A parametric approach to robust fault detection in linear systems with unknown disturbances is presented. The residual is generated using full-order state observers (FSO). Based on an analytical solution to a type o...A parametric approach to robust fault detection in linear systems with unknown disturbances is presented. The residual is generated using full-order state observers (FSO). Based on an analytical solution to a type of Sylvester matrix equations, the parameterization of the observer gain matrix is given. In terms of the design degrees of freedom provided by the parametric observer design and a group of introduced parameter vectors, a sufficient and necessary condition for fullorder state observer design with disturbance decoupling is then established. By properly constraining the design parameters according to this proposed condition, the effect of the disturbance on the residual signal is also decoupled, and a simple algorithm is developed. The presented approach offers all the degrees of design freedom. Finally, a numerical example illustrates the effect of the proposed approach.展开更多
An innate sensitivity to and phobia of China’s rise seem to have gripped someWestern observers for years.Early back in the 19th century,Napoleon warned the West to“let Chinasleep”.“There lies a sleeping giant,”be...An innate sensitivity to and phobia of China’s rise seem to have gripped someWestern observers for years.Early back in the 19th century,Napoleon warned the West to“let Chinasleep”.“There lies a sleeping giant,”begins his well-known remark.“Let hersleep.For when she wakes,she will shake the world.”In the 1990s,these展开更多
This paper addresses the analysis, design, and application of observer-based nonlinear controls by combining feedback linearization (FBL) and backstepping (BS) techniques with Luenberger observers. Complete developmen...This paper addresses the analysis, design, and application of observer-based nonlinear controls by combining feedback linearization (FBL) and backstepping (BS) techniques with Luenberger observers. Complete development of observer-based controls is presented for a bioprocess. Controllers using input-output feedback linearization and backstepping techniques are designed first, assuming that all states are available for feedback. Next, the construction of observer in the transformed domain is presented based on input-output feedback linearization. This approach is then extended to observer design based on backstepping approach using the error equation resulted from the backstepping design procedure. Simulation results demonstrating the effectiveness of the techniques developed are presented and compared.展开更多
Rotating systems have many applications in wide-ranging industrial contexts. The breakdown of this equipment results in economic wastes and leads to dangerous situations. To avoid such problems is very important, and ...Rotating systems have many applications in wide-ranging industrial contexts. The breakdown of this equipment results in economic wastes and leads to dangerous situations. To avoid such problems is very important, and it can be done through tools that inform about the existence of faults, as well as, about their progress in time. A review of the modeling process used for rotor-support-structure shows that the finite element method is the maj or method employed. In this paper, with the aid of well defined theoretical models, obtained using the finite element technique, and the state observer method for the identification and location of faults, it is possible to monitor the parameters of a rotor-support-structure system, including the foundation effects. In order to improve safety, these parameters must be supervised in case of the occurrence of failures or faults. The state observers are designed using Linear Matrix Inequalities (LMIs). Finally, experimental results (using for this a rotation system in the mechanical vibrations laboratory at Ilha Solteira's Mechanical Engineering Department) demonstrate the effectiveness of the methodology developed.展开更多
To investigate the leader-following formation control, in this paper we present the design problem of control protocols and distributed observers under which the agents can achieve and maintain the desired formation f...To investigate the leader-following formation control, in this paper we present the design problem of control protocols and distributed observers under which the agents can achieve and maintain the desired formation from any initial states, while the velocity converges to that of the virtual leader whose velocity cannot be measured by agents in real time. The two cases of switching topologies without communication delay and fixed topology with time-varying communication delay are both considered for multi-agent networks. By using the Lyapunov stability theory, the issue of stability is analysed for multi-agent systems with switching topologies. Then, by considering the time-varying communication delay, the sufficient condition is proposed for the multi-agent systems with fixed topology. Finally, two numerical examples are given to illustrate the effectiveness of the proposed leader-following formation control protocols.展开更多
This paper addresses the observer design problem for a class of nonlinear descriptor systems whose nonlinear terms are slope-restricted. The full-order observer is formulated as a nonlinear descriptor system. A linear...This paper addresses the observer design problem for a class of nonlinear descriptor systems whose nonlinear terms are slope-restricted. The full-order observer is formulated as a nonlinear descriptor system. A linear matrix inequality (LMI) condition is derived to construct the full-order observer. The existence and uniqueness of the solution to the obtained observer system are guaranteed. Furthermore, under the same LMI condition and a common assumption, a reduced-order observer is designed. Finally, the design methods are reduced to a strict LMI problem and illustrated by a numerical example.展开更多
The analysis and design of the extended state observer (ESO) involves a continuous non-smooth structure, thus the study of the ESO dynamic requires mathematical tools of the nonlinear systems analysis. This paper es...The analysis and design of the extended state observer (ESO) involves a continuous non-smooth structure, thus the study of the ESO dynamic requires mathematical tools of the nonlinear systems analysis. This paper establishes the sufficient conditions for absolute stability of the ESO. Based on this study, a methodology to estimate several nonlinear functions in dy- namics systems is proposed.展开更多
This work proposes a robust fault detection and isolation scheme for discrete-time systems subject to actuator faults,in which a bank of H_/H∞ fault detection unknown input observers(UIOs) and a zonotopic threshold a...This work proposes a robust fault detection and isolation scheme for discrete-time systems subject to actuator faults,in which a bank of H_/H∞ fault detection unknown input observers(UIOs) and a zonotopic threshold analysis strategy are considered. In observer design, finite-frequency H_ index based on the generalized Kalman-Yakubovich-Popov lemma and H∞ technique are utilized to evaluate worst-case fault sensitivity and disturbance attenuation performance, respectively. The proposed H_/H∞ fault detection observers are designed to be insensitive to the corresponding actuator fault only, but sensitive to others.Then, to overcome the weakness of predefining threshold for FDI decision-making, this work proposes a zonotopic threshold analysis method to evaluate the generated residuals. The FDI decision-making relies on the evaluation with a dynamical zonotopic threshold. Finally, numerical simulations are provided to show the feasibility of the proposed scheme.展开更多
The method to design sliding-mode observers for systems with unknown inputs and measurement disturbances is presented in the paper. An augmented system is constructed by viewing the measurement disturbances as unknow ...The method to design sliding-mode observers for systems with unknown inputs and measurement disturbances is presented in the paper. An augmented system is constructed by viewing the measurement disturbances as unknow inputs. For such an augmented system, the so-called observer matching condition is not satisfied. Based on the construction of auxiliary outputs, the observer matching condition may be satisfied. High-order sliding-mode differentiators are developed to obtain the estimates of those unmeasurable variables contained in the auxiliary output vector. Employing the estimate of auxiliary output vector, a sliding-mode observer is designed. The simulation results to a real model show that the proposed method is effective.展开更多
In this paper,it is shown that the performances of a class of high-gain practical observers can be improved by estimating the time derivatives of the output up to an order that is greater than the dimension of the sys...In this paper,it is shown that the performances of a class of high-gain practical observers can be improved by estimating the time derivatives of the output up to an order that is greater than the dimension of the system, which is assumed to be in observability form and, possibly, time-varying. Such an improvement is achieved without increasing the gain of the observers, thus allowing their use in a wide variety of control and identification applications.展开更多
In this paper, a full-order observer which can be fully decoupled from the unknown inputs as the conventional full-order observer does is designed by using auxiliary outputs, but the requirement of the matching condit...In this paper, a full-order observer which can be fully decoupled from the unknown inputs as the conventional full-order observer does is designed by using auxiliary outputs, but the requirement of the matching condition is removed. The procedure of calculating the parameter matrices of the full-order observer is also presented. Compared with the existing auxiliary outputs based sliding-mode observers, the designed observer has a simpler design procedure, which is systematic and does not involve solving linear matrix inequalities. The simulation results show that the proposed method is effective.展开更多
This paper proposes a new gyro and star sensor fault diagnosis architecture that designs two groups of cascade H∞ optimal fault observers using LMI for spacecraft attitude control systems.The basic idea of the approa...This paper proposes a new gyro and star sensor fault diagnosis architecture that designs two groups of cascade H∞ optimal fault observers using LMI for spacecraft attitude control systems.The basic idea of the approach is to identify the gyro fault to good effect first and then makes a further diagnosis for the star sensor based on the former.The H∞ optimal fault observer in design has the robustness with respect to model uncertainties and diagnosis uncertainties.Its robustness to unknown inputs is as a special study in frequency domain.Finally,simulation results demonstrate the effectiveness and feasibility of the proposed control algorithm.展开更多
This paper proposes a robust fault detection and isolation (FDI) scheme for discrete time-delay system with disturbance. The FDI scheme can not only detect but also isolate the faults. The lifting method is exploited ...This paper proposes a robust fault detection and isolation (FDI) scheme for discrete time-delay system with disturbance. The FDI scheme can not only detect but also isolate the faults. The lifting method is exploited to transform the discrete time-delay system into the non-time-delay form. A generalized structured residual set is designed based on the unknown input observer (UIO). For each residual generator, one of the system input signals together with the corresponding actuator fault and the disturbance signals are treated as an unknown input term. The residual signals can not only be robust against the disturbance, but also be of the capacity to isolate the actuator faults. The proposed method has been verified by a numerical example.展开更多
For the problem of sensor faults and actuator faults in aircraft attitude control,this paper proposes a fault tolerant control(FTC)scheme based on extended state observer(ESO)and nonlinear dynamic inversion(NDI).First...For the problem of sensor faults and actuator faults in aircraft attitude control,this paper proposes a fault tolerant control(FTC)scheme based on extended state observer(ESO)and nonlinear dynamic inversion(NDI).First,two ESOs are designed to estimate sensor faults and actuator faults respectively.Second,the angular rate signal is reconstructed according to the estimation of sensor faults.Third,in angular rate loop,NDI is designed based on reconstruction of angular rate signals and estimation of actuator faults.The FTC scheme proposed in this paper is testified through numerical simulations.The results show that it is feasible and has good fault tolerant ability.展开更多
In this paper, a kind of fire new nonlinear integrator and integral action is proposed. Consequently, a conventional Proportional Nonlinear Integral (P_NI) observer and two kinds of added-order P_NI observers are deve...In this paper, a kind of fire new nonlinear integrator and integral action is proposed. Consequently, a conventional Proportional Nonlinear Integral (P_NI) observer and two kinds of added-order P_NI observers are developed to deal with the uncertain nonlinear system. The conditions on the observer gains to ensure the estimated error to be ultimate boundness, which shrinks to zero as the states and control inputs converge to the equilibrium point, are provided. This means that if the observed system is asymptotically stable, the estimated error dynamics is asymptotically stable, too. Moreover, the highlight point of this paper is that the design of nonlinear integral observer is achieved by linear system theory. Simulation results showed that under the normal and perturbed cases, the pure added-order P_NI observer can effectively deal with the uncertain nonlinearities on both the system dynamics and measured outputs.展开更多
The problem of adaptive robust state observer design is considered for a class of uncertain dynamical systems with Time-varying delays. A new method is presented whereby a class of memoryless adaptive robust state obs...The problem of adaptive robust state observer design is considered for a class of uncertain dynamical systems with Time-varying delays. A new method is presented whereby a class of memoryless adaptive robust state observers with simpler structure is proposed. It is also shown that by employing the proposed adaptive robust state observer, the observation error between the observer state estimate and the true state can be guaranteed to be uniformly exponentially convergent towards a ball which can be as small as desired. Finally, a numerical example is given to demonstrate the validity of the results.展开更多
The purpose of this work is the study of a mathematical model to discretize cracks at continuous mechanical systems, applying all the available properties at computational algorithm using the methodology of state obse...The purpose of this work is the study of a mathematical model to discretize cracks at continuous mechanical systems, applying all the available properties at computational algorithm using the methodology of state observers to detect, localize and evaluate the crack conditions, seeking the model limitations through an experiment developed at the mechanical department of UNESP, llha Solteira, S^o Paulo-Brazil. Three different notch sizes were placed, one by one, at the top surface of a cantilever beam (to be considered as a crack at the mechanical system) and harmonic forces were applied at the tip of the beam with three different frequencies, for each notch size, to obtain experimental data to run the diagnosis algorithm. From the results it was possible to infer that the observation system performance increases with the raising of the crack size, which can be explained by the model, that gets more accurate with bigger crack sizes, however, when the propagation of the crack is considered at the model, the diagnosis of the crack presence tends to be more difficult. It was also possible to conclude that the developed algorithm works properly for systems which excitation frequencies are higher than 20 Hz and different from the natural frequencies of the system, due to influence of dynamic response of the crack at the model.展开更多
"Today,the Chinese people can say with great pride that reform and opening-up,China's second revolution if you like,has not only profoundly changed the country but also greatly influenced the whole world,&quo..."Today,the Chinese people can say with great pride that reform and opening-up,China's second revolution if you like,has not only profoundly changed the country but also greatly influenced the whole world,"said Chinese President Xi Jinping at the opening ceremony of the Boao Forum for Asia annual conference in 2018.展开更多
This paper describes the design and implementation of a three-axis acceleration control autopilot for an asymmetric tail-controlled,skid-to-turn tactical missile.In an earlier flight test,degraded autopilot performanc...This paper describes the design and implementation of a three-axis acceleration control autopilot for an asymmetric tail-controlled,skid-to-turn tactical missile.In an earlier flight test,degraded autopilot performance was attributed to multiple disturbances and uncertainties and the presence of hidden coupling terms,giving rise to a miss distance of greater than 20 m.To address these issues,the missile dynamics are decomposed into the angular rate dynamics as fast and the acceleration dynamics as slow subsystem using the singular perturbation theory to analyze a multi-time-scale property.Multifrequency extended state observers are then incorporated into the gain scheduling technique to attenuate disturbances,thus enhancing the control performance significantly.In the proposed engineering/practical design framework for missile autopilot,simple,conventional,and explicit tuning rules are provided.And the proposed control scheme can achieve input-to-state stability across the entire flight envelope under unknown but bounded disturbances.The advantages of the method over existing benchmark approaches are shown through nonlinear numerical simulations.This is supported by evidence from a new flight test result with a miss distance of only 2 m.展开更多
基金This work was supported by the National Natural Science Foundation of China (No. 60374024)the Program for Changjiang Scholars andInnovative Research Team in University.
文摘A parametric approach to robust fault detection in linear systems with unknown disturbances is presented. The residual is generated using full-order state observers (FSO). Based on an analytical solution to a type of Sylvester matrix equations, the parameterization of the observer gain matrix is given. In terms of the design degrees of freedom provided by the parametric observer design and a group of introduced parameter vectors, a sufficient and necessary condition for fullorder state observer design with disturbance decoupling is then established. By properly constraining the design parameters according to this proposed condition, the effect of the disturbance on the residual signal is also decoupled, and a simple algorithm is developed. The presented approach offers all the degrees of design freedom. Finally, a numerical example illustrates the effect of the proposed approach.
文摘An innate sensitivity to and phobia of China’s rise seem to have gripped someWestern observers for years.Early back in the 19th century,Napoleon warned the West to“let Chinasleep”.“There lies a sleeping giant,”begins his well-known remark.“Let hersleep.For when she wakes,she will shake the world.”In the 1990s,these
文摘This paper addresses the analysis, design, and application of observer-based nonlinear controls by combining feedback linearization (FBL) and backstepping (BS) techniques with Luenberger observers. Complete development of observer-based controls is presented for a bioprocess. Controllers using input-output feedback linearization and backstepping techniques are designed first, assuming that all states are available for feedback. Next, the construction of observer in the transformed domain is presented based on input-output feedback linearization. This approach is then extended to observer design based on backstepping approach using the error equation resulted from the backstepping design procedure. Simulation results demonstrating the effectiveness of the techniques developed are presented and compared.
文摘Rotating systems have many applications in wide-ranging industrial contexts. The breakdown of this equipment results in economic wastes and leads to dangerous situations. To avoid such problems is very important, and it can be done through tools that inform about the existence of faults, as well as, about their progress in time. A review of the modeling process used for rotor-support-structure shows that the finite element method is the maj or method employed. In this paper, with the aid of well defined theoretical models, obtained using the finite element technique, and the state observer method for the identification and location of faults, it is possible to monitor the parameters of a rotor-support-structure system, including the foundation effects. In order to improve safety, these parameters must be supervised in case of the occurrence of failures or faults. The state observers are designed using Linear Matrix Inequalities (LMIs). Finally, experimental results (using for this a rotation system in the mechanical vibrations laboratory at Ilha Solteira's Mechanical Engineering Department) demonstrate the effectiveness of the methodology developed.
基金Project supported by the National Natural Science Foundation for Distinguished Young Scholars of China (Grant No. 60525303)the National Natural Science Foundation of China (Grant No. 60704009)+1 种基金the Key Project for Natural Science Research of the Hebei Educational Department (Grant No. ZD200908)the Doctorial Fund of Yanshan University (Grant No. B203)
文摘To investigate the leader-following formation control, in this paper we present the design problem of control protocols and distributed observers under which the agents can achieve and maintain the desired formation from any initial states, while the velocity converges to that of the virtual leader whose velocity cannot be measured by agents in real time. The two cases of switching topologies without communication delay and fixed topology with time-varying communication delay are both considered for multi-agent networks. By using the Lyapunov stability theory, the issue of stability is analysed for multi-agent systems with switching topologies. Then, by considering the time-varying communication delay, the sufficient condition is proposed for the multi-agent systems with fixed topology. Finally, two numerical examples are given to illustrate the effectiveness of the proposed leader-following formation control protocols.
基金supported by National Basic Research Program of China (973 Program) (No. 2009CB320601)National Natural Science Foundation of China (No. 60904009)Fundamental Research Funds for the Central Universities (No. 100406010, No. 090408001)
文摘This paper addresses the observer design problem for a class of nonlinear descriptor systems whose nonlinear terms are slope-restricted. The full-order observer is formulated as a nonlinear descriptor system. A linear matrix inequality (LMI) condition is derived to construct the full-order observer. The existence and uniqueness of the solution to the obtained observer system are guaranteed. Furthermore, under the same LMI condition and a common assumption, a reduced-order observer is designed. Finally, the design methods are reduced to a strict LMI problem and illustrated by a numerical example.
基金supported by Programa de Jovenes Investigadores e Innovadores COLCIENCIAS (DFIA-0494)Universidad Nacional de Colombia Manizales (12475),Vicerrectoría de Investigación,DIMA.
文摘The analysis and design of the extended state observer (ESO) involves a continuous non-smooth structure, thus the study of the ESO dynamic requires mathematical tools of the nonlinear systems analysis. This paper establishes the sufficient conditions for absolute stability of the ESO. Based on this study, a methodology to estimate several nonlinear functions in dy- namics systems is proposed.
基金partially supported by National Key R&D Program of China(2018YFB1304600)National Natural Science Foundation of China(51805021,U1813220)+1 种基金China Postdoctoral Science Foundation Grant(2018M631311)the Fundamental Research Funds for the Central Universities(XK1802-4)
文摘This work proposes a robust fault detection and isolation scheme for discrete-time systems subject to actuator faults,in which a bank of H_/H∞ fault detection unknown input observers(UIOs) and a zonotopic threshold analysis strategy are considered. In observer design, finite-frequency H_ index based on the generalized Kalman-Yakubovich-Popov lemma and H∞ technique are utilized to evaluate worst-case fault sensitivity and disturbance attenuation performance, respectively. The proposed H_/H∞ fault detection observers are designed to be insensitive to the corresponding actuator fault only, but sensitive to others.Then, to overcome the weakness of predefining threshold for FDI decision-making, this work proposes a zonotopic threshold analysis method to evaluate the generated residuals. The FDI decision-making relies on the evaluation with a dynamical zonotopic threshold. Finally, numerical simulations are provided to show the feasibility of the proposed scheme.
基金Funded by the National Natural Science Foundation(No.61203299/F030506)
文摘The method to design sliding-mode observers for systems with unknown inputs and measurement disturbances is presented in the paper. An augmented system is constructed by viewing the measurement disturbances as unknow inputs. For such an augmented system, the so-called observer matching condition is not satisfied. Based on the construction of auxiliary outputs, the observer matching condition may be satisfied. High-order sliding-mode differentiators are developed to obtain the estimates of those unmeasurable variables contained in the auxiliary output vector. Employing the estimate of auxiliary output vector, a sliding-mode observer is designed. The simulation results to a real model show that the proposed method is effective.
文摘In this paper,it is shown that the performances of a class of high-gain practical observers can be improved by estimating the time derivatives of the output up to an order that is greater than the dimension of the system, which is assumed to be in observability form and, possibly, time-varying. Such an improvement is achieved without increasing the gain of the observers, thus allowing their use in a wide variety of control and identification applications.
基金Supported by the National Natural Science Foundation of China(No.61203299)
文摘In this paper, a full-order observer which can be fully decoupled from the unknown inputs as the conventional full-order observer does is designed by using auxiliary outputs, but the requirement of the matching condition is removed. The procedure of calculating the parameter matrices of the full-order observer is also presented. Compared with the existing auxiliary outputs based sliding-mode observers, the designed observer has a simpler design procedure, which is systematic and does not involve solving linear matrix inequalities. The simulation results show that the proposed method is effective.
基金Sponsored by the National Natural Science Foundation of China(Grant No. 60774062)the CAST Innovation Funding Project(Grant No. 20090604)
文摘This paper proposes a new gyro and star sensor fault diagnosis architecture that designs two groups of cascade H∞ optimal fault observers using LMI for spacecraft attitude control systems.The basic idea of the approach is to identify the gyro fault to good effect first and then makes a further diagnosis for the star sensor based on the former.The H∞ optimal fault observer in design has the robustness with respect to model uncertainties and diagnosis uncertainties.Its robustness to unknown inputs is as a special study in frequency domain.Finally,simulation results demonstrate the effectiveness and feasibility of the proposed control algorithm.
基金Supported by National Natural Science Foundation of China (No.60574081)
文摘This paper proposes a robust fault detection and isolation (FDI) scheme for discrete time-delay system with disturbance. The FDI scheme can not only detect but also isolate the faults. The lifting method is exploited to transform the discrete time-delay system into the non-time-delay form. A generalized structured residual set is designed based on the unknown input observer (UIO). For each residual generator, one of the system input signals together with the corresponding actuator fault and the disturbance signals are treated as an unknown input term. The residual signals can not only be robust against the disturbance, but also be of the capacity to isolate the actuator faults. The proposed method has been verified by a numerical example.
基金supported by the Chinese Aviation Science Fund(20160757001)the National Natural Science Foundation of China(10577012)。
文摘For the problem of sensor faults and actuator faults in aircraft attitude control,this paper proposes a fault tolerant control(FTC)scheme based on extended state observer(ESO)and nonlinear dynamic inversion(NDI).First,two ESOs are designed to estimate sensor faults and actuator faults respectively.Second,the angular rate signal is reconstructed according to the estimation of sensor faults.Third,in angular rate loop,NDI is designed based on reconstruction of angular rate signals and estimation of actuator faults.The FTC scheme proposed in this paper is testified through numerical simulations.The results show that it is feasible and has good fault tolerant ability.
文摘In this paper, a kind of fire new nonlinear integrator and integral action is proposed. Consequently, a conventional Proportional Nonlinear Integral (P_NI) observer and two kinds of added-order P_NI observers are developed to deal with the uncertain nonlinear system. The conditions on the observer gains to ensure the estimated error to be ultimate boundness, which shrinks to zero as the states and control inputs converge to the equilibrium point, are provided. This means that if the observed system is asymptotically stable, the estimated error dynamics is asymptotically stable, too. Moreover, the highlight point of this paper is that the design of nonlinear integral observer is achieved by linear system theory. Simulation results showed that under the normal and perturbed cases, the pure added-order P_NI observer can effectively deal with the uncertain nonlinearities on both the system dynamics and measured outputs.
文摘The problem of adaptive robust state observer design is considered for a class of uncertain dynamical systems with Time-varying delays. A new method is presented whereby a class of memoryless adaptive robust state observers with simpler structure is proposed. It is also shown that by employing the proposed adaptive robust state observer, the observation error between the observer state estimate and the true state can be guaranteed to be uniformly exponentially convergent towards a ball which can be as small as desired. Finally, a numerical example is given to demonstrate the validity of the results.
文摘The purpose of this work is the study of a mathematical model to discretize cracks at continuous mechanical systems, applying all the available properties at computational algorithm using the methodology of state observers to detect, localize and evaluate the crack conditions, seeking the model limitations through an experiment developed at the mechanical department of UNESP, llha Solteira, S^o Paulo-Brazil. Three different notch sizes were placed, one by one, at the top surface of a cantilever beam (to be considered as a crack at the mechanical system) and harmonic forces were applied at the tip of the beam with three different frequencies, for each notch size, to obtain experimental data to run the diagnosis algorithm. From the results it was possible to infer that the observation system performance increases with the raising of the crack size, which can be explained by the model, that gets more accurate with bigger crack sizes, however, when the propagation of the crack is considered at the model, the diagnosis of the crack presence tends to be more difficult. It was also possible to conclude that the developed algorithm works properly for systems which excitation frequencies are higher than 20 Hz and different from the natural frequencies of the system, due to influence of dynamic response of the crack at the model.
文摘"Today,the Chinese people can say with great pride that reform and opening-up,China's second revolution if you like,has not only profoundly changed the country but also greatly influenced the whole world,"said Chinese President Xi Jinping at the opening ceremony of the Boao Forum for Asia annual conference in 2018.
基金the support of the National Natural Science Foundation of China(No.U21B6003)。
文摘This paper describes the design and implementation of a three-axis acceleration control autopilot for an asymmetric tail-controlled,skid-to-turn tactical missile.In an earlier flight test,degraded autopilot performance was attributed to multiple disturbances and uncertainties and the presence of hidden coupling terms,giving rise to a miss distance of greater than 20 m.To address these issues,the missile dynamics are decomposed into the angular rate dynamics as fast and the acceleration dynamics as slow subsystem using the singular perturbation theory to analyze a multi-time-scale property.Multifrequency extended state observers are then incorporated into the gain scheduling technique to attenuate disturbances,thus enhancing the control performance significantly.In the proposed engineering/practical design framework for missile autopilot,simple,conventional,and explicit tuning rules are provided.And the proposed control scheme can achieve input-to-state stability across the entire flight envelope under unknown but bounded disturbances.The advantages of the method over existing benchmark approaches are shown through nonlinear numerical simulations.This is supported by evidence from a new flight test result with a miss distance of only 2 m.