In the present paper we present a class of polynomial primal-dual interior-point algorithms for semidefmite optimization based on a kernel function. This kernel function is not a so-called self-regular function due to...In the present paper we present a class of polynomial primal-dual interior-point algorithms for semidefmite optimization based on a kernel function. This kernel function is not a so-called self-regular function due to its growth term increasing linearly. Some new analysis tools were developed which can be used to deal with complexity "analysis of the algorithms which use analogous strategy in [5] to design the search directions for the Newton system. The complexity bounds for the algorithms with large- and small-update methodswere obtained, namely,O(qn^(p+q/q(P+1)log n/ε and O(q^2√n)log n/ε,respectlvely.展开更多
In this paper, primal-dual interior-point algorithm with dynamic step size is implemented for linear programming (LP) problems. The algorithms are based on a few kernel functions, including both serf-regular functio...In this paper, primal-dual interior-point algorithm with dynamic step size is implemented for linear programming (LP) problems. The algorithms are based on a few kernel functions, including both serf-regular functions and non-serf-regular ones. The dynamic step size is compared with fixed step size for the algorithms in inner iteration of Newton step. Numerical tests show that the algorithms with dynaraic step size are more efficient than those with fixed step size.展开更多
Kernel functions play an important role in defining new search directions for primal-dual interior-point algorithm for solving linear optimization problems. In this paper we present a new kernel function which yields ...Kernel functions play an important role in defining new search directions for primal-dual interior-point algorithm for solving linear optimization problems. In this paper we present a new kernel function which yields an algorithm with the best known complexity bound for both large- and small-update methods.展开更多
In this paper, a primal-dual path-following interior-point algorithm for linearly constrained convex optimization(LCCO) is presented.The algorithm is based on a new technique for finding a class of search directions a...In this paper, a primal-dual path-following interior-point algorithm for linearly constrained convex optimization(LCCO) is presented.The algorithm is based on a new technique for finding a class of search directions and the strategy of the central path.At each iteration, only full-Newton steps are used.Finally, the favorable polynomial complexity bound for the algorithm with the small-update method is deserved, namely, O(√n log n /ε).展开更多
A primal-dual infeasible interior point algorithm for multiple objective linear programming (MOLP) problems was presented. In contrast to the current MOLP algorithm. moving through the interior of polytope but not con...A primal-dual infeasible interior point algorithm for multiple objective linear programming (MOLP) problems was presented. In contrast to the current MOLP algorithm. moving through the interior of polytope but not confining the iterates within the feasible region in our proposed algorithm result in a solution approach that is quite different and less sensitive to problem size, so providing the potential to dramatically improve the practical computation effectiveness.展开更多
In this paper we propose a class of new large-update primal-dual interior-point algorithms for P.(k) nonlinear complementarity problem (NCP), which are based on a class of kernel functions investigated by Bai et a...In this paper we propose a class of new large-update primal-dual interior-point algorithms for P.(k) nonlinear complementarity problem (NCP), which are based on a class of kernel functions investigated by Bai et al. in their recent work for linear optimization (LO). The arguments for the algorithms are followed as Peng et al.'s for P.(n) complementarity problem based on the self-regular functions [Peng, J., Roos, C., Terlaky, T.: Self-Regularity: A New Paradigm for Primal-Dual Interior- Point Algorithms, Princeton University Press, Princeton, 2002]. It is worth mentioning that since this class of kernel functions includes a class of non-self-regular functions as special case, so our algorithms are different from Peng et al.'s and the corresponding analysis is simpler than theirs. The ultimate goal of the paper is to show that the algorithms based on these functions have favorable polynomial complexity.展开更多
The distributed nonconvex optimization problem of minimizing a global cost function formed by a sum of n local cost functions by using local information exchange is considered.This problem is an important component of...The distributed nonconvex optimization problem of minimizing a global cost function formed by a sum of n local cost functions by using local information exchange is considered.This problem is an important component of many machine learning techniques with data parallelism,such as deep learning and federated learning.We propose a distributed primal-dual stochastic gradient descent(SGD)algorithm,suitable for arbitrarily connected communication networks and any smooth(possibly nonconvex)cost functions.We show that the proposed algorithm achieves the linear speedup convergence rate O(1/(√nT))for general nonconvex cost functions and the linear speedup convergence rate O(1/(nT)) when the global cost function satisfies the Polyak-Lojasiewicz(P-L)condition,where T is the total number of iterations.We also show that the output of the proposed algorithm with constant parameters linearly converges to a neighborhood of a global optimum.We demonstrate through numerical experiments the efficiency of our algorithm in comparison with the baseline centralized SGD and recently proposed distributed SGD algorithms.展开更多
Neutron computed tomography(NCT)is widely used as a noninvasive measurement technique in nuclear engineering,thermal hydraulics,and cultural heritage.The neutron source intensity of NCT is usually low and the scan tim...Neutron computed tomography(NCT)is widely used as a noninvasive measurement technique in nuclear engineering,thermal hydraulics,and cultural heritage.The neutron source intensity of NCT is usually low and the scan time is long,resulting in a projection image containing severe noise.To reduce the scanning time and increase the image reconstruction quality,an effective reconstruction algorithm must be selected.In CT image reconstruction,the reconstruction algorithms can be divided into three categories:analytical algorithms,iterative algorithms,and deep learning.Because the analytical algorithm requires complete projection data,it is not suitable for reconstruction in harsh environments,such as strong radia-tion,high temperature,and high pressure.Deep learning requires large amounts of data and complex models,which cannot be easily deployed,as well as has a high computational complexity and poor interpretability.Therefore,this paper proposes the OS-SART-PDTV iterative algorithm,which uses the ordered subset simultaneous algebraic reconstruction technique(OS-SART)algorithm to reconstruct the image and the first-order primal–dual algorithm to solve the total variation(PDTV),for sparse-view NCT three-dimensional reconstruction.The novel algorithm was compared with other algorithms(FBP,OS-SART-TV,OS-SART-AwTV,and OS-SART-FGPTV)by simulating the experimental data and actual neutron projection experiments.The reconstruction results demonstrate that the proposed algorithm outperforms the FBP,OS-SART-TV,OS-SART-AwTV,and OS-SART-FGPTV algorithms in terms of preserving edge structure,denoising,and suppressing artifacts.展开更多
Two existing methods for solving a class of fuzzy linear programming (FLP) problems involving symmetric trapezoidal fuzzy numbers without converting them to crisp linear programming problems are the fuzzy primal simpl...Two existing methods for solving a class of fuzzy linear programming (FLP) problems involving symmetric trapezoidal fuzzy numbers without converting them to crisp linear programming problems are the fuzzy primal simplex method proposed by Ganesan and Veeramani [1] and the fuzzy dual simplex method proposed by Ebrahimnejad and Nasseri [2]. The former method is not applicable when a primal basic feasible solution is not easily at hand and the later method needs to an initial dual basic feasible solution. In this paper, we develop a novel approach namely the primal-dual simplex algorithm to overcome mentioned shortcomings. A numerical example is given to illustrate the proposed approach.展开更多
Interior-point methods (IPMs) for linear optimization (LO) and semidefinite optimization (SDO) have become a hot area in mathematical programming in the last decades. In this paper, a new kernel function with si...Interior-point methods (IPMs) for linear optimization (LO) and semidefinite optimization (SDO) have become a hot area in mathematical programming in the last decades. In this paper, a new kernel function with simple algebraic expression is proposed. Based on this kernel function, a primal-dual interior-point methods (IPMs) for semidefinite optimization (SDO) is designed. And the iteration complexity of the algorithm as O(n^3/4 log n/ε) with large-updates is established. The resulting bound is better than the classical kernel function, with its iteration complexity O(n log n/ε) in large-updates case.展开更多
This article presents a polynomial predictor-corrector interior-point algorithm for convex quadratic programming based on a modified predictor-corrector interior-point algorithm. In this algorithm, there is only one c...This article presents a polynomial predictor-corrector interior-point algorithm for convex quadratic programming based on a modified predictor-corrector interior-point algorithm. In this algorithm, there is only one corrector step after each predictor step, where Step 2 is a predictor step and Step 4 is a corrector step in the algorithm. In the algorithm, the predictor step decreases the dual gap as much as possible in a wider neighborhood of the central path and the corrector step draws iteration points back to a narrower neighborhood and make a reduction for the dual gap. It is shown that the algorithm has O(√nL) iteration complexity which is the best result for convex quadratic programming so far.展开更多
In this paper, we propose a primal-dual interior point method for solving general constrained nonlinear programming problems. To avoid the situation that the algorithm we use may converge to a saddle point or a local ...In this paper, we propose a primal-dual interior point method for solving general constrained nonlinear programming problems. To avoid the situation that the algorithm we use may converge to a saddle point or a local maximum, we utilize a merit function to guide the iterates toward a local minimum. Especially, we add the parameter ε to the Newton system when calculating the decrease directions. The global convergence is achieved by the decrease of a merit function. Furthermore, the numerical results confirm that the algorithm can solve this kind of problems in an efficient way.展开更多
The simplified Newton method, at the expense of fast convergence, reduces the work required by Newton method by reusing the initial Jacobian matrix. The composite Newton method attempts to balance the trade-off betwee...The simplified Newton method, at the expense of fast convergence, reduces the work required by Newton method by reusing the initial Jacobian matrix. The composite Newton method attempts to balance the trade-off between expense and fast convergence by composing one Newton step with one simplified Newton step. Recently, Mehrotra suggested a predictor-corrector variant of primal-dual interior point method for linear programming. It is currently the interiorpoint method of the choice for linear programming. In this work we propose a predictor-corrector interior-point algorithm for convex quadratic programming. It is proved that the algorithm is equivalent to a level-1 perturbed composite Newton method. Computations in the algorithm do not require that the initial primal and dual points be feasible. Numerical experiments are made.展开更多
A new iterative method,which is called positive interior-point algorithm,is presented for solving the nonlinear complementarity problems.This method is of the desirable feature of robustness.And the convergence theore...A new iterative method,which is called positive interior-point algorithm,is presented for solving the nonlinear complementarity problems.This method is of the desirable feature of robustness.And the convergence theorems of the algorithm is established.In addition,some numerical results are reported.展开更多
Based on the ideas of infeasible interior-point methods and predictor-corrector algorithms, two interior-point predictor-corrector algorithms for the second-order cone programming (SOCP) are presented. The two algor...Based on the ideas of infeasible interior-point methods and predictor-corrector algorithms, two interior-point predictor-corrector algorithms for the second-order cone programming (SOCP) are presented. The two algorithms use the Newton direction and the Euler direction as the predictor directions, respectively. The corrector directions belong to the category of the Alizadeh-Haeberly-Overton (AHO) directions. These algorithms are suitable to the cases of feasible and infeasible interior iterative points. A simpler neighborhood of the central path for the SOCP is proposed, which is the pivotal difference from other interior-point predictor-corrector algorithms. Under some assumptions, the algorithms possess the global, linear, and quadratic convergence. The complexity bound O(rln(εo/ε)) is obtained, where r denotes the number of the second-order cones in the SOCP problem. The numerical results show that the proposed algorithms are effective.展开更多
develop a mentation This paper considers the priority facility primal-dual 3-approximation algorithm for procedure, the authors further improve the location problem with penalties: The authors this problem. Combining...develop a mentation This paper considers the priority facility primal-dual 3-approximation algorithm for procedure, the authors further improve the location problem with penalties: The authors this problem. Combining with the greedy aug- previous ratio 3 to 1.8526.展开更多
Considering the soft constraint characteristics of voltage constraints, the Interior-Point Filter Algorithm is applied to solve the formulation of fuzzy model for the power system reactive power optimization with a la...Considering the soft constraint characteristics of voltage constraints, the Interior-Point Filter Algorithm is applied to solve the formulation of fuzzy model for the power system reactive power optimization with a large number of equality and inequality constraints. Based on the primal-dual interior-point algorithm, the algorithm maintains an updating “filter” at each iteration in order to decide whether to admit correction of iteration point which can avoid effectively oscillation due to the conflict between the decrease of objective function and the satisfaction of constraints and ensure the global convergence. Moreover, the “filter” improves computational efficiency because it filters the unnecessary iteration points. The calculation results of a practical power system indicate that the algorithm can effectively deal with the large number of inequality constraints of the fuzzy model of reactive power optimization and satisfy the requirement of online calculation which realizes to decrease the network loss and maintain specified margins of voltage.展开更多
In this paper, an Improved Affine-Scaling Interior Point Algorithm for Linear Programming has been proposed. Computational results of selected practical problems affirming the proposed algorithm have been provided. Th...In this paper, an Improved Affine-Scaling Interior Point Algorithm for Linear Programming has been proposed. Computational results of selected practical problems affirming the proposed algorithm have been provided. The proposed algorithm is accurate, faster and therefore reduces the number of iterations required to obtain an optimal solution of a given Linear Programming problem as compared to the already existing Affine-Scaling Interior Point Algorithm. The algorithm can be very useful for development of faster software packages for solving linear programming problems using the interior-point methods.展开更多
We establish polynomial complexity corrector algorithms for linear programming over bounds of the Mehrotra-type predictor- symmetric cones. We first slightly modify the maximum step size in the predictor step of the s...We establish polynomial complexity corrector algorithms for linear programming over bounds of the Mehrotra-type predictor- symmetric cones. We first slightly modify the maximum step size in the predictor step of the safeguard based Mehrotra-type algorithm for linear programming, that was proposed by Salahi et al. Then, using the machinery of Euclidean Jordan algebras, we extend the modified algorithm to symmetric cones. Based on the Nesterov-Todd direction, we obtain O(r log ε1) iteration complexity bound of this algorithm, where r is the rank of the Jordan algebras and ε is the required precision. We also present a new variant of Mehrotra-type algorithm using a new adaptive updating scheme of centering parameter and show that this algorithm enjoys the same order of complexity bound as the safeguard algorithm. We illustrate the numerical behaviour of the methods on some small examples.展开更多
In this paper,we consider an optimization problem of the grasping manipulation of multi-fingered hand-arm robots.We first formulate an optimization model for the problem,based on the dynamic equations of the object a...In this paper,we consider an optimization problem of the grasping manipulation of multi-fingered hand-arm robots.We first formulate an optimization model for the problem,based on the dynamic equations of the object and the friction constraints.Then,we reformulate the model as a convex quadratic programming over circular cones.Moreover,we propose a primal-dual interior-point algorithm based on the kernel function to solve this convex quadratic programming over circular cones.We derive both the convergence of the algorithm and the iteration bounds for largeand small-update methods,respectively.Finally,we carry out the numerical tests of 180◦and 90◦manipulations of the hand-arm robot to demonstrate the effectiveness of the proposed algorithm.展开更多
文摘In the present paper we present a class of polynomial primal-dual interior-point algorithms for semidefmite optimization based on a kernel function. This kernel function is not a so-called self-regular function due to its growth term increasing linearly. Some new analysis tools were developed which can be used to deal with complexity "analysis of the algorithms which use analogous strategy in [5] to design the search directions for the Newton system. The complexity bounds for the algorithms with large- and small-update methodswere obtained, namely,O(qn^(p+q/q(P+1)log n/ε and O(q^2√n)log n/ε,respectlvely.
基金Project supported by Dutch Organization for Scientific Research(Grant No .613 .000 .010)
文摘In this paper, primal-dual interior-point algorithm with dynamic step size is implemented for linear programming (LP) problems. The algorithms are based on a few kernel functions, including both serf-regular functions and non-serf-regular ones. The dynamic step size is compared with fixed step size for the algorithms in inner iteration of Newton step. Numerical tests show that the algorithms with dynaraic step size are more efficient than those with fixed step size.
基金Supported by National Natural Science Foundation of China (Grant Nos.10771133 and 70871082)Shanghai Leading Academic Discipline Project (Grant No.S30104)
文摘Kernel functions play an important role in defining new search directions for primal-dual interior-point algorithm for solving linear optimization problems. In this paper we present a new kernel function which yields an algorithm with the best known complexity bound for both large- and small-update methods.
基金supported by the Shanghai Pujiang Program (Grant No.06PJ14039)the Science Foundation of Shanghai Municipal Commission of Education (Grant No.06NS031)
文摘In this paper, a primal-dual path-following interior-point algorithm for linearly constrained convex optimization(LCCO) is presented.The algorithm is based on a new technique for finding a class of search directions and the strategy of the central path.At each iteration, only full-Newton steps are used.Finally, the favorable polynomial complexity bound for the algorithm with the small-update method is deserved, namely, O(√n log n /ε).
基金Supported by the Doctoral Educational Foundation of China of the Ministry of Education(20020486035)
文摘A primal-dual infeasible interior point algorithm for multiple objective linear programming (MOLP) problems was presented. In contrast to the current MOLP algorithm. moving through the interior of polytope but not confining the iterates within the feasible region in our proposed algorithm result in a solution approach that is quite different and less sensitive to problem size, so providing the potential to dramatically improve the practical computation effectiveness.
基金Supported by Natural Science Foundation of Hubei Province (Grant No. 2008CDZ047)Acknowledgements Thanks my supervisor Prof. M. W. Zhang for long-last guidance during the course of study.
文摘In this paper we propose a class of new large-update primal-dual interior-point algorithms for P.(k) nonlinear complementarity problem (NCP), which are based on a class of kernel functions investigated by Bai et al. in their recent work for linear optimization (LO). The arguments for the algorithms are followed as Peng et al.'s for P.(n) complementarity problem based on the self-regular functions [Peng, J., Roos, C., Terlaky, T.: Self-Regularity: A New Paradigm for Primal-Dual Interior- Point Algorithms, Princeton University Press, Princeton, 2002]. It is worth mentioning that since this class of kernel functions includes a class of non-self-regular functions as special case, so our algorithms are different from Peng et al.'s and the corresponding analysis is simpler than theirs. The ultimate goal of the paper is to show that the algorithms based on these functions have favorable polynomial complexity.
基金supported by the Knut and Alice Wallenberg Foundationthe Swedish Foundation for Strategic Research+1 种基金the Swedish Research Councilthe National Natural Science Foundation of China(62133003,61991403,61991404,61991400)。
文摘The distributed nonconvex optimization problem of minimizing a global cost function formed by a sum of n local cost functions by using local information exchange is considered.This problem is an important component of many machine learning techniques with data parallelism,such as deep learning and federated learning.We propose a distributed primal-dual stochastic gradient descent(SGD)algorithm,suitable for arbitrarily connected communication networks and any smooth(possibly nonconvex)cost functions.We show that the proposed algorithm achieves the linear speedup convergence rate O(1/(√nT))for general nonconvex cost functions and the linear speedup convergence rate O(1/(nT)) when the global cost function satisfies the Polyak-Lojasiewicz(P-L)condition,where T is the total number of iterations.We also show that the output of the proposed algorithm with constant parameters linearly converges to a neighborhood of a global optimum.We demonstrate through numerical experiments the efficiency of our algorithm in comparison with the baseline centralized SGD and recently proposed distributed SGD algorithms.
基金supported by the National Key Research and Development Program of China(No.2022YFB1902700)the Joint Fund of Ministry of Education for Equipment Pre-research(No.8091B042203)+5 种基金the National Natural Science Foundation of China(No.11875129)the Fund of the State Key Laboratory of Intense Pulsed Radiation Simulation and Effect(No.SKLIPR1810)the Fund of Innovation Center of Radiation Application(No.KFZC2020020402)the Fund of the State Key Laboratory of Nuclear Physics and Technology,Peking University(No.NPT2023KFY06)the Joint Innovation Fund of China National Uranium Co.,Ltd.,State Key Laboratory of Nuclear Resources and Environment,East China University of Technology(No.2022NRE-LH-02)the Fundamental Research Funds for the Central Universities(No.2023JG001).
文摘Neutron computed tomography(NCT)is widely used as a noninvasive measurement technique in nuclear engineering,thermal hydraulics,and cultural heritage.The neutron source intensity of NCT is usually low and the scan time is long,resulting in a projection image containing severe noise.To reduce the scanning time and increase the image reconstruction quality,an effective reconstruction algorithm must be selected.In CT image reconstruction,the reconstruction algorithms can be divided into three categories:analytical algorithms,iterative algorithms,and deep learning.Because the analytical algorithm requires complete projection data,it is not suitable for reconstruction in harsh environments,such as strong radia-tion,high temperature,and high pressure.Deep learning requires large amounts of data and complex models,which cannot be easily deployed,as well as has a high computational complexity and poor interpretability.Therefore,this paper proposes the OS-SART-PDTV iterative algorithm,which uses the ordered subset simultaneous algebraic reconstruction technique(OS-SART)algorithm to reconstruct the image and the first-order primal–dual algorithm to solve the total variation(PDTV),for sparse-view NCT three-dimensional reconstruction.The novel algorithm was compared with other algorithms(FBP,OS-SART-TV,OS-SART-AwTV,and OS-SART-FGPTV)by simulating the experimental data and actual neutron projection experiments.The reconstruction results demonstrate that the proposed algorithm outperforms the FBP,OS-SART-TV,OS-SART-AwTV,and OS-SART-FGPTV algorithms in terms of preserving edge structure,denoising,and suppressing artifacts.
文摘Two existing methods for solving a class of fuzzy linear programming (FLP) problems involving symmetric trapezoidal fuzzy numbers without converting them to crisp linear programming problems are the fuzzy primal simplex method proposed by Ganesan and Veeramani [1] and the fuzzy dual simplex method proposed by Ebrahimnejad and Nasseri [2]. The former method is not applicable when a primal basic feasible solution is not easily at hand and the later method needs to an initial dual basic feasible solution. In this paper, we develop a novel approach namely the primal-dual simplex algorithm to overcome mentioned shortcomings. A numerical example is given to illustrate the proposed approach.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10117733), the Shanghai Leading Academic Discipline Project (Grant No.J50101), and the Foundation of Scientific Research for Selecting and Cultivating Young Excellent University Teachers in Shanghai (Grant No.06XPYQ52)
文摘Interior-point methods (IPMs) for linear optimization (LO) and semidefinite optimization (SDO) have become a hot area in mathematical programming in the last decades. In this paper, a new kernel function with simple algebraic expression is proposed. Based on this kernel function, a primal-dual interior-point methods (IPMs) for semidefinite optimization (SDO) is designed. And the iteration complexity of the algorithm as O(n^3/4 log n/ε) with large-updates is established. The resulting bound is better than the classical kernel function, with its iteration complexity O(n log n/ε) in large-updates case.
基金Project supported by the National Science Foundation of China (60574071) the Foundation for University Key Teacher by the Ministry of Education.
文摘This article presents a polynomial predictor-corrector interior-point algorithm for convex quadratic programming based on a modified predictor-corrector interior-point algorithm. In this algorithm, there is only one corrector step after each predictor step, where Step 2 is a predictor step and Step 4 is a corrector step in the algorithm. In the algorithm, the predictor step decreases the dual gap as much as possible in a wider neighborhood of the central path and the corrector step draws iteration points back to a narrower neighborhood and make a reduction for the dual gap. It is shown that the algorithm has O(√nL) iteration complexity which is the best result for convex quadratic programming so far.
文摘In this paper, we propose a primal-dual interior point method for solving general constrained nonlinear programming problems. To avoid the situation that the algorithm we use may converge to a saddle point or a local maximum, we utilize a merit function to guide the iterates toward a local minimum. Especially, we add the parameter ε to the Newton system when calculating the decrease directions. The global convergence is achieved by the decrease of a merit function. Furthermore, the numerical results confirm that the algorithm can solve this kind of problems in an efficient way.
文摘The simplified Newton method, at the expense of fast convergence, reduces the work required by Newton method by reusing the initial Jacobian matrix. The composite Newton method attempts to balance the trade-off between expense and fast convergence by composing one Newton step with one simplified Newton step. Recently, Mehrotra suggested a predictor-corrector variant of primal-dual interior point method for linear programming. It is currently the interiorpoint method of the choice for linear programming. In this work we propose a predictor-corrector interior-point algorithm for convex quadratic programming. It is proved that the algorithm is equivalent to a level-1 perturbed composite Newton method. Computations in the algorithm do not require that the initial primal and dual points be feasible. Numerical experiments are made.
文摘A new iterative method,which is called positive interior-point algorithm,is presented for solving the nonlinear complementarity problems.This method is of the desirable feature of robustness.And the convergence theorems of the algorithm is established.In addition,some numerical results are reported.
基金supported by the National Natural Science Foundation of China (Nos. 71061002 and 11071158)the Natural Science Foundation of Guangxi Province of China (Nos. 0832052 and 2010GXNSFB013047)
文摘Based on the ideas of infeasible interior-point methods and predictor-corrector algorithms, two interior-point predictor-corrector algorithms for the second-order cone programming (SOCP) are presented. The two algorithms use the Newton direction and the Euler direction as the predictor directions, respectively. The corrector directions belong to the category of the Alizadeh-Haeberly-Overton (AHO) directions. These algorithms are suitable to the cases of feasible and infeasible interior iterative points. A simpler neighborhood of the central path for the SOCP is proposed, which is the pivotal difference from other interior-point predictor-corrector algorithms. Under some assumptions, the algorithms possess the global, linear, and quadratic convergence. The complexity bound O(rln(εo/ε)) is obtained, where r denotes the number of the second-order cones in the SOCP problem. The numerical results show that the proposed algorithms are effective.
基金supported by the National Natural Science Foundation of China under Grant No.11371001
文摘develop a mentation This paper considers the priority facility primal-dual 3-approximation algorithm for procedure, the authors further improve the location problem with penalties: The authors this problem. Combining with the greedy aug- previous ratio 3 to 1.8526.
文摘Considering the soft constraint characteristics of voltage constraints, the Interior-Point Filter Algorithm is applied to solve the formulation of fuzzy model for the power system reactive power optimization with a large number of equality and inequality constraints. Based on the primal-dual interior-point algorithm, the algorithm maintains an updating “filter” at each iteration in order to decide whether to admit correction of iteration point which can avoid effectively oscillation due to the conflict between the decrease of objective function and the satisfaction of constraints and ensure the global convergence. Moreover, the “filter” improves computational efficiency because it filters the unnecessary iteration points. The calculation results of a practical power system indicate that the algorithm can effectively deal with the large number of inequality constraints of the fuzzy model of reactive power optimization and satisfy the requirement of online calculation which realizes to decrease the network loss and maintain specified margins of voltage.
文摘In this paper, an Improved Affine-Scaling Interior Point Algorithm for Linear Programming has been proposed. Computational results of selected practical problems affirming the proposed algorithm have been provided. The proposed algorithm is accurate, faster and therefore reduces the number of iterations required to obtain an optimal solution of a given Linear Programming problem as compared to the already existing Affine-Scaling Interior Point Algorithm. The algorithm can be very useful for development of faster software packages for solving linear programming problems using the interior-point methods.
基金Supported by the National Natural Science Foundation of China(11471102,61301229)Supported by the Natural Science Foundation of Henan University of Science and Technology(2014QN039)
文摘We establish polynomial complexity corrector algorithms for linear programming over bounds of the Mehrotra-type predictor- symmetric cones. We first slightly modify the maximum step size in the predictor step of the safeguard based Mehrotra-type algorithm for linear programming, that was proposed by Salahi et al. Then, using the machinery of Euclidean Jordan algebras, we extend the modified algorithm to symmetric cones. Based on the Nesterov-Todd direction, we obtain O(r log ε1) iteration complexity bound of this algorithm, where r is the rank of the Jordan algebras and ε is the required precision. We also present a new variant of Mehrotra-type algorithm using a new adaptive updating scheme of centering parameter and show that this algorithm enjoys the same order of complexity bound as the safeguard algorithm. We illustrate the numerical behaviour of the methods on some small examples.
基金the National Natural Science Foundation of China(No.11371242)。
文摘In this paper,we consider an optimization problem of the grasping manipulation of multi-fingered hand-arm robots.We first formulate an optimization model for the problem,based on the dynamic equations of the object and the friction constraints.Then,we reformulate the model as a convex quadratic programming over circular cones.Moreover,we propose a primal-dual interior-point algorithm based on the kernel function to solve this convex quadratic programming over circular cones.We derive both the convergence of the algorithm and the iteration bounds for largeand small-update methods,respectively.Finally,we carry out the numerical tests of 180◦and 90◦manipulations of the hand-arm robot to demonstrate the effectiveness of the proposed algorithm.