Understanding the paleoenvironment and phytogeographical history of the Tibetan Plateau,China relies on discovering new plant fossils.The Qaidam Basin has long been regarded as an ideal‘field laboratory’to investiga...Understanding the paleoenvironment and phytogeographical history of the Tibetan Plateau,China relies on discovering new plant fossils.The Qaidam Basin has long been regarded as an ideal‘field laboratory’to investigate the paleoclimate and paleobiological evolution of the northern Tibetan Plateau.However,fossil angiosperms from the Qaidam Basin are rare,and our knowledge of its paleovegetation is poor.Here,we report fossil leaves and fruits of Betulaceae found from the Oligocene Shangganchaigou Formation of northwestern Qaidam Basin(Huatugou area).Comparative morphological analysis led us to assign the fruits to the Betula subgenus Betula and the leaves to Carpinus grandis.These findings,together with other reported fossil plants from the same locality,reveal a close floristic linkage between the Qaidam Basin and Europe during the Oligocene.The northern pathway of this floristic exchange may have crossed through the Qaidam Basin during the late Paleogene.This floristic linkage may have been facilitated by the continuous narrowing of the Turgai Strait and stronger westerlies,which transported moisture and provided favorable climatic conditions.Indeed,fossil plants collected from the Qaidam Basin suggest that during the Oligocene this region had warm and humid deciduous broad-leaf forest,which differs from the region’s modern vegetation and indicates that the Qaidam Basin may have been a suitable region for these plants to flourish and spread during the Oligocene.展开更多
The controlling factors of organic-rich shale accumulation is essential for the exploration and development of shale oil and gas resources.The sedimentary environment plays a vital role in the formation of organic-ric...The controlling factors of organic-rich shale accumulation is essential for the exploration and development of shale oil and gas resources.The sedimentary environment plays a vital role in the formation of organic-rich sediments in lacustrine facies.This article unravels the mineralogy,geochemistry,and paleoenvironmental evolution during the deposition of the Paleogene Shahejie Formation(Es_(3)^(L)).It discusses the effects of paleoclimate,paleosalinity,paleoredox conditions,paleowater depth,and paleoproductivity on organic matter(OM)enrichment.Finally,the OM enrichment model was established.The results show that the mineralogical compositions are mainly composed of calcite(avg.40.13%),quartz(avg.21.64%)and clay minerals(avg.24.07%),accompanied by dolomite(avg.7.07%),feldspar(avg.6.36%)and pyrite(avg.2.95%).The Es_(3)^(L) shale has a high abundance of OM,with total organic carbon(TOC)ranging from 1.07%to 5.12%.The organic matter type is mainly composed of type I-II_(1) kerogen,which is generally considered a good-quality source rock.The source of OM is a mixture of lower bacteria,algae,and plants.During the early sedimentary period,the paleoclimate was dry and cold,with high salinity,intense reducibility,and relatively low productivity.During the late sedimentary period,the climate became warmer and more humid.As a result,the salinity decreased to a level that was suitable for biological reproduction,and productivity increased gradually due to the input of terrigenous plants.Paleosalinity and paleoclimate determined the environment of the sedimentary period,in addition,paleoproductivity and paleoredox condition indicated the formation and preservation conditions of OM.The warm and humid climate,brackish water,suitable reduction conditions and high productivity are the favorable conditions for the generation and preservation of organic matter.The research results may have implications for the genetic mechanisms of organic matter accumulation.They will provide theoretical and technical insights into the exploration and development of shale oil.展开更多
The Upper Cretaceous Qingshankou Formation black shales,deposited in the late Turonian(LTB shales),are the main source rocks of the Songliao Basin.The origins of organic matter enrichment of the shales is a contentiou...The Upper Cretaceous Qingshankou Formation black shales,deposited in the late Turonian(LTB shales),are the main source rocks of the Songliao Basin.The origins of organic matter enrichment of the shales is a contentious subject fuelling many ongoing debates.This study investigates the genesis of the organic matter-rich shale by using molecular geochemistry.The LTB shales can be divided into three sections.The SectionⅠshales were deposited in saline,stratified and anoxic water conditions,which are related to seawater incursion events.At least three episodic and periodic seawater incursion events were recognized during SectionⅠshale deposition.The SectionⅡshales deposited in brackish to fresh and deep lake-level conditions with high primary productivity,which are related to lake-level transgression.The SectionⅢshales were deposited under fresh and slightly oxidized water conditions,which are related to lake-level regression.Two organic matter enrichment models for the LTB shales are identified,that is,the seawater incursion model and the maximum lake-level transgression sedimentation model,which act on different shale sections,both playing significant roles in the enrichment of organic matter.展开更多
The black shale of the Mesoproterozoic Cuizhuang Formation in the Changcheng System in Yongji city,North China Craton,is a potential source rock.Understanding the organic matter enrichment mechanism is crucial for eva...The black shale of the Mesoproterozoic Cuizhuang Formation in the Changcheng System in Yongji city,North China Craton,is a potential source rock.Understanding the organic matter enrichment mechanism is crucial for evaluating source rock resources and understanding oil and gas accumulation mechanisms.In this study,we evaluated the sedimentary paleoenvironment and organic matter enrichment mechanisms of shale using thin section observations,mineral composition analysis,organic geochemistry,and elemental geochemistry.We found significant differences in the sedimentary paleoenvironment and organic matter enrichment mechanisms between the lower Cuizhuang Formation and the Beidajian Formation shale.The Cuizhuang Formation was deposited in a late-stage,restricted basin environment during the rift phase,and elemental and geochemical indicators showed that the Cuizhuang Formation was in a suboxic-anoxic water environment,that was influenced by a warm and humid paleoclimate and submarine hydrothermal activities,which promoted the accumulation of organic matter.However,the enrichment of organic matter in the Cuizhuang Formation was mainly controlled by redox conditions.The formation of suboxic-anoxic water environments may be closely related to the warm and humid paleoclimate and submarine hydrothermal activities.Warm conditions promote continental weathering and increase marine productivity,thereby consuming oxygen in the bottom water.Moreover,acidic hydrothermal activity also helps to establish an anoxic environment.Our results reveal the effects controlling various coupled mechanisms dominated by redox conditions,which may explain the development of source rocks in the Cuizhuang Formation.展开更多
The paleoenvironment of shales can be reconstructed to some extent using the combinations or concentrations of elements that correlate strongly with environmental conditions.In this study,we analyzed rare earth elemen...The paleoenvironment of shales can be reconstructed to some extent using the combinations or concentrations of elements that correlate strongly with environmental conditions.In this study,we analyzed rare earth elements(REEs),major elements,and trace elements in the marine-continental transitional shales(transitional shales for short)of the Shan 2^(3)submember of the Shanxi Formation in the southeastern Ordos Basin.The purpose is to deduce the paleoenvironmental conditions of the shales,encompassing paleoredox,paleoclimate,paleoproductivity,and paleo-provenance.The Shan 2^(3)submember comprises four sections,namely Shan 2^(3)-1,Shan 2^(3)-2,Shan 2^(3)-3,and Shan 2^(3)-4.The Ba/Al,P/Al,and Cu/Al ratios,along with biogenic barium(Babio),indicate that the paleoproductivity of the submember peaked during the Shan 2^(3)-1 deposition and exhibited a downtrend upward in other sections.Trends in the Uau and the Ni/Co,V/Cr,U/Th,and V/Sc ratios suggest that suboxic conditions prevailed during the Shan 2^(3)-1 deposition,with the oxidation level gradually increasing from Shan 2^(3)-1 to Shan 2^(3)-4.C-value and the Sr/Cu vs.Ga/Rb cross-plot indicate a warm and arid paleoclimate during the Shan 2^(3)-1 deposition,which transitioned to cooler,drier conditions during the deposition of other sections.Indicators sensitive to paleoclimate,such as the K/Rb and Th/U ratios,along with the ICV,PIA,and Chemical Index of Alteration(CIA),highlight elevated weathering from Shan 2^(3)-2 to Shan 2^(3)-4,with Shan 2^(3)-1 exhibiting the weakest weathering during its deposition.As suggested by the REE data,the Zr/Sc vs.Th/Sr cross-plot,provenance discriminant functions,and the cross-plots of Hf vs.La/Th,Th vs.Hf-Co,and∑REE vs.La/Yb,the sedimentary provenance for the transitional shales of the Shan 2^(3)submember is of multiple origins,with significant contributions from the Upper Continental Crust(UCC).Discriminant diagrams,including those of Th-Co-Zr/10,Th-Sc-Zr/10,La-Th-Sc,and K_(2)O/Na_(2)O vs.SiO_(2),suggest that the transitional shales of the Shan 2^(3)submember were primarily deposited under tectonic settings such as continental island arcs(CIAs)and passive continental margins(PCMs).展开更多
The Oligocene-Miocene trajectory exposed at the Lubuk Lawas and Lubuk Bernai Stratigraphic Tracks in Bukit Tigapuluh, Jambi Subbasin, Indonesia, archives remnants of equatorial vegetation during extreme global warming...The Oligocene-Miocene trajectory exposed at the Lubuk Lawas and Lubuk Bernai Stratigraphic Tracks in Bukit Tigapuluh, Jambi Subbasin, Indonesia, archives remnants of equatorial vegetation during extreme global warming and near the beginning of the East Java-Eurasia microcontinent collision, and was carried out using mapping surface analysis, petrological analysis, sedimentology, stratigraphy and palinology. The rock units were deposited during one sedimentation phase, that is the continental deposition phase, which consists of conglomerates, gravel sandstones and sandstones that fill the basin followed by transgressive deposits associated with the deepening of the basin environment. Three palynozones Meyeripollis naharkotensis (Oligocene), Florschuetzia trilobata (Early Miocene) and Florschuetzia meridionalis (Middle Miocene) were identified stratigraphically on the basis of these pollen. The rock layers are deposits from the Early Oligocene to Middle Miocene from bottom to top. The depositional environment changed over time, passing from a narrow, steep-sided tectonic basin, during the Early to Late Oligocene, followed by a lacustrine basin to a palustine with oceanic influence, as a result of distensive E-W movement between the Jambi Fault and the Sunda Fault in the Late Oligocene to the Middle Miocene. Occurrence of taxonomically highly diverse angiosperm pollen in all three palynozones attests to an extremely rich inland and nearshore tropical flora under a strong seasonal rainfall regime. The climate remained warm and became increasingly humid towards the end of the Miocene. The nature of the environment is related to the dynamics of the opening of the basin opening.展开更多
Core ZHS-176 contains the paleoenvironmental records from the northern South China Sea (NSCS) since the Last Glacial Maximum (LGM). A coupled approach based on clay mineral assemblages, planktonic foraminiferal ox...Core ZHS-176 contains the paleoenvironmental records from the northern South China Sea (NSCS) since the Last Glacial Maximum (LGM). A coupled approach based on clay mineral assemblages, planktonic foraminiferal oxygen and carbon isotopes, and calcium carbonate content is used to trace the sources of the fine-grained sediment and to investigate the paleoenviornmental evolution in this area. Clay mineral assemblages are dominated by illite (average about 39%) and chlorite (about 27%), which comes mainly from Taiwan and the East China Sea. Kaolinite, which accounts for about 13%, comes mainly from the Zhujiang (Pearl) River, and Luzon Island is the main source for smectite (about 21%). The planktonic foraminiferal oxygen isotopic oscillations during the last glacial period are coeval with climate variations recorded in the Greenland ice core and Western Pacific sediment. These variations include the LGM, Heinrich event 1, Bφlling-Allerφd (B/A), and Younger Dryas. For the Holocene, three periods of strong precipitation (S1-S3) and three periods of weak precipitation (W1-W3) are identified. The oxygen isotopic record exhibits corre-lation with climate records from distant regions, including the high-latitude Northern Hemisphere, providing evidence for global tele-connection among regional climate. A brief, negative planktonic foraminiferal carbon isotopic excursion during B/A reflects increased methane released from marine gas hydrate due to the rapid warming of the water. By comparing calcium carbonate content curves of the core ZHS-176 with these of other five boreholes lying above the lysocline, a remarkable low calcium carbonate event is found during the early Holocene in NSCS.展开更多
The Early Holocene paleoclimate in Bosten Lake on the northern margin of the Tarim Basin, southern Xinjiang, is reconstructed through an analysis of a 953 cm long core (BSTC2000) taken from Bosten Lake. Multiple pro...The Early Holocene paleoclimate in Bosten Lake on the northern margin of the Tarim Basin, southern Xinjiang, is reconstructed through an analysis of a 953 cm long core (BSTC2000) taken from Bosten Lake. Multiple proxies of this core, including the mineral components of carbonate, carbonate content, stable isotopic compositions of carbonate, Ca/Sr, TOC and C/N and C/S of organic matter, are used to reconstruct the climatic change since 8500 a B.P. The chronology model is made by nine AMS 14C ages of leaves, seeds and organic matter contained in two parallel cores. The climate was cold and wet during 8500 to 8100 a B.P. Temperature increased from 8100 to 6400 a B.P., the climate was warm and humid, and the lake expanded. The lake level was highest during this stage. Then from 6400 to 5100 a B.P., the climate became cold and the lake level decreased slightly. During the late mid-Holocene, the climate was hot and dry from 5100 to 3100 a B.P., but there was a short cold period during 4400 to 3800 a B.P. At this temporal interval, a mass of ice and snow melting water supplied the lake at the early time and made the lake level rise. The second highest lake level stage occurred during 5200 to 3800 a B.P. The climate was cool and wet during 3100 to 2200 a B.P., when the lake expanded with decreasing evaporation. The lake had the last short-term high level during 3100 to 2800 a B.P. After this short high lake level period, the lake shrank because of the long-term lower temperature and reduced water supply. From 2200 to 1200 a B.P., the climate was hot and dry, and the lake shrank greatly. Although the temperature decreased somewhat from 1200 a B.P. to the present, the climate was warm and dry. The lake level began to rise a little again, but it did not reach the river bed altitude of the Konqi River, an outflow river of the Bosten Lake.展开更多
This paper for the first time reveals high-resolution core records of Zabuye Salt Lake in the interior of the Qinghai-Tibet Plateau. According to 1346 samples taken continuously, relatively accurate 14^C, U-series dis...This paper for the first time reveals high-resolution core records of Zabuye Salt Lake in the interior of the Qinghai-Tibet Plateau. According to 1346 samples taken continuously, relatively accurate 14^C, U-series disequilibrium and ESR ages have been obtained, thus revealing that the lake core ages from 0 to 83.63 m of hole SZK02 are -800 to over 128 ka. In the paper, the lake core sedimentary characteristics (including the lithologies and mineral assemblages) are analyzed in detail and correlated with ostracod assemblages I to XX and sporopollen zones A to I, and on the basis of an integrated analysis of the δ^18O values of authigenic calcium-magnesium carbonate and environmental proxies of minerals, sporopollen and microfossils in the lake core, a correlation has been made of oxygen isotope change between this lake core and the Greenland GISP2 and GRIP and Guliya ice cores, and the climate of Zabuye Salt Lake since 128 ka BP is divided into the last interglacial stage (including substages e, d, c, b and a) of oxygen isotope stage (OIS) 5, early glacial stadial of the last glacial stage of OIS 4, interglacial stadial of the last glacial stage of OIS 3, late glacial stadial of the last glacial stage or Last Glacial Maximum of OIS 2 and postglacial state of OIS 1; in addition, 6 Heinrich (H6-H1) events, Younger Dryas event and 8.2 ka BP cold event have been recognized.展开更多
Assemblages of benthic foraminifera in a sediment core(C02)near the western margin of the southern Yellow Sea Mud were studied to decipher the phase evolution of Holocene paleoenvironmental changes associated with the...Assemblages of benthic foraminifera in a sediment core(C02)near the western margin of the southern Yellow Sea Mud were studied to decipher the phase evolution of Holocene paleoenvironmental changes associated with the Holocene marine transgression.It appears that during the early Holocene(11.2 10.1 kyr BP),the faunal was dominated by low salinity and shallow water species Cribrononion subincertum,Buccella frigida and Ammonia beccarii,reflecting a near coast depositional environment.A rapid increase of the relative abundance of Ammonia compressiuscula between 10.1 9.3 kyr BP indicates that the sea level rose rapidly during that time period.From 9.3 7.7 kyr BP,the benthic foraminiferal assemblage was dominated by high percentage of A.compressiscula,suggesting that the sea level was relatively stable.An obvious transition of benthic foraminifera,from the A.compressiuscula-dominated assemblage to an Ammonia ketienziensis-dominated assemblage,occurred between 7.7 6.2 kyr BP,possibly corresponding to a second sea level rapid rise period in the Yellow Sea during the Holocene.This transition may correspond to the gradually strengthened Yellow Sea warm current(YSWC)and finally is established the modern-type circulation in the Yellow Sea.It may also mark the formation of the Yellow Sea cold bottom water(YSCBW)during that period.Since then,the benthic foraminiferal assemblage based on core C02 was dominated by typical YSCBW species,A.ketienziensis,Astrononion italicum and Hanzawaia nipponica,at 6.2 4 kyr BP.A non-deposition period occurred since 4 kyr BP,which possibly related to the hydrology changes caused by the East Asia monsoon.The two obvious benthic foraminiferal transitions recorded in core C02 during the early and middle Holocene provide evidence that the Yellow Sea has undergone a two-phase rapid sea level rise during the Holocene marine transgression.展开更多
The Lucaogou Formation in the Jimusar Sag of the eastern Junggar Basin is an important sedimentary stratum accumulating huge amounts of lacustrine tight oil in China, where organic-rich rocks are commonly observed. Fo...The Lucaogou Formation in the Jimusar Sag of the eastern Junggar Basin is an important sedimentary stratum accumulating huge amounts of lacustrine tight oil in China, where organic-rich rocks are commonly observed. Focusing on the Lucaogou Formation, a precise analysis of the inorganic and organic petrology and the inorganic geochemistry characteristics was conducted. The paleoclimate and paleoenvironment during sedimentation of the Lucaogou Formation were established,and the key factors that were controlling the accumulation of organic matter during this time were identified. The results of this study suggest that during the sedimentation of the Lucaogou Formation, the paleoclimate periodically changed from a humid environment to an arid environment. As a result, the salinity of the water and the redox environment fluctuated.During the sedimentation period, the lake showed su cient nutrient supplies and a high primary productivity. The interval studies in the Lucaogou Formation were divided into five sedimentary cycles, where the first, second, and fifth sedimentary cycles consisted of cyclical paleoclimate fluctuations varied from a humid environment to an arid environment and shifted back to a humid environment with levels of salinity from low to high and decreased again. The third and fourth cycles have cyclical fluctuations from a humid to an arid environment and corresponding salinity variation between low and high levels.During the period when organic-rich rocks in the Lucaogou Formation deposited in the Jimusar Sag, the paleoclimate and the water body were suitable for lower aquatic organisms to flourish. As a result, its paleoproductivity was high, especially during the early period of each cycle. A quiet deep water body is likely to form an anoxic environment at the bottom and is also good for accumulation and preservation of organisms. Fine-grained sediments were accumulated at a low deposition rate, with a low dilution of organic matter. Therefore, high paleoproductivity provided a su cient volume of organisms in the studied area in a quiet deep water body with an anoxic environment and these were the key factors controlling formation of organic-rich rocks.展开更多
Using trace elements to reconstruct paleoenvironment is a current hot topic in geochemistry. Through analytical tests of oil yield, ash yield, calorific value, total sulfur, major elements, trace elements, and X-ray d...Using trace elements to reconstruct paleoenvironment is a current hot topic in geochemistry. Through analytical tests of oil yield, ash yield, calorific value, total sulfur, major elements, trace elements, and X-ray diffraction, the quality, mineral content, occurrence mode of elements, and paleoenvironment of the Zhangjiatan oil shale of the Triassic Yanchang Formation in the southern Ordos Basin were studied. The analyses revealed relatively high oil yield(average 6.63%) and medium quality. The mineral content in the oil shale was mainly clay minerals,quartz, feldspar, and pyrite; an illite–smectite mixed layer comprised the major proportion of clay minerals. Compared with marine oil shale in China, the Zhangjiatan oil shale had higher contents of quartz, feldspar, and clay minerals, and lower calcite content. Silica was mainly in quartz and Fe was associated with organic matter, which is different from marine oil shale. The form of calcium varied. Cluster analyses indicated that Fe, Cu, U, V, Zn, As,Cs, Cd, Mo, Ga, Pb, Co, Ni, Cr, Sc, P, and Mn are associated with organic matter while Ca, Na, Sr, Ba, Si, Zr, K,Al, B, Mg, and Ti are mostly terrigenous. Sr/Cu, Ba/Al, V/(V+ Ni), U/Th, AU, and δU of oil shale samples suggest the paleoclimate was warm and humid, paleoproductivity of the lake was relatively high during deposition of the shale—which mainly occurred in fresh water—and the paleo-redox condition was dominated by reducing conditions. Fe/Ti ratios of the oil shale samples suggest clear hydrothermal influence in the eastern portion of the study area and less conspicuous hydrothermal influence in the western portion.展开更多
Cretaceous oceanic red beds (CORBs) represented by red shales and marls, were deposited during the Cretaceous and early Paleocene, predominantly in the Tethyan realm, in lower slope and abyssal basin environments. D...Cretaceous oceanic red beds (CORBs) represented by red shales and marls, were deposited during the Cretaceous and early Paleocene, predominantly in the Tethyan realm, in lower slope and abyssal basin environments. Detailed studies of CORBs are rare; therefore, we compiled CORBs data from deep sea ocean drilling cores and outcrops of Cretaceous rocks subaerially exposed in southern Europe, northwestern Germany, Asia and New Zealand. In the Tethyan realm, CORBs mainly consist of reddish or pink shales, limestones and marlstones. By contrast, marlstones and chalks are rare in deep-ocean drilling cores. Upper Cretaceous marine sediments in cores from the Atlantic Ocean are predominantly various shades of brown, reddish brown, yellowish brown and pale brown in color. A few red, pink, yellow and orange Cretaceous sediments are also present. The commonest age of CORBs is early Campanian to Maastrichtian, with the onset mostly of oxic deposition often after Oceanic Anoxic Events (OAEs), during the early Aptian, late Albian-early Turonian and Campanian. This suggests an indicated and previously not recognized relationship between OAEs, black shales deposition and CORBs. CORBs even though globally distributed, are most common in the North Atlantic and Tethyan realms, in low to mid latitudes of the northern hemisphere; in the South Atlantic and Indian Ocean in the mid to high latitudes of the southern hemisphere; and are less frequent in the central Pacific Ocean. Their widespread occurrence during the late Cretaceous might have been the result of establishing a connection for deep oceanic current circulation between the Pacific and the evolving connection between South and North Atlantic and changes in oceanic basins ventilation.展开更多
With a thick sequence of early Eocene to Pleistocene terrestrial records, the Qaidam Basin on the northern Tibetan Plateau provides an important sedimentary archive for understanding the paleoenvironmental evolution o...With a thick sequence of early Eocene to Pleistocene terrestrial records, the Qaidam Basin on the northern Tibetan Plateau provides an important sedimentary archive for understanding the paleoenvironmental evolution of the northeast Tibetan Plateau. In this study, specimens of fossil fish remains are collected from the late Middle Miocene(Serravallian, -12 Ma) of the middle member of the Shang Youshashan Formation, Dahonggou(DHG) section, in the northern Qaidam Basin. Based on a systematic study of these materials, the remains have assigned to Cyprinidae, with typical pharyngeal teeth and dorsal fin spines with serrations on the posterior edge. Our discovery improves understanding of the cyprinid fish distribution characteristics in the Qaidam Basin during the Cenozoic. Cooccurrences of terrestrial brackish ostracod species Cyprideis and long chain alkenonesin the layer indicate that the studied cyprinid fish lived in a generally large brackish to saline water body during the late middle Miocene(Serravallian), when the climate of Qaidam Basin was still not sufficiently dry to form an extreme saline water lake.展开更多
The eastern Hexi Corridor, northwest China, is located at the tectonic junction of the Alxa Block, the North China Craton, and the Qinling-Qilian Orogen. The early Paleozoic Xiangshan Group record critical information...The eastern Hexi Corridor, northwest China, is located at the tectonic junction of the Alxa Block, the North China Craton, and the Qinling-Qilian Orogen. The early Paleozoic Xiangshan Group record critical information regarding paleoenvironment, paleoclimate and paleotectonic setting, from which we here present a focused study on the chert beds within the Xiangshan Group. Through field mapping, microstructural observation, whole-rock geochemistry analyses and detrital zircon dating, we suggest that the Xiangshan Group chert was deposited along a passive continental margin, formed primarily through biological activity with minor hydrothermal influence and terrestrial input. The characteristics of the chert support a low latitude sedimentary paleoenvironmental origin, and reveal the fact that the Alxa Block was separated from the North China craton, while emerged some paleogeographic affinity with the Qilian region in the Middle-Late Cambrian.展开更多
Based on the concentrations of the trace elements,rare earth elements(REE),and Sr isotopic compositions in reef carbonates from the well‘Xike-1’reef core of the Xisha Islands,the constraints on sediment provenance a...Based on the concentrations of the trace elements,rare earth elements(REE),and Sr isotopic compositions in reef carbonates from the well‘Xike-1’reef core of the Xisha Islands,the constraints on sediment provenance and paleoenvironment were defined.Variations of the terrigenous input into the paleoseawater were traced in detail and the paleoenvironment and sediment provenance were further investigated.The results show that the HREE/LREE values in the reef carbonates are negatively associated with their Th and Al concentrations;however,their Al and Th concentrations show positive correlation.The lowest 87 Sr/86 Sr values in the reef carbonates generally coincide with the lowest values of Al,Th concentrations and the highest values of HREE/LREE.These data indicate that the HREE/LREE,Al concentrations,and Th concentrations of the reef carbonates are useful indexes for evaluating the influence of the terrigenous inputs on the seawater composition in the study area.From top to bottom,the changing process of the HREE/LREE values and Al,Th concentrations can be divided into 6 intervals;they are H1(0–89.30 m,about 0–0.11 Myr),L1(89.30–198.30 m,about 0.11–2.2 Myr),H2(198.30–374.95 m,about 2.2–5.3 Myr),D(374.95–758.40 m,about 5.3–13.6 Myr),L2(758.40–976.86 m,about 13.6–15.5 Myr),and H3(976.86–1200.00 m,about 15.5–21.5 Myr).Moreover,the changing trend of the HREE/LREE values coincides with that of the seawater δ^13C values recorded by benthonic foraminiferal skeletons from the drill core of ODP site 1148 in the South China Sea(SCS),but not with that of the seawaterδ18O values.The high uplifting rates of the Qinghai-Tibet Plateau coincide with the high Th and Al concentrations and the low HREE/LREE values in the reef carbonates.These data indicate that the main factors controlling the changes of terrigenous flux in the SCS are the tectonic activities associated with Qinghai-Tibet Plateau uplifting and the variations of uplifting rates rather than paleoclimatic changes.展开更多
Volcanic activity was quite frequent during the deposition of the Late Carboniferous Ha’erjiawu Formation in the Santanghu Basin.The petrology and organic and inorganic geochemical indicators were used to investigate...Volcanic activity was quite frequent during the deposition of the Late Carboniferous Ha’erjiawu Formation in the Santanghu Basin.The petrology and organic and inorganic geochemical indicators were used to investigate hydrocarbon potential,paleoenvironmental conditions and organic matter enrichment of the mudstones.The results show that the oil generation capacity of the Ha’erjiawu Formation mudstones,which has abundant oil-prone organic matter(TypeⅡkerogen with hydrogen index values mainly ranging from 250 to 550 mg HC/g TOC)in mature stage(Tmax values mainly ranging from 435 to 450℃),is considerable.The Ha’erjiawu Formation was deposited in a dysoxic,freshwater-mildly brackish,and warm-humid environment.During its deposition,the Ha’erjiawu Formation received hydrothermal inputs.The volcanic hydrothermal activities played an important role in the organic matter enrichment.In addition,the total organic carbon(TOC)is significantly positively correlated with the felsic mineral content,but it is negatively correlated with the carbonate mineral content and C27/C29 ratios,indicating that terrigenous organic matter input also contributed to the primary productivity in the surface water.Therefore,the formation of the high-quality source rocks in the Ha’erjiawu Formation was jointly affected by the hydrothermal activity and the terrigenous organic matter input.展开更多
Much geological research has illustrated the transition of paleoenvironmental patterns during the Cenozoic from a planetary-wind-dominant type to a monsoon-dominant type, indicating the initiation of the East Asian mo...Much geological research has illustrated the transition of paleoenvironmental patterns during the Cenozoic from a planetary-wind-dominant type to a monsoon-dominant type, indicating the initiation of the East Asian monsoon and inland-type aridity. However, there is a dispute about the causes and mechanisms of the transition, especially about the impact of the Himalayan/Tibetan Plateau uplift and the Paratethys Sea retreat, Thirty numerical sensitivity experiments under different land-sea distributions and Himalayan/Tibetan Plateau topography conditions are performed here to simulate the evolution of climate belts with emphasis on changes in the rain band, and these are compared with the changes in the paleoenvironmental patterns during the Cenozoic recovered by geological records. The consistency between simulations and the geological evidence indicates that both the Tibetan Plateau uplift and the Paratethys Sea retreat play important roles in the formation of the monsoon-dominant environmental pattern. Furthermore, the simulations show the monsoon-dominant environmental pattern comes into being when the Himalayan/Tibetan Plateau reaches 1000-2000 m high and the Paratethys Sea retreats to the Turan Plate.展开更多
This paper reports different concentration patterns of n-alkanes distribution in the sedi- ments from the Chukchi Sea, the Bering Sea in the Arctic. Factor statistical analysis method is used for studying the source o...This paper reports different concentration patterns of n-alkanes distribution in the sedi- ments from the Chukchi Sea, the Bering Sea in the Arctic. Factor statistical analysis method is used for studying the source of n-alkanes and paleoenvironment. The result shows that n-alkanes is in the range of nC15-nC33 and n-alkane distribution patterns are characterized by two modes. The first mode belongs to the higher molecular with MH being nC25-nC27, CPI > 1 and with remarkable odd-even dominance. They are of terrigenous plant origin. The second one belongs to lower carbon range with MH being nC17 -nC20, CPI > 1 and with indistinct odd-even dominance. Therefore they are contributed by marine bio- logicla inputs. The contribution of land origin is larger than that of marine source. Pr/Ph is lower than 1 in the investigated area, which indicates the depositional environment of reducing reaction with lower oxygen. The result of factor analysis has good agreement with composition characteristics of n-alkanes in the sediment.展开更多
Reconstructing paleoenvironments has long been considered a vital component for understanding the development and evolution of carbonate reservoirs.The Middle Ordovician Period is considered the archetypical greenhous...Reconstructing paleoenvironments has long been considered a vital component for understanding the development and evolution of carbonate reservoirs.The Middle Ordovician Period is considered the archetypical greenhouse interval,and also a critical period in biological evolution.The Middle Darriwilian isotope carbon excursion has been observed in many areas of the world and may be related to the biological explosions caused by decreases in the temperature.The thick carbonate rocks in the fifth member of the Middle Ordovician Majiagou Formation in the Dingbei area of the Ordos Basin were chosen as an example,based on the concentration of major,trace and rare earth elements as well as C,O and Sr isotopic analyses,the paleoenvironment was reconstructed.And its impact on natural gas exploration was analyzed.The results show that the seawater paleotemperature was 29℃,suboxicanoxic paleoredox conditions were observed,and the seawater paleosalinity was high.A large number of plankton in the biological explosion caused a rapid increase in the total organic carbon in carbonate rocks,which provided natural gas as supplemental source rocks.Affected by early meteoric water,the dissolution of gypsum laid the foundation for high-quality reservoirs,and the residual gypsum also further preserved natural gas.This study provides new data for the paleoenvironment and a theoretical basis for further natural gas exploration.展开更多
基金the China Postdoctoral Science Foundation (No. 2022M723151)the Second Tibetan Plateau Scientific Expedition Research Program (No. 2019QZKK0704)+1 种基金the National Natural Science Foundation of China (No. 42172005, 41272026, 41972008, 31870200)the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (XDB26000000)
文摘Understanding the paleoenvironment and phytogeographical history of the Tibetan Plateau,China relies on discovering new plant fossils.The Qaidam Basin has long been regarded as an ideal‘field laboratory’to investigate the paleoclimate and paleobiological evolution of the northern Tibetan Plateau.However,fossil angiosperms from the Qaidam Basin are rare,and our knowledge of its paleovegetation is poor.Here,we report fossil leaves and fruits of Betulaceae found from the Oligocene Shangganchaigou Formation of northwestern Qaidam Basin(Huatugou area).Comparative morphological analysis led us to assign the fruits to the Betula subgenus Betula and the leaves to Carpinus grandis.These findings,together with other reported fossil plants from the same locality,reveal a close floristic linkage between the Qaidam Basin and Europe during the Oligocene.The northern pathway of this floristic exchange may have crossed through the Qaidam Basin during the late Paleogene.This floristic linkage may have been facilitated by the continuous narrowing of the Turgai Strait and stronger westerlies,which transported moisture and provided favorable climatic conditions.Indeed,fossil plants collected from the Qaidam Basin suggest that during the Oligocene this region had warm and humid deciduous broad-leaf forest,which differs from the region’s modern vegetation and indicates that the Qaidam Basin may have been a suitable region for these plants to flourish and spread during the Oligocene.
基金supported by the National Natural Science Foundation of China(No.42272110)。
文摘The controlling factors of organic-rich shale accumulation is essential for the exploration and development of shale oil and gas resources.The sedimentary environment plays a vital role in the formation of organic-rich sediments in lacustrine facies.This article unravels the mineralogy,geochemistry,and paleoenvironmental evolution during the deposition of the Paleogene Shahejie Formation(Es_(3)^(L)).It discusses the effects of paleoclimate,paleosalinity,paleoredox conditions,paleowater depth,and paleoproductivity on organic matter(OM)enrichment.Finally,the OM enrichment model was established.The results show that the mineralogical compositions are mainly composed of calcite(avg.40.13%),quartz(avg.21.64%)and clay minerals(avg.24.07%),accompanied by dolomite(avg.7.07%),feldspar(avg.6.36%)and pyrite(avg.2.95%).The Es_(3)^(L) shale has a high abundance of OM,with total organic carbon(TOC)ranging from 1.07%to 5.12%.The organic matter type is mainly composed of type I-II_(1) kerogen,which is generally considered a good-quality source rock.The source of OM is a mixture of lower bacteria,algae,and plants.During the early sedimentary period,the paleoclimate was dry and cold,with high salinity,intense reducibility,and relatively low productivity.During the late sedimentary period,the climate became warmer and more humid.As a result,the salinity decreased to a level that was suitable for biological reproduction,and productivity increased gradually due to the input of terrigenous plants.Paleosalinity and paleoclimate determined the environment of the sedimentary period,in addition,paleoproductivity and paleoredox condition indicated the formation and preservation conditions of OM.The warm and humid climate,brackish water,suitable reduction conditions and high productivity are the favorable conditions for the generation and preservation of organic matter.The research results may have implications for the genetic mechanisms of organic matter accumulation.They will provide theoretical and technical insights into the exploration and development of shale oil.
基金funded by a grant from the National Natural Science Foundation of China(Grant Nos.U2244207,42102200)the China Geological Survey Foundation(Grant Nos.DD20230257,DD20242404)。
文摘The Upper Cretaceous Qingshankou Formation black shales,deposited in the late Turonian(LTB shales),are the main source rocks of the Songliao Basin.The origins of organic matter enrichment of the shales is a contentious subject fuelling many ongoing debates.This study investigates the genesis of the organic matter-rich shale by using molecular geochemistry.The LTB shales can be divided into three sections.The SectionⅠshales were deposited in saline,stratified and anoxic water conditions,which are related to seawater incursion events.At least three episodic and periodic seawater incursion events were recognized during SectionⅠshale deposition.The SectionⅡshales deposited in brackish to fresh and deep lake-level conditions with high primary productivity,which are related to lake-level transgression.The SectionⅢshales were deposited under fresh and slightly oxidized water conditions,which are related to lake-level regression.Two organic matter enrichment models for the LTB shales are identified,that is,the seawater incursion model and the maximum lake-level transgression sedimentation model,which act on different shale sections,both playing significant roles in the enrichment of organic matter.
基金supported by the National Natural Science Foundation of China (Grant U19B6003-01-02,42102150,42372163)。
文摘The black shale of the Mesoproterozoic Cuizhuang Formation in the Changcheng System in Yongji city,North China Craton,is a potential source rock.Understanding the organic matter enrichment mechanism is crucial for evaluating source rock resources and understanding oil and gas accumulation mechanisms.In this study,we evaluated the sedimentary paleoenvironment and organic matter enrichment mechanisms of shale using thin section observations,mineral composition analysis,organic geochemistry,and elemental geochemistry.We found significant differences in the sedimentary paleoenvironment and organic matter enrichment mechanisms between the lower Cuizhuang Formation and the Beidajian Formation shale.The Cuizhuang Formation was deposited in a late-stage,restricted basin environment during the rift phase,and elemental and geochemical indicators showed that the Cuizhuang Formation was in a suboxic-anoxic water environment,that was influenced by a warm and humid paleoclimate and submarine hydrothermal activities,which promoted the accumulation of organic matter.However,the enrichment of organic matter in the Cuizhuang Formation was mainly controlled by redox conditions.The formation of suboxic-anoxic water environments may be closely related to the warm and humid paleoclimate and submarine hydrothermal activities.Warm conditions promote continental weathering and increase marine productivity,thereby consuming oxygen in the bottom water.Moreover,acidic hydrothermal activity also helps to establish an anoxic environment.Our results reveal the effects controlling various coupled mechanisms dominated by redox conditions,which may explain the development of source rocks in the Cuizhuang Formation.
基金funded by the Science and Technology Cooper-ation Project of the CNPC-SWPU Innovation Alliance(Grant No.2020CX030101)the National Natural Science Foundation of China(Grant No.51674044).
文摘The paleoenvironment of shales can be reconstructed to some extent using the combinations or concentrations of elements that correlate strongly with environmental conditions.In this study,we analyzed rare earth elements(REEs),major elements,and trace elements in the marine-continental transitional shales(transitional shales for short)of the Shan 2^(3)submember of the Shanxi Formation in the southeastern Ordos Basin.The purpose is to deduce the paleoenvironmental conditions of the shales,encompassing paleoredox,paleoclimate,paleoproductivity,and paleo-provenance.The Shan 2^(3)submember comprises four sections,namely Shan 2^(3)-1,Shan 2^(3)-2,Shan 2^(3)-3,and Shan 2^(3)-4.The Ba/Al,P/Al,and Cu/Al ratios,along with biogenic barium(Babio),indicate that the paleoproductivity of the submember peaked during the Shan 2^(3)-1 deposition and exhibited a downtrend upward in other sections.Trends in the Uau and the Ni/Co,V/Cr,U/Th,and V/Sc ratios suggest that suboxic conditions prevailed during the Shan 2^(3)-1 deposition,with the oxidation level gradually increasing from Shan 2^(3)-1 to Shan 2^(3)-4.C-value and the Sr/Cu vs.Ga/Rb cross-plot indicate a warm and arid paleoclimate during the Shan 2^(3)-1 deposition,which transitioned to cooler,drier conditions during the deposition of other sections.Indicators sensitive to paleoclimate,such as the K/Rb and Th/U ratios,along with the ICV,PIA,and Chemical Index of Alteration(CIA),highlight elevated weathering from Shan 2^(3)-2 to Shan 2^(3)-4,with Shan 2^(3)-1 exhibiting the weakest weathering during its deposition.As suggested by the REE data,the Zr/Sc vs.Th/Sr cross-plot,provenance discriminant functions,and the cross-plots of Hf vs.La/Th,Th vs.Hf-Co,and∑REE vs.La/Yb,the sedimentary provenance for the transitional shales of the Shan 2^(3)submember is of multiple origins,with significant contributions from the Upper Continental Crust(UCC).Discriminant diagrams,including those of Th-Co-Zr/10,Th-Sc-Zr/10,La-Th-Sc,and K_(2)O/Na_(2)O vs.SiO_(2),suggest that the transitional shales of the Shan 2^(3)submember were primarily deposited under tectonic settings such as continental island arcs(CIAs)and passive continental margins(PCMs).
文摘The Oligocene-Miocene trajectory exposed at the Lubuk Lawas and Lubuk Bernai Stratigraphic Tracks in Bukit Tigapuluh, Jambi Subbasin, Indonesia, archives remnants of equatorial vegetation during extreme global warming and near the beginning of the East Java-Eurasia microcontinent collision, and was carried out using mapping surface analysis, petrological analysis, sedimentology, stratigraphy and palinology. The rock units were deposited during one sedimentation phase, that is the continental deposition phase, which consists of conglomerates, gravel sandstones and sandstones that fill the basin followed by transgressive deposits associated with the deepening of the basin environment. Three palynozones Meyeripollis naharkotensis (Oligocene), Florschuetzia trilobata (Early Miocene) and Florschuetzia meridionalis (Middle Miocene) were identified stratigraphically on the basis of these pollen. The rock layers are deposits from the Early Oligocene to Middle Miocene from bottom to top. The depositional environment changed over time, passing from a narrow, steep-sided tectonic basin, during the Early to Late Oligocene, followed by a lacustrine basin to a palustine with oceanic influence, as a result of distensive E-W movement between the Jambi Fault and the Sunda Fault in the Late Oligocene to the Middle Miocene. Occurrence of taxonomically highly diverse angiosperm pollen in all three palynozones attests to an extremely rich inland and nearshore tropical flora under a strong seasonal rainfall regime. The climate remained warm and became increasingly humid towards the end of the Miocene. The nature of the environment is related to the dynamics of the opening of the basin opening.
基金The National Basic Research Program of China under contract No. 2007CB411704
文摘Core ZHS-176 contains the paleoenvironmental records from the northern South China Sea (NSCS) since the Last Glacial Maximum (LGM). A coupled approach based on clay mineral assemblages, planktonic foraminiferal oxygen and carbon isotopes, and calcium carbonate content is used to trace the sources of the fine-grained sediment and to investigate the paleoenviornmental evolution in this area. Clay mineral assemblages are dominated by illite (average about 39%) and chlorite (about 27%), which comes mainly from Taiwan and the East China Sea. Kaolinite, which accounts for about 13%, comes mainly from the Zhujiang (Pearl) River, and Luzon Island is the main source for smectite (about 21%). The planktonic foraminiferal oxygen isotopic oscillations during the last glacial period are coeval with climate variations recorded in the Greenland ice core and Western Pacific sediment. These variations include the LGM, Heinrich event 1, Bφlling-Allerφd (B/A), and Younger Dryas. For the Holocene, three periods of strong precipitation (S1-S3) and three periods of weak precipitation (W1-W3) are identified. The oxygen isotopic record exhibits corre-lation with climate records from distant regions, including the high-latitude Northern Hemisphere, providing evidence for global tele-connection among regional climate. A brief, negative planktonic foraminiferal carbon isotopic excursion during B/A reflects increased methane released from marine gas hydrate due to the rapid warming of the water. By comparing calcium carbonate content curves of the core ZHS-176 with these of other five boreholes lying above the lysocline, a remarkable low calcium carbonate event is found during the early Holocene in NSCS.
基金co-supported by the National Natural Science Foundation of China (grant Nos.40773064,40331012 and 40041004)"973" Program of China (No.G1999043501)
文摘The Early Holocene paleoclimate in Bosten Lake on the northern margin of the Tarim Basin, southern Xinjiang, is reconstructed through an analysis of a 953 cm long core (BSTC2000) taken from Bosten Lake. Multiple proxies of this core, including the mineral components of carbonate, carbonate content, stable isotopic compositions of carbonate, Ca/Sr, TOC and C/N and C/S of organic matter, are used to reconstruct the climatic change since 8500 a B.P. The chronology model is made by nine AMS 14C ages of leaves, seeds and organic matter contained in two parallel cores. The climate was cold and wet during 8500 to 8100 a B.P. Temperature increased from 8100 to 6400 a B.P., the climate was warm and humid, and the lake expanded. The lake level was highest during this stage. Then from 6400 to 5100 a B.P., the climate became cold and the lake level decreased slightly. During the late mid-Holocene, the climate was hot and dry from 5100 to 3100 a B.P., but there was a short cold period during 4400 to 3800 a B.P. At this temporal interval, a mass of ice and snow melting water supplied the lake at the early time and made the lake level rise. The second highest lake level stage occurred during 5200 to 3800 a B.P. The climate was cool and wet during 3100 to 2200 a B.P., when the lake expanded with decreasing evaporation. The lake had the last short-term high level during 3100 to 2800 a B.P. After this short high lake level period, the lake shrank because of the long-term lower temperature and reduced water supply. From 2200 to 1200 a B.P., the climate was hot and dry, and the lake shrank greatly. Although the temperature decreased somewhat from 1200 a B.P. to the present, the climate was warm and dry. The lake level began to rise a little again, but it did not reach the river bed altitude of the Konqi River, an outflow river of the Bosten Lake.
文摘This paper for the first time reveals high-resolution core records of Zabuye Salt Lake in the interior of the Qinghai-Tibet Plateau. According to 1346 samples taken continuously, relatively accurate 14^C, U-series disequilibrium and ESR ages have been obtained, thus revealing that the lake core ages from 0 to 83.63 m of hole SZK02 are -800 to over 128 ka. In the paper, the lake core sedimentary characteristics (including the lithologies and mineral assemblages) are analyzed in detail and correlated with ostracod assemblages I to XX and sporopollen zones A to I, and on the basis of an integrated analysis of the δ^18O values of authigenic calcium-magnesium carbonate and environmental proxies of minerals, sporopollen and microfossils in the lake core, a correlation has been made of oxygen isotope change between this lake core and the Greenland GISP2 and GRIP and Guliya ice cores, and the climate of Zabuye Salt Lake since 128 ka BP is divided into the last interglacial stage (including substages e, d, c, b and a) of oxygen isotope stage (OIS) 5, early glacial stadial of the last glacial stage of OIS 4, interglacial stadial of the last glacial stage of OIS 3, late glacial stadial of the last glacial stage or Last Glacial Maximum of OIS 2 and postglacial state of OIS 1; in addition, 6 Heinrich (H6-H1) events, Younger Dryas event and 8.2 ka BP cold event have been recognized.
基金supported by the National Basic Research Program of China (973 Program 2010CB428901)the National Natural Science Foundation of China (40976031,91228207)
文摘Assemblages of benthic foraminifera in a sediment core(C02)near the western margin of the southern Yellow Sea Mud were studied to decipher the phase evolution of Holocene paleoenvironmental changes associated with the Holocene marine transgression.It appears that during the early Holocene(11.2 10.1 kyr BP),the faunal was dominated by low salinity and shallow water species Cribrononion subincertum,Buccella frigida and Ammonia beccarii,reflecting a near coast depositional environment.A rapid increase of the relative abundance of Ammonia compressiuscula between 10.1 9.3 kyr BP indicates that the sea level rose rapidly during that time period.From 9.3 7.7 kyr BP,the benthic foraminiferal assemblage was dominated by high percentage of A.compressiscula,suggesting that the sea level was relatively stable.An obvious transition of benthic foraminifera,from the A.compressiuscula-dominated assemblage to an Ammonia ketienziensis-dominated assemblage,occurred between 7.7 6.2 kyr BP,possibly corresponding to a second sea level rapid rise period in the Yellow Sea during the Holocene.This transition may correspond to the gradually strengthened Yellow Sea warm current(YSWC)and finally is established the modern-type circulation in the Yellow Sea.It may also mark the formation of the Yellow Sea cold bottom water(YSCBW)during that period.Since then,the benthic foraminiferal assemblage based on core C02 was dominated by typical YSCBW species,A.ketienziensis,Astrononion italicum and Hanzawaia nipponica,at 6.2 4 kyr BP.A non-deposition period occurred since 4 kyr BP,which possibly related to the hydrology changes caused by the East Asia monsoon.The two obvious benthic foraminiferal transitions recorded in core C02 during the early and middle Holocene provide evidence that the Yellow Sea has undergone a two-phase rapid sea level rise during the Holocene marine transgression.
基金supported by the National Science and Technology Major Program of China(Grant No.2017ZX05009002)the National Basic Research Program of China(Grant No.2014CB239002)+1 种基金the Natural Science Foundation of Shandong Province,China(Grant No.ZR2014DQ016)the Natural Science Foundation Joint Special of Shandong Province,China(Grant No.ZR2016DL05)
文摘The Lucaogou Formation in the Jimusar Sag of the eastern Junggar Basin is an important sedimentary stratum accumulating huge amounts of lacustrine tight oil in China, where organic-rich rocks are commonly observed. Focusing on the Lucaogou Formation, a precise analysis of the inorganic and organic petrology and the inorganic geochemistry characteristics was conducted. The paleoclimate and paleoenvironment during sedimentation of the Lucaogou Formation were established,and the key factors that were controlling the accumulation of organic matter during this time were identified. The results of this study suggest that during the sedimentation of the Lucaogou Formation, the paleoclimate periodically changed from a humid environment to an arid environment. As a result, the salinity of the water and the redox environment fluctuated.During the sedimentation period, the lake showed su cient nutrient supplies and a high primary productivity. The interval studies in the Lucaogou Formation were divided into five sedimentary cycles, where the first, second, and fifth sedimentary cycles consisted of cyclical paleoclimate fluctuations varied from a humid environment to an arid environment and shifted back to a humid environment with levels of salinity from low to high and decreased again. The third and fourth cycles have cyclical fluctuations from a humid to an arid environment and corresponding salinity variation between low and high levels.During the period when organic-rich rocks in the Lucaogou Formation deposited in the Jimusar Sag, the paleoclimate and the water body were suitable for lower aquatic organisms to flourish. As a result, its paleoproductivity was high, especially during the early period of each cycle. A quiet deep water body is likely to form an anoxic environment at the bottom and is also good for accumulation and preservation of organisms. Fine-grained sediments were accumulated at a low deposition rate, with a low dilution of organic matter. Therefore, high paleoproductivity provided a su cient volume of organisms in the studied area in a quiet deep water body with an anoxic environment and these were the key factors controlling formation of organic-rich rocks.
基金supported by funding from the National Natural Science Foundation of China (No.41173055)the Fundamental Research Funds for the Central Universities (No.310827172101)
文摘Using trace elements to reconstruct paleoenvironment is a current hot topic in geochemistry. Through analytical tests of oil yield, ash yield, calorific value, total sulfur, major elements, trace elements, and X-ray diffraction, the quality, mineral content, occurrence mode of elements, and paleoenvironment of the Zhangjiatan oil shale of the Triassic Yanchang Formation in the southern Ordos Basin were studied. The analyses revealed relatively high oil yield(average 6.63%) and medium quality. The mineral content in the oil shale was mainly clay minerals,quartz, feldspar, and pyrite; an illite–smectite mixed layer comprised the major proportion of clay minerals. Compared with marine oil shale in China, the Zhangjiatan oil shale had higher contents of quartz, feldspar, and clay minerals, and lower calcite content. Silica was mainly in quartz and Fe was associated with organic matter, which is different from marine oil shale. The form of calcium varied. Cluster analyses indicated that Fe, Cu, U, V, Zn, As,Cs, Cd, Mo, Ga, Pb, Co, Ni, Cr, Sc, P, and Mn are associated with organic matter while Ca, Na, Sr, Ba, Si, Zr, K,Al, B, Mg, and Ti are mostly terrigenous. Sr/Cu, Ba/Al, V/(V+ Ni), U/Th, AU, and δU of oil shale samples suggest the paleoclimate was warm and humid, paleoproductivity of the lake was relatively high during deposition of the shale—which mainly occurred in fresh water—and the paleo-redox condition was dominated by reducing conditions. Fe/Ti ratios of the oil shale samples suggest clear hydrothermal influence in the eastern portion of the study area and less conspicuous hydrothermal influence in the western portion.
基金part of the research programs supported by the specialty Program of the National Basic Research Program of China(Grant No.2006CB701402)the National Science Foundation of China(Grant No.40332020).
文摘Cretaceous oceanic red beds (CORBs) represented by red shales and marls, were deposited during the Cretaceous and early Paleocene, predominantly in the Tethyan realm, in lower slope and abyssal basin environments. Detailed studies of CORBs are rare; therefore, we compiled CORBs data from deep sea ocean drilling cores and outcrops of Cretaceous rocks subaerially exposed in southern Europe, northwestern Germany, Asia and New Zealand. In the Tethyan realm, CORBs mainly consist of reddish or pink shales, limestones and marlstones. By contrast, marlstones and chalks are rare in deep-ocean drilling cores. Upper Cretaceous marine sediments in cores from the Atlantic Ocean are predominantly various shades of brown, reddish brown, yellowish brown and pale brown in color. A few red, pink, yellow and orange Cretaceous sediments are also present. The commonest age of CORBs is early Campanian to Maastrichtian, with the onset mostly of oxic deposition often after Oceanic Anoxic Events (OAEs), during the early Aptian, late Albian-early Turonian and Campanian. This suggests an indicated and previously not recognized relationship between OAEs, black shales deposition and CORBs. CORBs even though globally distributed, are most common in the North Atlantic and Tethyan realms, in low to mid latitudes of the northern hemisphere; in the South Atlantic and Indian Ocean in the mid to high latitudes of the southern hemisphere; and are less frequent in the central Pacific Ocean. Their widespread occurrence during the late Cretaceous might have been the result of establishing a connection for deep oceanic current circulation between the Pacific and the evolving connection between South and North Atlantic and changes in oceanic basins ventilation.
基金funded by the Foundation of the Geological Survey of China(No.1212011121261)the National Natural Science Youth Foundation of China(Nos.41702118,41702363 and41602037)the China Postdoctoral Science Foundation(Nos.2014M552109 and 2015M582301)
文摘With a thick sequence of early Eocene to Pleistocene terrestrial records, the Qaidam Basin on the northern Tibetan Plateau provides an important sedimentary archive for understanding the paleoenvironmental evolution of the northeast Tibetan Plateau. In this study, specimens of fossil fish remains are collected from the late Middle Miocene(Serravallian, -12 Ma) of the middle member of the Shang Youshashan Formation, Dahonggou(DHG) section, in the northern Qaidam Basin. Based on a systematic study of these materials, the remains have assigned to Cyprinidae, with typical pharyngeal teeth and dorsal fin spines with serrations on the posterior edge. Our discovery improves understanding of the cyprinid fish distribution characteristics in the Qaidam Basin during the Cenozoic. Cooccurrences of terrestrial brackish ostracod species Cyprideis and long chain alkenonesin the layer indicate that the studied cyprinid fish lived in a generally large brackish to saline water body during the late middle Miocene(Serravallian), when the climate of Qaidam Basin was still not sufficiently dry to form an extreme saline water lake.
基金supported by the National Program for the National Natural Science Foundation of China(41972224)the Fundamental Research Funds for the Chinese Academy of Geological Sciences(JKY202011)+1 种基金Key Basic Research Project from the Ministry of Science and Technology of the People’s Republic of China(2018YFC0603700)the Chinese Geological Survey(DD20190011,DD20189132,DD20190129)。
文摘The eastern Hexi Corridor, northwest China, is located at the tectonic junction of the Alxa Block, the North China Craton, and the Qinling-Qilian Orogen. The early Paleozoic Xiangshan Group record critical information regarding paleoenvironment, paleoclimate and paleotectonic setting, from which we here present a focused study on the chert beds within the Xiangshan Group. Through field mapping, microstructural observation, whole-rock geochemistry analyses and detrital zircon dating, we suggest that the Xiangshan Group chert was deposited along a passive continental margin, formed primarily through biological activity with minor hydrothermal influence and terrestrial input. The characteristics of the chert support a low latitude sedimentary paleoenvironmental origin, and reveal the fact that the Alxa Block was separated from the North China craton, while emerged some paleogeographic affinity with the Qilian region in the Middle-Late Cambrian.
基金financially supported by the National Science and Technology Major Project (No. 2011ZX050 25-002-03)the Project of China National Offshore Oil Corporation (CNOOC) Limited (No. CCL2013ZJFNO729)the National Natural Science Foundation of China (No. 41530963)
文摘Based on the concentrations of the trace elements,rare earth elements(REE),and Sr isotopic compositions in reef carbonates from the well‘Xike-1’reef core of the Xisha Islands,the constraints on sediment provenance and paleoenvironment were defined.Variations of the terrigenous input into the paleoseawater were traced in detail and the paleoenvironment and sediment provenance were further investigated.The results show that the HREE/LREE values in the reef carbonates are negatively associated with their Th and Al concentrations;however,their Al and Th concentrations show positive correlation.The lowest 87 Sr/86 Sr values in the reef carbonates generally coincide with the lowest values of Al,Th concentrations and the highest values of HREE/LREE.These data indicate that the HREE/LREE,Al concentrations,and Th concentrations of the reef carbonates are useful indexes for evaluating the influence of the terrigenous inputs on the seawater composition in the study area.From top to bottom,the changing process of the HREE/LREE values and Al,Th concentrations can be divided into 6 intervals;they are H1(0–89.30 m,about 0–0.11 Myr),L1(89.30–198.30 m,about 0.11–2.2 Myr),H2(198.30–374.95 m,about 2.2–5.3 Myr),D(374.95–758.40 m,about 5.3–13.6 Myr),L2(758.40–976.86 m,about 13.6–15.5 Myr),and H3(976.86–1200.00 m,about 15.5–21.5 Myr).Moreover,the changing trend of the HREE/LREE values coincides with that of the seawater δ^13C values recorded by benthonic foraminiferal skeletons from the drill core of ODP site 1148 in the South China Sea(SCS),but not with that of the seawaterδ18O values.The high uplifting rates of the Qinghai-Tibet Plateau coincide with the high Th and Al concentrations and the low HREE/LREE values in the reef carbonates.These data indicate that the main factors controlling the changes of terrigenous flux in the SCS are the tectonic activities associated with Qinghai-Tibet Plateau uplifting and the variations of uplifting rates rather than paleoclimatic changes.
基金financially supported by the National Natural Science Foundation of China(Grant No.41472111,41702127)。
文摘Volcanic activity was quite frequent during the deposition of the Late Carboniferous Ha’erjiawu Formation in the Santanghu Basin.The petrology and organic and inorganic geochemical indicators were used to investigate hydrocarbon potential,paleoenvironmental conditions and organic matter enrichment of the mudstones.The results show that the oil generation capacity of the Ha’erjiawu Formation mudstones,which has abundant oil-prone organic matter(TypeⅡkerogen with hydrogen index values mainly ranging from 250 to 550 mg HC/g TOC)in mature stage(Tmax values mainly ranging from 435 to 450℃),is considerable.The Ha’erjiawu Formation was deposited in a dysoxic,freshwater-mildly brackish,and warm-humid environment.During its deposition,the Ha’erjiawu Formation received hydrothermal inputs.The volcanic hydrothermal activities played an important role in the organic matter enrichment.In addition,the total organic carbon(TOC)is significantly positively correlated with the felsic mineral content,but it is negatively correlated with the carbonate mineral content and C27/C29 ratios,indicating that terrigenous organic matter input also contributed to the primary productivity in the surface water.Therefore,the formation of the high-quality source rocks in the Ha’erjiawu Formation was jointly affected by the hydrothermal activity and the terrigenous organic matter input.
基金This study was supported by the National Natural Science Foundation of China(Grant Nos.40125014 and 40231001)the Key Program of the Chinese Academy of Sciences KZCX3-SW-139.
文摘Much geological research has illustrated the transition of paleoenvironmental patterns during the Cenozoic from a planetary-wind-dominant type to a monsoon-dominant type, indicating the initiation of the East Asian monsoon and inland-type aridity. However, there is a dispute about the causes and mechanisms of the transition, especially about the impact of the Himalayan/Tibetan Plateau uplift and the Paratethys Sea retreat, Thirty numerical sensitivity experiments under different land-sea distributions and Himalayan/Tibetan Plateau topography conditions are performed here to simulate the evolution of climate belts with emphasis on changes in the rain band, and these are compared with the changes in the paleoenvironmental patterns during the Cenozoic recovered by geological records. The consistency between simulations and the geological evidence indicates that both the Tibetan Plateau uplift and the Paratethys Sea retreat play important roles in the formation of the monsoon-dominant environmental pattern. Furthermore, the simulations show the monsoon-dominant environmental pattern comes into being when the Himalayan/Tibetan Plateau reaches 1000-2000 m high and the Paratethys Sea retreats to the Turan Plate.
基金This study was supported by The NKBRSF Project under contract No. G2000078500 and the First Chinese NationalScientific Expedit
文摘This paper reports different concentration patterns of n-alkanes distribution in the sedi- ments from the Chukchi Sea, the Bering Sea in the Arctic. Factor statistical analysis method is used for studying the source of n-alkanes and paleoenvironment. The result shows that n-alkanes is in the range of nC15-nC33 and n-alkane distribution patterns are characterized by two modes. The first mode belongs to the higher molecular with MH being nC25-nC27, CPI > 1 and with remarkable odd-even dominance. They are of terrigenous plant origin. The second one belongs to lower carbon range with MH being nC17 -nC20, CPI > 1 and with indistinct odd-even dominance. Therefore they are contributed by marine bio- logicla inputs. The contribution of land origin is larger than that of marine source. Pr/Ph is lower than 1 in the investigated area, which indicates the depositional environment of reducing reaction with lower oxygen. The result of factor analysis has good agreement with composition characteristics of n-alkanes in the sediment.
基金This study was financially supported by the National Natural Science Foundation of China(U19B6003)Frontier Project of Chinese Academy of Sciences(XDA14010201)National Key Natural Science Foundation of China(91755211).
文摘Reconstructing paleoenvironments has long been considered a vital component for understanding the development and evolution of carbonate reservoirs.The Middle Ordovician Period is considered the archetypical greenhouse interval,and also a critical period in biological evolution.The Middle Darriwilian isotope carbon excursion has been observed in many areas of the world and may be related to the biological explosions caused by decreases in the temperature.The thick carbonate rocks in the fifth member of the Middle Ordovician Majiagou Formation in the Dingbei area of the Ordos Basin were chosen as an example,based on the concentration of major,trace and rare earth elements as well as C,O and Sr isotopic analyses,the paleoenvironment was reconstructed.And its impact on natural gas exploration was analyzed.The results show that the seawater paleotemperature was 29℃,suboxicanoxic paleoredox conditions were observed,and the seawater paleosalinity was high.A large number of plankton in the biological explosion caused a rapid increase in the total organic carbon in carbonate rocks,which provided natural gas as supplemental source rocks.Affected by early meteoric water,the dissolution of gypsum laid the foundation for high-quality reservoirs,and the residual gypsum also further preserved natural gas.This study provides new data for the paleoenvironment and a theoretical basis for further natural gas exploration.