posterior part of the VTA do not affect the release of dopamine in the N.Acc., suggesting that low doses of alcohol can activate the mesolimbic dopamine system via mechanisms in the VTA. These data contribute to understanding the neuronal mechanisms underlying the dependence-producing properties of alcohol and could tentatively contribute to that new treatment strategies for alcohol use disorder can be developed. 展开更多
关键词 ALCOHOL Ventral Tegmental Area nucleus accumbens DOPAMINE Rats
下载PDF
Methcathinone Increases Visually-evoked Neuronal Activity and Enhances Sensory Processing Efficiency in Mice
18
作者 Jun Zhou Wen Deng +8 位作者 Chen Chen Junya Kang Xiaodan Yang Zhaojuan Dou Jiancheng Wu Quancong Li Man Jiang Man Liang Yunyun Han 《Neuroscience Bulletin》 SCIE CAS CSCD 2023年第4期602-616,共15页
Methcathinone(MCAT)belongs to the designer drugs called synthetic cathinones,which are abused worldwide for recreational purposes.It has strong stimulant effects,including enhanced euphoria,sensation,alertness,and emp... Methcathinone(MCAT)belongs to the designer drugs called synthetic cathinones,which are abused worldwide for recreational purposes.It has strong stimulant effects,including enhanced euphoria,sensation,alertness,and empathy.However,little is known about how MCAT modulates neuronal activity in vivo.Here,we evaluated the effect of MCAT on neuronal activity with a series of functional approaches.C-Fos immunostaining showed that MCAT increased the number of activated neurons by 6-fold,especially in sensory and motor cortices,striatum,and midbrain motor nuclei.In vivo single-unit recording and two-photon Ca^(2+) imaging revealed that a large proportion of neurons increased spiking activity upon MCAT administration.Notably,MCAT induced a strong de-correlation of population activity and increased trial-to-trial reliability,specifically during a natural movie stimulus.It improved the information-processing efficiency by enhancing the single-neuron coding capacity,suggesting a cortical network mechanism of the enhanced perception produced by psychoactive stimulants. 展开更多
关键词 Methcathinone Synthetic psychoactive substance In vivo single-unit recording Ca^(2+)imaging nucleus accumbens Visual cortex
原文传递
Toll-Like Receptor 4 Deficiency Causes Reduced Exploratory Behavior in Mice Under Approach-Avoidance Conflict 被引量:5
19
作者 Chunlu Li Yixiu Yan +7 位作者 Jingjing Cheng Gang Xiao Jueqing Gu Luqi Zhang Siyu Yuan Junlu Wang Yi Shen Yu-Dong Zhou 《Neuroscience Bulletin》 SCIE CAS CSCD 2016年第2期127-136,共10页
Abnormal approach-avoidance behavior has been linked to deficits in the mesolimbic dopamine(DA)system of the brain. Recently, increasing evidence has indicated that toll-like receptor 4(TLR4), an important pattern... Abnormal approach-avoidance behavior has been linked to deficits in the mesolimbic dopamine(DA)system of the brain. Recently, increasing evidence has indicated that toll-like receptor 4(TLR4), an important pattern-recognition receptor in the innate immune system,can be directly activated by substances of abuse, resulting in an increase of the extracellular DA level in the nucleus accumbens. We thus hypothesized that TLR4-dependent signaling might regulate approach-avoidance behavior. To test this hypothesis, we compared the novelty-seeking and social interaction behaviors of TLR4-deficient(TLR4^(-/-))and wild-type(WT) mice in an approach-avoidance conflict situation in which the positive motivation to explore a novel object or interact with an unfamiliar mouse was counteracted by the negative motivation to hide in exposed,large spaces. We found that TLR4^(-/-)mice exhibitedreduced novelty-seeking and social interaction in the large open spaces. In less stressful test apparatuses similar in size to the mouse cage, however, TLR4^(-/-)mice performed normally in both novelty-seeking and social interaction tests. The reduced exploratory behaviors under approachavoidance conflict were not due to a high anxiety level or an enhanced fear response in the TLR4^(-/-)mice, as these mice showed normal anxiety and fear responses in the open field and passive avoidance tests, respectively. Importantly,the novelty-seeking behavior in the large open field induced a higher level of c-Fos activation in the nucleus accumbens shell(NAc Sh) in TLR4^(-/-)mice than in WT mice. Partially inactivating the NAc Sh via infusion of GABA receptor agonists restored the novelty-seeking behavior of TLR4^(-/-)mice. These data suggested that TLR4 is crucial for positive motivational behavior under approach-avoidance conflict. TLR4-dependent activation of neurons in the NAc Sh may contribute to this phenomenon. 展开更多
关键词 Toll-like receptor 4 Novelty-seeking Social interaction Approach-avoidance conflict nucleus accumbens shell
原文传递
Preoperative Acute Sleep Deprivation Causes Postoperative Pain Hypersensitivity and Abnormal Cerebral Function
20
作者 Meimei Guo Yuxiang Wu +11 位作者 Danhao Zheng Lei Chen Bingrui Xiong Jinfeng Wu Ke Li Li Wang Kangguang Lin Zongze Zhang Anne Manyande Fuqiang Xu Jie Wang Mian Peng 《Neuroscience Bulletin》 SCIE CAS CSCD 2022年第12期1491-1507,共17页
Preoperative sleep loss can amplify post-operative mechanical hyperalgesia.However,the underlying mechanisms are still largely unknown.In the current study,rats were randomly allocated to a control group and an acute ... Preoperative sleep loss can amplify post-operative mechanical hyperalgesia.However,the underlying mechanisms are still largely unknown.In the current study,rats were randomly allocated to a control group and an acute sleep deprivation(ASD)group which experienced 6 h ASD before surgery.Then the variations in cerebral function and activity were investigated with multi-modal techniques,such as nuclear magnetic resonance,functional magnetic resonance imaging,c-Fos immunofluorescence,and electrophysiology.The results indicated that ASD induced hyperalgesia,and the metabolic kinetics were remarkably decreased in the striatum and midbrain.The functional connectivity(FC)between the nucleus accumbens(NAc,a subregion of the ventral striatum)and the ventrolateral periaqueductal gray(vLPAG)was significantly reduced,and the c-Fos expression in the NAc and the vLPAG was suppressed.Furthermore,the electrophysiological recordings demonstrated that both the neuronal activity in the NAc and the vLPAG,and the coherence of the NAc-vLPAG were suppressed in both resting and task states.This study showed that neuronal activity in the NAc and the vLPAG were weakened and the FC between the NAc and the vLPAG was also suppressed in rats with ASD-induced hyperalgesia.This study highlights the importance of preoperative sleep management for surgical patients. 展开更多
关键词 Acute sleep deprivation Incisional pain nucleus accumbens Periaqueductal gray Functional connectivity
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部