A procedure is presented for computing the derivatives of repeated eigenvalues and the corresponding eigenvectors of damped systems. The derivatives are calculated in terms of the eigenvalues and eigenvectors of the s...A procedure is presented for computing the derivatives of repeated eigenvalues and the corresponding eigenvectors of damped systems. The derivatives are calculated in terms of the eigenvalues and eigenvectors of the second-order system, and the use of rather undesirable state space representation is avoided. Hence the cost of computation is greatly reduced. The efficiency of the proposed procedure is illustrated by considering a 5-DOF non-proportionally damped system.展开更多
A new response-spectrum mode superposition method, entirely in real value form, is developed to analyze the maximum structural response under earthquake ground motion for generally damped linear systems with repeated ...A new response-spectrum mode superposition method, entirely in real value form, is developed to analyze the maximum structural response under earthquake ground motion for generally damped linear systems with repeated eigenvalues and defective eigenvectors. This algorithm has clear physical concepts and is similar to the complex complete quadratic combination (CCQC) method previously established. Since it can consider the effect of repeated eigenvalues, it is called the CCQC-R method, in which the correlation coefficients of high-order modal responses are enclosed in addition to the correlation coefficients in the normal CCQC method. As a result, the formulas for calculating the correlation coefficients of high-order modal responses are deduced in this study, including displacement, velocity and velocity-displacement correlation coefficients. Furthermore, the relationship between high-order displacement and velocity covariance is derived to make the CCQC-R algorithm only relevant to the high-order displacement response spectrum. Finally, a practical step-by-step integration procedure for calculating high-order displacement response spectrum is obtained by changing the earthquake ground motion input, which is evaluated by comparing it to the theory solution under the sine-wave input. The method derived here is suitable for generally linear systems with classical or non-classical damping.展开更多
An improved modal truncation method with arbitrarily high order accuracy is developed for calculating the second- and third-order eigenvalue derivatives and the first- and second-order eigenvector derivatives of an as...An improved modal truncation method with arbitrarily high order accuracy is developed for calculating the second- and third-order eigenvalue derivatives and the first- and second-order eigenvector derivatives of an asymmetric and non-defective matrix with repeated eigenvalues. If the different eigenvalues λ1, λ2,……, λs of the matrix satisfy |λ1| ≤... ≤|λr| and |λs| 〈|〈s+1| (s ≤r-l), then associated with any eigenvalue λi (i≤ s), the errors of the eigenvalue and eigenvector derivatives obtained by the qth-order approximate method are proportional to |λi|/λs+1|q+l, where the approximate method only uses the eigenpairs corresponding to λ1, λ2,……,λs A numerical example shows the validity of the approximate method. The numerical example also shows that in order to get the approximate solutions with the same order accuracy, a higher order method should be used for higher order eigenvalue and eigenvector derivatives.展开更多
A universal matrix perturbation technique for complex modes is presented. This technique is applicable to all the three cases of complex eigenvalues: distinct, repeated and closely spaced eigenvalues. The lower order ...A universal matrix perturbation technique for complex modes is presented. This technique is applicable to all the three cases of complex eigenvalues: distinct, repeated and closely spaced eigenvalues. The lower order perturbation formulas are obtained hy performing two complex eigensubspace condensations, and the higher order perturbation formulas are derived hy a successive approximation process. Three illustrative examples are given to verify the proposed method and satisfactory results are observed.展开更多
基金Project supported by the Mathematical Tianyuan Foundation of China (No. 10626019)
文摘A procedure is presented for computing the derivatives of repeated eigenvalues and the corresponding eigenvectors of damped systems. The derivatives are calculated in terms of the eigenvalues and eigenvectors of the second-order system, and the use of rather undesirable state space representation is avoided. Hence the cost of computation is greatly reduced. The efficiency of the proposed procedure is illustrated by considering a 5-DOF non-proportionally damped system.
基金Natural Science Foundation of China under Grant Nos.51478440 and 51108429National Key Technology R&D Program under Grant No.2012BAK15B01
文摘A new response-spectrum mode superposition method, entirely in real value form, is developed to analyze the maximum structural response under earthquake ground motion for generally damped linear systems with repeated eigenvalues and defective eigenvectors. This algorithm has clear physical concepts and is similar to the complex complete quadratic combination (CCQC) method previously established. Since it can consider the effect of repeated eigenvalues, it is called the CCQC-R method, in which the correlation coefficients of high-order modal responses are enclosed in addition to the correlation coefficients in the normal CCQC method. As a result, the formulas for calculating the correlation coefficients of high-order modal responses are deduced in this study, including displacement, velocity and velocity-displacement correlation coefficients. Furthermore, the relationship between high-order displacement and velocity covariance is derived to make the CCQC-R algorithm only relevant to the high-order displacement response spectrum. Finally, a practical step-by-step integration procedure for calculating high-order displacement response spectrum is obtained by changing the earthquake ground motion input, which is evaluated by comparing it to the theory solution under the sine-wave input. The method derived here is suitable for generally linear systems with classical or non-classical damping.
基金supported by the National Natural Science Foundation of China(No.11101149)the Basic Academic Discipline Program of Shanghai University of Finance and Economics(No.2013950575)
文摘An improved modal truncation method with arbitrarily high order accuracy is developed for calculating the second- and third-order eigenvalue derivatives and the first- and second-order eigenvector derivatives of an asymmetric and non-defective matrix with repeated eigenvalues. If the different eigenvalues λ1, λ2,……, λs of the matrix satisfy |λ1| ≤... ≤|λr| and |λs| 〈|〈s+1| (s ≤r-l), then associated with any eigenvalue λi (i≤ s), the errors of the eigenvalue and eigenvector derivatives obtained by the qth-order approximate method are proportional to |λi|/λs+1|q+l, where the approximate method only uses the eigenpairs corresponding to λ1, λ2,……,λs A numerical example shows the validity of the approximate method. The numerical example also shows that in order to get the approximate solutions with the same order accuracy, a higher order method should be used for higher order eigenvalue and eigenvector derivatives.
文摘A universal matrix perturbation technique for complex modes is presented. This technique is applicable to all the three cases of complex eigenvalues: distinct, repeated and closely spaced eigenvalues. The lower order perturbation formulas are obtained hy performing two complex eigensubspace condensations, and the higher order perturbation formulas are derived hy a successive approximation process. Three illustrative examples are given to verify the proposed method and satisfactory results are observed.