期刊文献+
共找到7,894篇文章
< 1 2 250 >
每页显示 20 50 100
Prediction and optimization of flue pressure in sintering process based on SHAP
1
作者 Mingyu Wang Jue Tang +2 位作者 Mansheng Chu Quan Shi Zhen Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第2期346-359,共14页
Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley a... Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley additive explanation(SHAP)to predict the flue pressure and take targeted adjustment measures.First,the sintering process data were collected and processed.A flue pressure prediction model was then constructed after comparing different feature selection methods and model algorithms using SHAP+extremely random-ized trees(ET).The prediction accuracy of the model within the error range of±0.25 kPa was 92.63%.SHAP analysis was employed to improve the interpretability of the prediction model.The effects of various sintering operation parameters on flue pressure,the relation-ship between the numerical range of key operation parameters and flue pressure,the effect of operation parameter combinations on flue pressure,and the prediction process of the flue pressure prediction model on a single sample were analyzed.A flue pressure optimization module was also constructed and analyzed when the prediction satisfied the judgment conditions.The operating parameter combination was then pushed.The flue pressure was increased by 5.87%during the verification process,achieving a good optimization effect. 展开更多
关键词 sintering process flue pressure shapley additive explanation prediction OPTIMIZATION
下载PDF
Short-Term Rolling Prediction of Tropical Cyclone Intensity Based on Multi-Task Learning with Fusion of Deviation-Angle Variance and Satellite Imagery
2
作者 Wei TIAN Ping SONG +5 位作者 Yuanyuan CHEN Yonghong ZHANG Liguang WU Haikun ZHAO Kenny Thiam Choy LIM KAM SIAN Chunyi XIANG 《Advances in Atmospheric Sciences》 2025年第1期111-128,共18页
Tropical cyclones(TCs)are one of the most serious types of natural disasters,and accurate TC activity predictions are key to disaster prevention and mitigation.Recently,TC track predictions have made significant progr... Tropical cyclones(TCs)are one of the most serious types of natural disasters,and accurate TC activity predictions are key to disaster prevention and mitigation.Recently,TC track predictions have made significant progress,but the ability to predict their intensity is obviously lagging behind.At present,research on TC intensity prediction takes atmospheric reanalysis data as the research object and mines the relationship between TC-related environmental factors and intensity through deep learning.However,reanalysis data are non-real-time in nature,which does not meet the requirements for operational forecasting applications.Therefore,a TC intensity prediction model named TC-Rolling is proposed,which can simultaneously extract the degree of symmetry for strong TC convective cloud and convection intensity,and fuse the deviation-angle variance with satellite images to construct the correlation between TC convection structure and intensity.For TCs'complex dynamic processes,a convolutional neural network(CNN)is used to learn their temporal and spatial features.For real-time intensity estimation,multi-task learning acts as an implicit time-series enhancement.The model is designed with a rolling strategy that aims to moderate the long-term dependent decay problem and improve accuracy for short-term intensity predictions.Since multiple tasks are correlated,the loss function of 12 h and 24 h are corrected.After testing on a sample of TCs in the Northwest Pacific,with a 4.48 kt root-mean-square error(RMSE)of 6 h intensity prediction,5.78 kt for 12 h,and 13.94 kt for 24 h,TC records from official agencies are used to assess the validity of TC-Rolling. 展开更多
关键词 tropical cyclone INTENSITY structure rolling prediction MULTI-TASK
下载PDF
Dynamic intelligent prediction approach for landslide displacement based on biological growth models and CNN-LSTM
3
作者 WANG Ziqian FANG Xiangwei +3 位作者 ZHANG Wengang WANG Luqi WANG Kai CHEN Chao 《Journal of Mountain Science》 2025年第1期71-88,共18页
Influenced by complex external factors,the displacement-time curve of reservoir landslides demonstrates both short-term and long-term diversity and dynamic complexity.It is difficult for existing methods,including Reg... Influenced by complex external factors,the displacement-time curve of reservoir landslides demonstrates both short-term and long-term diversity and dynamic complexity.It is difficult for existing methods,including Regression models and Neural network models,to perform multi-characteristic coupled displacement prediction because they fail to consider landslide creep characteristics.This paper integrates the creep characteristics of landslides with non-linear intelligent algorithms and proposes a dynamic intelligent landslide displacement prediction method based on a combination of the Biological Growth model(BG),Convolutional Neural Network(CNN),and Long ShortTerm Memory Network(LSTM).This prediction approach improves three different biological growth models,thereby effectively extracting landslide creep characteristic parameters.Simultaneously,it integrates external factors(rainfall and reservoir water level)to construct an internal and external comprehensive dataset for data augmentation,which is input into the improved CNN-LSTM model.Thereafter,harnessing the robust feature extraction capabilities and spatial translation invariance of CNN,the model autonomously captures short-term local fluctuation characteristics of landslide displacement,and combines LSTM's efficient handling of long-term nonlinear temporal data to improve prediction performance.An evaluation of the Liangshuijing landslide in the Three Gorges Reservoir Area indicates that BG-CNN-LSTM exhibits high prediction accuracy,excellent generalization capabilities when dealing with various types of landslides.The research provides an innovative approach to achieving the whole-process,realtime,high-precision displacement predictions for multicharacteristic coupled landslides. 展开更多
关键词 Reservoir landslides Displacement prediction CNN LSTM Biological growth model
下载PDF
A Machine Learning-Based Observational Constraint Correction Method for Seasonal Precipitation Prediction
4
作者 Bofei ZHANG Haipeng YU +5 位作者 Zeyong HU Ping YUE Zunye TANG Hongyu LUO Guantian WANG Shanling CHENG 《Advances in Atmospheric Sciences》 2025年第1期36-52,共17页
Seasonal precipitation has always been a key focus of climate prediction.As a dynamic-statistical combined method,the existing observational constraint correction establishes a regression relationship between the nume... Seasonal precipitation has always been a key focus of climate prediction.As a dynamic-statistical combined method,the existing observational constraint correction establishes a regression relationship between the numerical model outputs and historical observations,which can partly predict seasonal precipitation.However,solving a nonlinear problem through linear regression is significantly biased.This study implements a nonlinear optimization of an existing observational constrained correction model using a Light Gradient Boosting Machine(LightGBM)machine learning algorithm based on output from the Beijing National Climate Center Climate System Model(BCC-CSM)and station observations to improve the prediction of summer precipitation in China.The model was trained using a rolling approach,and LightGBM outperformed Linear Regression(LR),Extreme Gradient Boosting(XGBoost),and Categorical Boosting(CatBoost).Using parameter tuning to optimize the machine learning model and predict future summer precipitation using eight different predictors in BCC-CSM,the mean Anomaly Correlation Coefficient(ACC)score in the 2019–22 summer precipitation predictions was 0.17,and the mean Prediction Score(PS)reached 74.The PS score was improved by 7.87%and 6.63%compared with the BCC-CSM and the linear observational constraint approach,respectively.The observational constraint correction prediction strategy with LightGBM significantly and stably improved the prediction of summer precipitation in China compared to the previous linear observational constraint solution,providing a reference for flood control and drought relief during the flood season(summer)in China. 展开更多
关键词 observational constraint LightGBM seasonal prediction summer precipitation machine learning
下载PDF
Data driven prediction of fragment velocity distribution under explosive loading conditions
5
作者 Donghwan Noh Piemaan Fazily +4 位作者 Songwon Seo Jaekun Lee Seungjae Seo Hoon Huh Jeong Whan Yoon 《Defence Technology(防务技术)》 2025年第1期109-119,共11页
This study presents a machine learning-based method for predicting fragment velocity distribution in warhead fragmentation under explosive loading condition.The fragment resultant velocities are correlated with key de... This study presents a machine learning-based method for predicting fragment velocity distribution in warhead fragmentation under explosive loading condition.The fragment resultant velocities are correlated with key design parameters including casing dimensions and detonation positions.The paper details the finite element analysis for fragmentation,the characterizations of the dynamic hardening and fracture models,the generation of comprehensive datasets,and the training of the ANN model.The results show the influence of casing dimensions on fragment velocity distributions,with the tendencies indicating increased resultant velocity with reduced thickness,increased length and diameter.The model's predictive capability is demonstrated through the accurate predictions for both training and testing datasets,showing its potential for the real-time prediction of fragmentation performance. 展开更多
关键词 Data driven prediction Dynamic fracture model Dynamic hardening model FRAGMENTATION Fragment velocity distribution High strain rate Machine learning
下载PDF
Enhancing rectal cancer liver metastasis prediction:Magnetic resonance imaging-based radiomics,bias mitigation,and regulatory considerations
6
作者 Yuwei Zhang 《World Journal of Gastrointestinal Oncology》 2025年第2期318-321,共4页
In this article,we comment on the article by Long et al published in the recent issue of the World Journal of Gastrointestinal Oncology.Rectal cancer patients are at risk for developing metachronous liver metastasis(M... In this article,we comment on the article by Long et al published in the recent issue of the World Journal of Gastrointestinal Oncology.Rectal cancer patients are at risk for developing metachronous liver metastasis(MLM),yet early prediction remains challenging due to variations in tumor heterogeneity and the limitations of traditional diagnostic methods.Therefore,there is an urgent need for noninvasive techniques to improve patient outcomes.Long et al’s study introduces an innovative magnetic resonance imaging(MRI)-based radiomics model that integrates high-throughput imaging data with clinical variables to predict MLM.The study employed a 7:3 split to generate training and validation datasets.The MLM prediction model was constructed using the training set and subsequently validated on the validation set using area under the curve(AUC)and dollar-cost averaging metrics to assess performance,robustness,and generalizability.By employing advanced algorithms,the model provides a non-invasive solution to assess tumor heterogeneity for better metastasis prediction,enabling early intervention and personalized treatment planning.However,variations in MRI parameters,such as differences in scanning resolutions and protocols across facilities,patient heterogeneity(e.g.,age,comorbidities),and external factors like carcinoembryonic antigen levels introduce biases.Additionally,confounding factors such as diagnostic staging methods and patient comorbidities require further validation and adjustment to ensure accuracy and generalizability.With evolving Food and Drug Administration regulations on machine learning models in healthcare,compliance and careful consideration of these regulatory requirements are essential to ensuring safe and effective implementation of this approach in clinical practice.In the future,clinicians may be able to utilize datadriven,patient-centric artificial intelligence(AI)-enhanced imaging tools integrated with clinical data,which would help improve early detection of MLM and optimize personalized treatment strategies.Combining radiomics,genomics,histological data,and demographic information can significantly enhance the accuracy and precision of predictive models. 展开更多
关键词 Metachronous liver metastasis Radiomics Machine learning Rectal cancer Magnetic resonance imaging variability Bias mitigation Food and Drug Administration regulations Predictive modeling
下载PDF
An attention-based teacher-student model for multivariate short-term landslide displacement prediction incorporating weather forecast data
7
作者 CHEN Jun HU Wang +2 位作者 ZHANG Yu QIU Hongzhi WANG Renchao 《Journal of Mountain Science》 SCIE CSCD 2024年第8期2739-2753,共15页
Predicting the displacement of landslide is of utmost practical importance as the landslide can pose serious threats to both human life and property.However,traditional methods have the limitation of random selection ... Predicting the displacement of landslide is of utmost practical importance as the landslide can pose serious threats to both human life and property.However,traditional methods have the limitation of random selection in sliding window selection and seldom incorporate weather forecast data for displacement prediction,while a single structural model cannot handle input sequences of different lengths at the same time.In order to solve these limitations,in this study,a new approach is proposed that utilizes weather forecast data and incorporates the maximum information coefficient(MIC),long short-term memory network(LSTM),and attention mechanism to establish a teacher-student coupling model with parallel structure for short-term landslide displacement prediction.Through MIC,a suitable input sequence length is selected for the LSTM model.To investigate the influence of rainfall on landslides during different seasons,a parallel teacher-student coupling model is developed that is able to learn sequential information from various time series of different lengths.The teacher model learns sequence information from rainfall intensity time series while incorporating reliable short-term weather forecast data from platforms such as China Meteorological Administration(CMA)and Reliable Prognosis(https://rp5.ru)to improve the model’s expression capability,and the student model learns sequence information from other time series.An attention module is then designed to integrate different sequence information to derive a context vector,representing seasonal temporal attention mode.Finally,the predicted displacement is obtained through a linear layer.The proposed method demonstrates superior prediction accuracies,surpassing those of the support vector machine(SVM),LSTM,recurrent neural network(RNN),temporal convolutional network(TCN),and LSTM-Attention models.It achieves a mean absolute error(MAE)of 0.072 mm,root mean square error(RMSE)of 0.096 mm,and pearson correlation coefficients(PCCS)of 0.85.Additionally,it exhibits enhanced prediction stability and interpretability,rendering it an indispensable tool for landslide disaster prevention and mitigation. 展开更多
关键词 Landslide prediction MIC LSTM Attention mechanism Teacher Student model prediction stability and interpretability
下载PDF
An Integrated Analysis of Yield Prediction Models:A Comprehensive Review of Advancements and Challenges
8
作者 Nidhi Parashar Prashant Johri +2 位作者 Arfat Ahmad Khan Nitin Gaur Seifedine Kadry 《Computers, Materials & Continua》 SCIE EI 2024年第7期389-425,共37页
The growing global requirement for food and the need for sustainable farming in an era of a changing climate and scarce resources have inspired substantial crop yield prediction research.Deep learning(DL)and machine l... The growing global requirement for food and the need for sustainable farming in an era of a changing climate and scarce resources have inspired substantial crop yield prediction research.Deep learning(DL)and machine learning(ML)models effectively deal with such challenges.This research paper comprehensively analyses recent advancements in crop yield prediction from January 2016 to March 2024.In addition,it analyses the effectiveness of various input parameters considered in crop yield prediction models.We conducted an in-depth search and gathered studies that employed crop modeling and AI-based methods to predict crop yield.The total number of articles reviewed for crop yield prediction using ML,meta-modeling(Crop models coupled with ML/DL),and DL-based prediction models and input parameter selection is 125.We conduct the research by setting up five objectives for this research and discussing them after analyzing the selected research papers.Each study is assessed based on the crop type,input parameters employed for prediction,the modeling techniques adopted,and the evaluation metrics used for estimatingmodel performance.We also discuss the ethical and social impacts of AI on agriculture.However,various approaches presented in the scientific literature have delivered impressive predictions,they are complicateddue to intricate,multifactorial influences oncropgrowthand theneed for accuratedata-driven models.Therefore,thorough research is required to deal with challenges in predicting agricultural output. 展开更多
关键词 Machine learning crop yield prediction deep learning remote sensing long short-term memory time series prediction systematic literature review
下载PDF
A deep multimodal fusion and multitasking trajectory prediction model for typhoon trajectory prediction to reduce flight scheduling cancellation
9
作者 TANG Jun QIN Wanting +1 位作者 PAN Qingtao LAO Songyang 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第3期666-678,共13页
Natural events have had a significant impact on overall flight activity,and the aviation industry plays a vital role in helping society cope with the impact of these events.As one of the most impactful weather typhoon... Natural events have had a significant impact on overall flight activity,and the aviation industry plays a vital role in helping society cope with the impact of these events.As one of the most impactful weather typhoon seasons appears and continues,airlines operating in threatened areas and passengers having travel plans during this time period will pay close attention to the development of tropical storms.This paper proposes a deep multimodal fusion and multitasking trajectory prediction model that can improve the reliability of typhoon trajectory prediction and reduce the quantity of flight scheduling cancellation.The deep multimodal fusion module is formed by deep fusion of the feature output by multiple submodal fusion modules,and the multitask generation module uses longitude and latitude as two related tasks for simultaneous prediction.With more dependable data accuracy,problems can be analysed rapidly and more efficiently,enabling better decision-making with a proactive versus reactive posture.When multiple modalities coexist,features can be extracted from them simultaneously to supplement each other’s information.An actual case study,the typhoon Lichma that swept China in 2019,has demonstrated that the algorithm can effectively reduce the number of unnecessary flight cancellations compared to existing flight scheduling and assist the new generation of flight scheduling systems under extreme weather. 展开更多
关键词 flight scheduling optimization deep multimodal fusion multitasking trajectory prediction typhoon weather flight cancellation prediction reliability
下载PDF
A HEVC Video Steganalysis Method Using the Optimality of Motion Vector Prediction
10
作者 Jun Li Minqing Zhang +2 位作者 Ke Niu Yingnan Zhang Xiaoyuan Yang 《Computers, Materials & Continua》 SCIE EI 2024年第5期2085-2103,共19页
Among steganalysis techniques,detection against MV(motion vector)domain-based video steganography in the HEVC(High Efficiency Video Coding)standard remains a challenging issue.For the purpose of improving the detectio... Among steganalysis techniques,detection against MV(motion vector)domain-based video steganography in the HEVC(High Efficiency Video Coding)standard remains a challenging issue.For the purpose of improving the detection performance,this paper proposes a steganalysis method that can perfectly detectMV-based steganography in HEVC.Firstly,we define the local optimality of MVP(Motion Vector Prediction)based on the technology of AMVP(Advanced Motion Vector Prediction).Secondly,we analyze that in HEVC video,message embedding either usingMVP index orMVD(Motion Vector Difference)may destroy the above optimality of MVP.And then,we define the optimal rate of MVP as a steganalysis feature.Finally,we conduct steganalysis detection experiments on two general datasets for three popular steganographymethods and compare the performance with four state-ofthe-art steganalysis methods.The experimental results demonstrate the effectiveness of the proposed feature set.Furthermore,our method stands out for its practical applicability,requiring no model training and exhibiting low computational complexity,making it a viable solution for real-world scenarios. 展开更多
关键词 Video steganography video steganalysis motion vector prediction motion vector difference advanced motion vector prediction local optimality
下载PDF
A VSFPWM Strategy for High Frequency Torque Ripple Control of PMSM based on Stator Flux Ripple Prediction
11
作者 Jinyang Han Hepeng Su +1 位作者 Weichao Li Hao Yuan 《CES Transactions on Electrical Machines and Systems》 EI CSCD 2024年第4期414-425,共12页
Vector-controlled AC motor drives utilize pulse width modulation(PWM)to synthesize the desired output voltage of the voltage source inverter(VSI).In space vector PWM(SVPWM)techniques,the average realization of the spa... Vector-controlled AC motor drives utilize pulse width modulation(PWM)to synthesize the desired output voltage of the voltage source inverter(VSI).In space vector PWM(SVPWM)techniques,the average realization of the space vector applying the volt-sec balance principle results in an instantaneous error voltage that generates high frequency torque ripple.It may lead to an increase in motor vibration and acoustic noise.This article presents a high frequency torque ripple prediction model based on stator flux ripple and proposes a targeted designed variable switching frequency PWM(VSFPWM)strategy to diminish high frequency torque ripple.The switching frequency is dynamically adjusted according to the peak value of the predicted stator flux ripple to mitigate high frequency torque ripple.In contrast to existing strategies,the strategy outlined in this article directly suppresses high frequency torque ripple,thus remaining unaffected by inaccurate motor parameters.Additionally,due to the introduction of the power factor angle,the proposed strategy can better adapt to the full speed range operating conditions of the motor.Detailed simulations and experiments are provided to validate the effectiveness of the proposed strategy. 展开更多
关键词 Variable switching frequency Stator flux ripple prediction Torque ripple prediction Space vector PWM
下载PDF
Photovoltaic Power Generation Power Prediction under Major Extreme Weather Based on VMD-KELM
12
作者 Yuxuan Zhao Bo Wang +2 位作者 Shu Wang Wenjun Xu Gang Ma 《Energy Engineering》 EI 2024年第12期3711-3733,共23页
The output of photovoltaic power stations is significantly affected by environmental factors,leading to intermittent and fluctuating power generation.With the increasing frequency of extreme weather events due to glob... The output of photovoltaic power stations is significantly affected by environmental factors,leading to intermittent and fluctuating power generation.With the increasing frequency of extreme weather events due to global warming,photovoltaic power stations may experience drastic reductions in power generation or even complete shutdowns during such conditions.The integration of these stations on a large scale into the power grid could potentially pose challenges to systemstability.To address this issue,in this study,we propose a network architecture based on VMDKELMfor predicting the power output of photovoltaic power plants during severe weather events.Initially,a grey relational analysis is conducted to identify key environmental factors influencing photovoltaic power generation.Subsequently,GMM clustering is utilized to classify meteorological data points based on their probabilities within different Gaussian distributions,enabling comprehensive meteorological clustering and extraction of significant extreme weather data.The data are decomposed using VMD to Fourier transform,followed by smoothing processing and signal reconstruction using KELM to forecast photovoltaic power output under major extreme weather conditions.The proposed prediction scheme is validated by establishing three prediction models,and the predicted photovoltaic output under four major extreme weather conditions is analyzed to assess the impact of severe weather on photovoltaic power station output.The experimental results show that the photovoltaic power output under conditions of dust storms,thunderstorms,solid hail precipitation,and snowstorms is reduced by 68.84%,42.70%,61.86%,and 49.92%,respectively,compared to that under clear day conditions.The photovoltaic power prediction accuracies,in descending order,are dust storms,solid hail precipitation,thunderstorms,and snowstorms. 展开更多
关键词 Major extreme weather photovoltaic power prediction weather clustering VMD-KELM network prediction model
下载PDF
Mechanism prediction of Astragalus mongholicus Bunge and Angelica sinensis Diels in treating interstitial lung disease based on network pharmacology and molecular docking
13
作者 Jun Du Jian Hao Wei Wei 《TMR药理学研究》 2023年4期1-9,共9页
Objective:To investigate the mechanism by which Astragalus mongholicus Bunge(AM),and Angelica sinensis Diels(AS)act in interstitial lung disease(ILD)based on computational prediction.Methods:We screened the ingredient... Objective:To investigate the mechanism by which Astragalus mongholicus Bunge(AM),and Angelica sinensis Diels(AS)act in interstitial lung disease(ILD)based on computational prediction.Methods:We screened the ingredients of AM and AS in PubMed,the Web of Science,China National Knowledge Infrastructure(CNKI)Databases,etc.Then obtained the potential effective components.By sharing the same molecular with ILD,we got the possible target genes for ILD treatment and constructed components–targets–disease network with Cytoscape software.The CTD(Comparative Toxicogenomics Database)database was used for GO and KEGG enrichment analysis of these target genes.Results:59 active ingredients that can be druggable were chosen from AM,67 active ingredients were chosen from AS.77 overlapping target genes for AM and ILD and 36 overlapping target genes for AS and ILD were acquired.The hub targets of AM were PTGS2,PTGS1,CDK2,MAOA,ESR1,TOP2A,GSK3B,ESR2,PPARG,NOS2,The hub targets of AS were PTGS2,GABRA1,PTGS1,CHRM1,SLC6A2,ADRA1B,ADRAIA,ADRB2,CHRM3,GABRA2,CHRM2.Quercetin,kaempferol,daidzein,pavilion,7-Hydroxycoumarin,and 5-Hydroxycoumarin were the main active ingredients which have more effective targets.Prediction of the protein-protein interaction network showed PTGS2,GSK3B,PPARG,etc.,were the important predicted targets.The enriched KEGG pathways,including the Immune System,Metabolism of lipids and lipoproteins,Cytokine Signaling in the Immune system,Generic Transcription Pathway,The interleukin pathway,Metabolism of proteins,PI3K-Akt signaling pathway,Metabolic pathways,Innate Immune System,Neuroactive ligand-receptor interaction,Metabolism,GPCR downstream signaling,Amine ligand-binding receptors,Class A/1,Calcium signaling pathway.Molecular docking showed that quercetin,kaempferol,daidzein,pavilion,7-Hydroxycoumarin,5-Hydroxycoumarin had good binding activities with PTGS2 and GSK3B,which mainly mediated PI3K/Akt and other important signaling pathways in the pathogenesis of ILD.Conclusion:The components in AS and AM share some common targets,such as PTGS2.AM and AS may ameliorate ILD through the PI3K-Akt signaling pathway which is mediated by GSK3B.PTGS2,PPARG may also be vital target genes in the treatment of ILD with AM and AS. 展开更多
关键词 Astragalus mongholicus Bunge Angelica sinensis Diels computational prediction interstitial lung disease PI3K-Akt signaling pathways
下载PDF
Classifying rockburst with confidence:A novel conformal prediction approach 被引量:3
14
作者 Bemah Ibrahim Isaac Ahenkorah 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第1期51-64,共14页
The scientific community recognizes the seriousness of rockbursts and the need for effective mitigation measures.The literature reports various successful applications of machine learning(ML)models for rockburst asses... The scientific community recognizes the seriousness of rockbursts and the need for effective mitigation measures.The literature reports various successful applications of machine learning(ML)models for rockburst assessment;however,a significant question remains unanswered:How reliable are these models,and at what confidence level are classifications made?Typically,ML models output single rockburst grade even in the face of intricate and out-of-distribution samples,without any associated confidence value.Given the susceptibility of ML models to errors,it becomes imperative to quantify their uncertainty to prevent consequential failures.To address this issue,we propose a conformal prediction(CP)framework built on traditional ML models(extreme gradient boosting and random forest)to generate valid classifications of rockburst while producing a measure of confidence for its output.The proposed framework guarantees marginal coverage and,in most cases,conditional coverage on the test dataset.The CP was evaluated on a rockburst case in the Sanshandao Gold Mine in China,where it achieved high coverage and efficiency at applicable confidence levels.Significantly,the CP identified several“confident”classifications from the traditional ML model as unreliable,necessitating expert verification for informed decision-making.The proposed framework improves the reliability and accuracy of rockburst assessments,with the potential to bolster user confidence. 展开更多
关键词 ROCKBURST Machine learning Uncertainty quantification Conformal prediction
下载PDF
Prediction model for corrosion rate of low-alloy steels under atmospheric conditions using machine learning algorithms 被引量:3
15
作者 Jingou Kuang Zhilin Long 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第2期337-350,共14页
This work constructed a machine learning(ML)model to predict the atmospheric corrosion rate of low-alloy steels(LAS).The material properties of LAS,environmental factors,and exposure time were used as the input,while ... This work constructed a machine learning(ML)model to predict the atmospheric corrosion rate of low-alloy steels(LAS).The material properties of LAS,environmental factors,and exposure time were used as the input,while the corrosion rate as the output.6 dif-ferent ML algorithms were used to construct the proposed model.Through optimization and filtering,the eXtreme gradient boosting(XG-Boost)model exhibited good corrosion rate prediction accuracy.The features of material properties were then transformed into atomic and physical features using the proposed property transformation approach,and the dominant descriptors that affected the corrosion rate were filtered using the recursive feature elimination(RFE)as well as XGBoost methods.The established ML models exhibited better predic-tion performance and generalization ability via property transformation descriptors.In addition,the SHapley additive exPlanations(SHAP)method was applied to analyze the relationship between the descriptors and corrosion rate.The results showed that the property transformation model could effectively help with analyzing the corrosion behavior,thereby significantly improving the generalization ability of corrosion rate prediction models. 展开更多
关键词 machine learning low-alloy steel atmospheric corrosion prediction corrosion rate feature fusion
下载PDF
Uncertainties in landslide susceptibility prediction:Influence rule of different levels of errors in landslide spatial position 被引量:2
16
作者 Faming Huang Ronghui Li +3 位作者 Filippo Catani Xiaoting Zhou Ziqiang Zeng Jinsong Huang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期4177-4191,共15页
The accuracy of landslide susceptibility prediction(LSP)mainly depends on the precision of the landslide spatial position.However,the spatial position error of landslide survey is inevitable,resulting in considerable ... The accuracy of landslide susceptibility prediction(LSP)mainly depends on the precision of the landslide spatial position.However,the spatial position error of landslide survey is inevitable,resulting in considerable uncertainties in LSP modeling.To overcome this drawback,this study explores the influence of positional errors of landslide spatial position on LSP uncertainties,and then innovatively proposes a semi-supervised machine learning model to reduce the landslide spatial position error.This paper collected 16 environmental factors and 337 landslides with accurate spatial positions taking Shangyou County of China as an example.The 30e110 m error-based multilayer perceptron(MLP)and random forest(RF)models for LSP are established by randomly offsetting the original landslide by 30,50,70,90 and 110 m.The LSP uncertainties are analyzed by the LSP accuracy and distribution characteristics.Finally,a semi-supervised model is proposed to relieve the LSP uncertainties.Results show that:(1)The LSP accuracies of error-based RF/MLP models decrease with the increase of landslide position errors,and are lower than those of original data-based models;(2)70 m error-based models can still reflect the overall distribution characteristics of landslide susceptibility indices,thus original landslides with certain position errors are acceptable for LSP;(3)Semi-supervised machine learning model can efficiently reduce the landslide position errors and thus improve the LSP accuracies. 展开更多
关键词 Landslide susceptibility prediction Random landslide position errors Uncertainty analysis Multi-layer perceptron Random forest Semi-supervised machine learning
下载PDF
An adaptive physics-informed deep learning method for pore pressure prediction using seismic data 被引量:2
17
作者 Xin Zhang Yun-Hu Lu +2 位作者 Yan Jin Mian Chen Bo Zhou 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期885-902,共18页
Accurate prediction of formation pore pressure is essential to predict fluid flow and manage hydrocarbon production in petroleum engineering.Recent deep learning technique has been receiving more interest due to the g... Accurate prediction of formation pore pressure is essential to predict fluid flow and manage hydrocarbon production in petroleum engineering.Recent deep learning technique has been receiving more interest due to the great potential to deal with pore pressure prediction.However,most of the traditional deep learning models are less efficient to address generalization problems.To fill this technical gap,in this work,we developed a new adaptive physics-informed deep learning model with high generalization capability to predict pore pressure values directly from seismic data.Specifically,the new model,named CGP-NN,consists of a novel parametric features extraction approach(1DCPP),a stacked multilayer gated recurrent model(multilayer GRU),and an adaptive physics-informed loss function.Through machine training,the developed model can automatically select the optimal physical model to constrain the results for each pore pressure prediction.The CGP-NN model has the best generalization when the physicsrelated metricλ=0.5.A hybrid approach combining Eaton and Bowers methods is also proposed to build machine-learnable labels for solving the problem of few labels.To validate the developed model and methodology,a case study on a complex reservoir in Tarim Basin was further performed to demonstrate the high accuracy on the pore pressure prediction of new wells along with the strong generalization ability.The adaptive physics-informed deep learning approach presented here has potential application in the prediction of pore pressures coupled with multiple genesis mechanisms using seismic data. 展开更多
关键词 Pore pressure prediction Seismic data 1D convolution pyramid pooling Adaptive physics-informed loss function High generalization capability
下载PDF
Time series prediction of reservoir bank landslide failure probability considering the spatial variability of soil properties 被引量:2
18
作者 Luqi Wang Lin Wang +3 位作者 Wengang Zhang Xuanyu Meng Songlin Liu Chun Zhu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期3951-3960,共10页
Historically,landslides have been the primary type of geological disaster worldwide.Generally,the stability of reservoir banks is primarily affected by rainfall and reservoir water level fluctuations.Moreover,the stab... Historically,landslides have been the primary type of geological disaster worldwide.Generally,the stability of reservoir banks is primarily affected by rainfall and reservoir water level fluctuations.Moreover,the stability of reservoir banks changes with the long-term dynamics of external disastercausing factors.Thus,assessing the time-varying reliability of reservoir landslides remains a challenge.In this paper,a machine learning(ML)based approach is proposed to analyze the long-term reliability of reservoir bank landslides in spatially variable soils through time series prediction.This study systematically investigated the prediction performances of three ML algorithms,i.e.multilayer perceptron(MLP),convolutional neural network(CNN),and long short-term memory(LSTM).Additionally,the effects of the data quantity and data ratio on the predictive power of deep learning models are considered.The results show that all three ML models can accurately depict the changes in the time-varying failure probability of reservoir landslides.The CNN model outperforms both the MLP and LSTM models in predicting the failure probability.Furthermore,selecting the right data ratio can improve the prediction accuracy of the failure probability obtained by ML models. 展开更多
关键词 Machine learning(ML) Reservoir bank landslide Spatial variability Time series prediction Failure probability
下载PDF
Uncertainties of landslide susceptibility prediction: Influences of random errors in landslide conditioning factors and errors reduction by low pass filter method 被引量:2
19
作者 Faming Huang Zuokui Teng +4 位作者 Chi Yao Shui-Hua Jiang Filippo Catani Wei Chen Jinsong Huang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期213-230,共18页
In the existing landslide susceptibility prediction(LSP)models,the influences of random errors in landslide conditioning factors on LSP are not considered,instead the original conditioning factors are directly taken a... In the existing landslide susceptibility prediction(LSP)models,the influences of random errors in landslide conditioning factors on LSP are not considered,instead the original conditioning factors are directly taken as the model inputs,which brings uncertainties to LSP results.This study aims to reveal the influence rules of the different proportional random errors in conditioning factors on the LSP un-certainties,and further explore a method which can effectively reduce the random errors in conditioning factors.The original conditioning factors are firstly used to construct original factors-based LSP models,and then different random errors of 5%,10%,15% and 20%are added to these original factors for con-structing relevant errors-based LSP models.Secondly,low-pass filter-based LSP models are constructed by eliminating the random errors using low-pass filter method.Thirdly,the Ruijin County of China with 370 landslides and 16 conditioning factors are used as study case.Three typical machine learning models,i.e.multilayer perceptron(MLP),support vector machine(SVM)and random forest(RF),are selected as LSP models.Finally,the LSP uncertainties are discussed and results show that:(1)The low-pass filter can effectively reduce the random errors in conditioning factors to decrease the LSP uncertainties.(2)With the proportions of random errors increasing from 5%to 20%,the LSP uncertainty increases continuously.(3)The original factors-based models are feasible for LSP in the absence of more accurate conditioning factors.(4)The influence degrees of two uncertainty issues,machine learning models and different proportions of random errors,on the LSP modeling are large and basically the same.(5)The Shapley values effectively explain the internal mechanism of machine learning model predicting landslide sus-ceptibility.In conclusion,greater proportion of random errors in conditioning factors results in higher LSP uncertainty,and low-pass filter can effectively reduce these random errors. 展开更多
关键词 Landslide susceptibility prediction Conditioning factor errors Low-pass filter method Machine learning models Interpretability analysis
下载PDF
A modified stochastic model for LS+AR hybrid method and its application in polar motion short-term prediction 被引量:2
20
作者 Fei Ye Yunbin Yuan 《Geodesy and Geodynamics》 EI CSCD 2024年第1期100-105,共6页
Short-term(up to 30 days)predictions of Earth Rotation Parameters(ERPs)such as Polar Motion(PM:PMX and PMY)play an essential role in real-time applications related to high-precision reference frame conversion.Currentl... Short-term(up to 30 days)predictions of Earth Rotation Parameters(ERPs)such as Polar Motion(PM:PMX and PMY)play an essential role in real-time applications related to high-precision reference frame conversion.Currently,least squares(LS)+auto-regressive(AR)hybrid method is one of the main techniques of PM prediction.Besides,the weighted LS+AR hybrid method performs well for PM short-term prediction.However,the corresponding covariance information of LS fitting residuals deserves further exploration in the AR model.In this study,we have derived a modified stochastic model for the LS+AR hybrid method,namely the weighted LS+weighted AR hybrid method.By using the PM data products of IERS EOP 14 C04,the numerical results indicate that for PM short-term forecasting,the proposed weighted LS+weighted AR hybrid method shows an advantage over both the LS+AR hybrid method and the weighted LS+AR hybrid method.Compared to the mean absolute errors(MAEs)of PMX/PMY sho rt-term prediction of the LS+AR hybrid method and the weighted LS+AR hybrid method,the weighted LS+weighted AR hybrid method shows average improvements of 6.61%/12.08%and 0.24%/11.65%,respectively.Besides,for the slopes of the linear regression lines fitted to the errors of each method,the growth of the prediction error of the proposed method is slower than that of the other two methods. 展开更多
关键词 Stochastic model LS+AR Short-term prediction The earth rotation parameter(ERP) Observation model
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部