In order to achieve higher system energy efficiency (EE),a new coordinated multipoint (CoMP)-transmission-based scheme selection energy saving (CTSES)algorithm is proposed for downlink homogeneous cellular netwo...In order to achieve higher system energy efficiency (EE),a new coordinated multipoint (CoMP)-transmission-based scheme selection energy saving (CTSES)algorithm is proposed for downlink homogeneous cellular networks.The problem is formulated as an optimization of maximizing system EE,under the constraints of the data rate requirement and the maximum transmit power.The problem is decomposed into power allocation and alternative scheme selection problems.Optimal power allocation is calculated for CoMP-JT (joint transmission)and CoMP-CS (coordinated scheduling) transmissions,and the scheme with higher EE is chosen. Since the optimal problem is a nonlinear fractional optimization problem for both CoMP transmission schemes, the problem is transformed into an equivalent problem using the parametric method. The optimal transmit power and optimal EE are obtained by an iteration algorithm in CoMP-JT and CoMP-CS schemes.Simulation results show that the proposed algorithm offers obvious energy-saving potential and outperforms the fixed CoMP transmission scheme.Under the condition of the same maximum transmit power limit,the empirical regularity of user distribution for scheme choice is presented, and using this regularity, the computational complexity can be reduced.展开更多
Decomposition of tasks and selection of optimal schemes are key procedures in high-end equipment development processes.However,such procedures are highly innovative,technology intensive,interdisciplinary,and multi-par...Decomposition of tasks and selection of optimal schemes are key procedures in high-end equipment development processes.However,such procedures are highly innovative,technology intensive,interdisciplinary,and multi-party engineering projects,making the decomposition and scheme selection more difficult and complicated than that in the development of ordinary equipment.In this study,we consider three factors,namely,functional structure,task granularity,and task feasibility in task decomposition of high-end equipment development.Based on the principles of systems engineering,a method of task decomposition is proposed.As for decomposition scheme selection,a method based on the superiority and inferiority ranking(SIR)method mixed information and multiple attribute decision making is proposed by considering attributes of scheme feasibility,uncertainty risk and task integration complexity.To verify the proposed method,development of a military electric vehicle is used as an example to demonstrate the calculation process.展开更多
In this paper,the geological condition of the right-side slope of the K114+694–K115+162 section of Yong-tai-wen Expressway is investigated and analyzed with the results showing that the strength of rock mass is the m...In this paper,the geological condition of the right-side slope of the K114+694–K115+162 section of Yong-tai-wen Expressway is investigated and analyzed with the results showing that the strength of rock mass is the main contributor to the stability of the slope.Then,two widening schemes are proposed,which are the steep slope with strong support and the gentle slope with general support schemes.The static/slope module of MIDAS GTS finite element analysis software and the strength reduction method were used to compare the two schemes.The results show that the steep slope with a strong support scheme has obvious advantages in land requisition,environmental protection,and safety and is more suitable for reconstructing and expanding the highway slope.展开更多
A new selected mapping(SLM)scheme based on constellation rotation is proposed to reduce the peak-to-average power ratio(PAPR)of orthogonal frequency division multiplexing(OFDM)signals.Its core idea is to generate abun...A new selected mapping(SLM)scheme based on constellation rotation is proposed to reduce the peak-to-average power ratio(PAPR)of orthogonal frequency division multiplexing(OFDM)signals.Its core idea is to generate abundant candidate signals by rotating different sub-signals of the original frequency signal with different angles.This new signal generation method can simplify the calculation process of candidate time signals into the linear addition of some intermediate signals,which are generated by the inverse fast Fourier transform(IFFT)operation of the original frequency signal.This feature can effectively reduce the computational complexity of candidate signal generation process.And compared to the traditional SLM scheme,the number of complex multiplication and complex addition of new scheme can separately be decreased by about 99.99% and 91.7% with some specific parameters.Moreover,with the help of the constellation detection mechanism at the receiver,there is no need to carry any side information at the transmitter.The simulation results show that,with the same channel transmission performance,the PAPR reduction performance of new scheme can approach or even exceed the upper bound of the traditional SLM scheme,which uses all the vectors in Hadamard matrix as the phase sequences.展开更多
A new approach for selecting proper discretization schemes and grid size is presented. This method is based on the convection-diffusion equation and can provide insight for the Navier-Stokes equation. The approach mai...A new approach for selecting proper discretization schemes and grid size is presented. This method is based on the convection-diffusion equation and can provide insight for the Navier-Stokes equation. The approach mainly addresses two aspects, i.e., the practical accuracy of diffusion term discretization and the behavior of high wavenum- ber disturbances. Two criteria are included in this approach. First, numerical diffusion should not affect the theoretical diffusion accuracy near the length scales of interest. This is achieved by requiring numerical diffusion to be smaller than the diffusion discretization error. Second, high wavenumber modes that are.much smaller than the length scales of interest should not be amplified. These two criteria provide a range of suitable scheme combinations for convective flux and diffusive flux and an ideal interval for grid spacing. The effects of time discretization on these criteria are briefly discussed.展开更多
Single-relay selection techniques based on themax-min criterion can achieve the highest bit error rate(BER)performance with full diversity gain as compared to the state-of-the-art single-relay selection techniques.The...Single-relay selection techniques based on themax-min criterion can achieve the highest bit error rate(BER)performance with full diversity gain as compared to the state-of-the-art single-relay selection techniques.Therefore,in this work,we propose a modified max-min criterion by considering the differences among the close value channels of all relays while selecting the best relay node.The proposed criterion not only enjoys full diversity gain but also offers a significant improvement in the achievable coding gain as compared to the conventional one.Basically,in this article,an improved bi-directional three-phase single-relay selection technique using the decodeand-forward protocol for wireless cooperative communication networks that enhances the overall network performance in terms of BER is proposed and its performance is proved analytically and through Monte-Carlo simulations.More specifically,the proposed criterion is first used to select the best relaynode.After that the selected relay-node forwards the information symbols of the communicating terminals after performing a digital network coding to minimize power consumptions.In our simulations,we show that our proposed technique outperforms the best-known single relay selection techniques.Furthermore,we prove that the BER results obtained from our conducted simulations perfectly match those obtained from the theoretical analysis.展开更多
The optimal selection of schemes of water transportation projects is a process of choosing a relatively optimal scheme from a number of schemes of water transportation programming and management projects, which is of ...The optimal selection of schemes of water transportation projects is a process of choosing a relatively optimal scheme from a number of schemes of water transportation programming and management projects, which is of importance in both theory and practice in water resource systems engineering. In order to achieve consistency and eliminate the dimensions of fuzzy qualitative and fuzzy quantitative evaluation indexes, to determine the weights of the indexes objectively, and to increase the differences among the comprehensive evaluation index values of water transportation project schemes, a projection pursuit method, named FPRM-PP for short, was developed in this work for selecting the optimal water transportation project scheme based on the fuzzy preference relation matrix. The research results show that FPRM-PP is intuitive and practical, the correction range of the fuzzy rained is both stable and accurate; preference relation matrix A it produces is relatively small, and the result obtherefore FPRM-PP can be widely used in the optimal selection of different multi-factor decision-making schemes.展开更多
According to traditional card problem solving which is based on the idea of genetic algorithm(GA),a set of algorithms is designed to find final solution.For each process in genetic algorithm,including choices of fitne...According to traditional card problem solving which is based on the idea of genetic algorithm(GA),a set of algorithms is designed to find final solution.For each process in genetic algorithm,including choices of fitness function,parameters determination and coding scheme selection,classic algorithm is used to realize the various steps,and ultimately to find solution of problems.展开更多
The development of new robot structures, in particular of parallel kinematic machines(PKM), is widely systematized by different structure synthesis methods. Recent research increasingly focuses on PKM with less than...The development of new robot structures, in particular of parallel kinematic machines(PKM), is widely systematized by different structure synthesis methods. Recent research increasingly focuses on PKM with less than six degrees of freedom(DOF). However, an overall comparison and evaluation of these structures is missing. In order to compare symmetrical PKM with three translational DOF, different evaluation criteria are used. Workspace, maximum actuation forces and velocities, power, actuator stiffness, accuracy and transmission behavior are taken into account to investigate strengths and weaknesses of the PKMs. A selection scheme based on possible configurations of translational PKM including different frame configurations is presented. Moreover, an optimization method based on a genetic algorithm is described to determine the geometric parameters of the selected PKM for an exemplary load case and a prescribed workspace. The values of the mentioned criteria are determined for all considered PKM with respect to certain boundary conditions. The distribution and spreading of these values within the prescribed workspace is presented by using box plots for each criterion. Thereby, the performance characteristics of the different structures can be compared directly. The results show that there is no "best" PKM. Further inquiries such as dynamic or stiffness analysis are necessary to extend the comparison and to finally select a PKM.展开更多
Rotman lens,which is a radio frequency beam-former that consists of multiple input and multiple output beam ports,can be used in industrial,scientific,and medical applications as a beam steering device.The input ports...Rotman lens,which is a radio frequency beam-former that consists of multiple input and multiple output beam ports,can be used in industrial,scientific,and medical applications as a beam steering device.The input ports collect the signals to be propagated through the lens cavity toward the output ports before being transmitted by the antenna arrays to the destination in order to enhance the error performance by optimizing the overall signal to noise ratio(SNR).In this article,a low-cost Rotman lens antenna is designed and deployed to enhance the overall performance of the conventional cooperative communication systems without needing any additional power,extra time or frequency slots.In the suggested system,the smart Rotman lens antennas generate a beam steering in the direction of the destination to maximize the received SNR at the destination by applying the proposed optimal beamforming technique.The suggested optimal beamforming technique enjoys high diversity,as well as,low encoding and decoding complexity.Furthermore,we proved the advantages of our suggested strategy through both theoretical results and simulations using Monte Carlo runs.The Monte Carlo simulations show that the suggested strategy enjoys better error performance compared to the current state-of-the-art distributed multiantenna strategies.In addition,the bit error rate(BER)curves drawn from the analytical results are closely matching to those drawn from our conducted Monte Carlo simulations.展开更多
A new approach for peak-to-average power ratio (PAPR) reduction in orthogonal frequency division multiplexing (OFDM) systems was proposed.This approach is based on assigning powers to the different subcarriers of OFDM...A new approach for peak-to-average power ratio (PAPR) reduction in orthogonal frequency division multiplexing (OFDM) systems was proposed.This approach is based on assigning powers to the different subcarriers of OFDM using an unequal power distribution strategy.In addition,a reduced complexity selective mapping (RC-SLM) scheme was proposed.The proposed scheme is based on partitioning the frequency domain symbol sequence into several sub-blocks,and then each sub-block is multiplied by different phase sequences whose length is shorter than that used in the conventional SLM scheme.Then,a kind of low complexity conversions is used to replace the IFFT blocks.The performance of the proposed RC-SLM scheme along with the new approach was studied with computer simulation.The obtained results show that the proposed RC-SLM scheme is able to achieve the lowest computational complexity when compared with other low complexity schemes proposed in the literature while at the same time improves the PAPR reduction performance by about 0.3 dB.展开更多
Selection of air conditioning(AC) cold/heat sources generally concerns about certain aspects and cannot reveal the whole profile of the problems. Grey relation analysis (GRA) is a data processing method to categor...Selection of air conditioning(AC) cold/heat sources generally concerns about certain aspects and cannot reveal the whole profile of the problems. Grey relation analysis (GRA) is a data processing method to categorize the correlation extent of compared sequences and a certain reference sequence in a system with uncertain information. It is applied to evaluating and selecting AC cold/heat sources from four main aspects, which are technology, economy, reliability, and operation and management. Case study shows that the result for selecting AC cold/heat sources with the GRA method can be more reasonable and convincible. Thus it offers a new approach for designers in heating, ventilating and air conditioning field to compare and evaluate different AC cold/heat sou rces.展开更多
Relay is a promising technology in wireless communications. There are several relaying modes for different channel conditions In this article, an adaptive relaying mode selection scheme by destination and relay is pro...Relay is a promising technology in wireless communications. There are several relaying modes for different channel conditions In this article, an adaptive relaying mode selection scheme by destination and relay is proposed. The proposed scheme changes the signal forwarding mode at the relay station. It adaptively chooses among amplify-and-forward (AF), decode-and-forward (DF) and direct mode according to cyclic redundancy check (CRC) detection at relay and destination. Moreover, block error rate (BLER) and throughput are adopted to evaluate system performance. The simulation results demonstrate that the proposed scheme significantly outperforms other existing relaying mode selection schemes.展开更多
基金The National Science and Technology Major Project(No.2013ZX03001032-004)the National High Technology Research and Development Program of China(863 Program)(No.2014AA01A702)+1 种基金Jiangsu Province Science and Technology Support Program(No.BE2012165)Foundation of Huawei Corp.Ltd
文摘In order to achieve higher system energy efficiency (EE),a new coordinated multipoint (CoMP)-transmission-based scheme selection energy saving (CTSES)algorithm is proposed for downlink homogeneous cellular networks.The problem is formulated as an optimization of maximizing system EE,under the constraints of the data rate requirement and the maximum transmit power.The problem is decomposed into power allocation and alternative scheme selection problems.Optimal power allocation is calculated for CoMP-JT (joint transmission)and CoMP-CS (coordinated scheduling) transmissions,and the scheme with higher EE is chosen. Since the optimal problem is a nonlinear fractional optimization problem for both CoMP transmission schemes, the problem is transformed into an equivalent problem using the parametric method. The optimal transmit power and optimal EE are obtained by an iteration algorithm in CoMP-JT and CoMP-CS schemes.Simulation results show that the proposed algorithm offers obvious energy-saving potential and outperforms the fixed CoMP transmission scheme.Under the condition of the same maximum transmit power limit,the empirical regularity of user distribution for scheme choice is presented, and using this regularity, the computational complexity can be reduced.
基金supported by the National Natural Science Foundation of China(7169023371901214)the National Key R&D Program of China(2017YFC1405005)。
文摘Decomposition of tasks and selection of optimal schemes are key procedures in high-end equipment development processes.However,such procedures are highly innovative,technology intensive,interdisciplinary,and multi-party engineering projects,making the decomposition and scheme selection more difficult and complicated than that in the development of ordinary equipment.In this study,we consider three factors,namely,functional structure,task granularity,and task feasibility in task decomposition of high-end equipment development.Based on the principles of systems engineering,a method of task decomposition is proposed.As for decomposition scheme selection,a method based on the superiority and inferiority ranking(SIR)method mixed information and multiple attribute decision making is proposed by considering attributes of scheme feasibility,uncertainty risk and task integration complexity.To verify the proposed method,development of a military electric vehicle is used as an example to demonstrate the calculation process.
文摘In this paper,the geological condition of the right-side slope of the K114+694–K115+162 section of Yong-tai-wen Expressway is investigated and analyzed with the results showing that the strength of rock mass is the main contributor to the stability of the slope.Then,two widening schemes are proposed,which are the steep slope with strong support and the gentle slope with general support schemes.The static/slope module of MIDAS GTS finite element analysis software and the strength reduction method were used to compare the two schemes.The results show that the steep slope with a strong support scheme has obvious advantages in land requisition,environmental protection,and safety and is more suitable for reconstructing and expanding the highway slope.
文摘A new selected mapping(SLM)scheme based on constellation rotation is proposed to reduce the peak-to-average power ratio(PAPR)of orthogonal frequency division multiplexing(OFDM)signals.Its core idea is to generate abundant candidate signals by rotating different sub-signals of the original frequency signal with different angles.This new signal generation method can simplify the calculation process of candidate time signals into the linear addition of some intermediate signals,which are generated by the inverse fast Fourier transform(IFFT)operation of the original frequency signal.This feature can effectively reduce the computational complexity of candidate signal generation process.And compared to the traditional SLM scheme,the number of complex multiplication and complex addition of new scheme can separately be decreased by about 99.99% and 91.7% with some specific parameters.Moreover,with the help of the constellation detection mechanism at the receiver,there is no need to carry any side information at the transmitter.The simulation results show that,with the same channel transmission performance,the PAPR reduction performance of new scheme can approach or even exceed the upper bound of the traditional SLM scheme,which uses all the vectors in Hadamard matrix as the phase sequences.
基金Project supported by the National Natural Science Foundation of China(No.11372254)
文摘A new approach for selecting proper discretization schemes and grid size is presented. This method is based on the convection-diffusion equation and can provide insight for the Navier-Stokes equation. The approach mainly addresses two aspects, i.e., the practical accuracy of diffusion term discretization and the behavior of high wavenum- ber disturbances. Two criteria are included in this approach. First, numerical diffusion should not affect the theoretical diffusion accuracy near the length scales of interest. This is achieved by requiring numerical diffusion to be smaller than the diffusion discretization error. Second, high wavenumber modes that are.much smaller than the length scales of interest should not be amplified. These two criteria provide a range of suitable scheme combinations for convective flux and diffusive flux and an ideal interval for grid spacing. The effects of time discretization on these criteria are briefly discussed.
基金This work was supported by College of Engineering and Technology,the American University of the Middle East,Kuwait.Homepage:https://www.aum.edu.kw.
文摘Single-relay selection techniques based on themax-min criterion can achieve the highest bit error rate(BER)performance with full diversity gain as compared to the state-of-the-art single-relay selection techniques.Therefore,in this work,we propose a modified max-min criterion by considering the differences among the close value channels of all relays while selecting the best relay node.The proposed criterion not only enjoys full diversity gain but also offers a significant improvement in the achievable coding gain as compared to the conventional one.Basically,in this article,an improved bi-directional three-phase single-relay selection technique using the decodeand-forward protocol for wireless cooperative communication networks that enhances the overall network performance in terms of BER is proposed and its performance is proved analytically and through Monte-Carlo simulations.More specifically,the proposed criterion is first used to select the best relaynode.After that the selected relay-node forwards the information symbols of the communicating terminals after performing a digital network coding to minimize power consumptions.In our simulations,we show that our proposed technique outperforms the best-known single relay selection techniques.Furthermore,we prove that the BER results obtained from our conducted simulations perfectly match those obtained from the theoretical analysis.
基金The authors would like to acknowledge the funding support of the National Natural Science Foundation of China (Nos. 50579009, 70425001 ) the National 10th Five Year Scientific Project of China for Tackling the Key Problems (2004BA608B-02-02)the Excellence Youth Teacher Sustentation Fund Program of the Ministry of Education of China (Department of Education and Personnel [ 2002 ] 350).
文摘The optimal selection of schemes of water transportation projects is a process of choosing a relatively optimal scheme from a number of schemes of water transportation programming and management projects, which is of importance in both theory and practice in water resource systems engineering. In order to achieve consistency and eliminate the dimensions of fuzzy qualitative and fuzzy quantitative evaluation indexes, to determine the weights of the indexes objectively, and to increase the differences among the comprehensive evaluation index values of water transportation project schemes, a projection pursuit method, named FPRM-PP for short, was developed in this work for selecting the optimal water transportation project scheme based on the fuzzy preference relation matrix. The research results show that FPRM-PP is intuitive and practical, the correction range of the fuzzy rained is both stable and accurate; preference relation matrix A it produces is relatively small, and the result obtherefore FPRM-PP can be widely used in the optimal selection of different multi-factor decision-making schemes.
文摘According to traditional card problem solving which is based on the idea of genetic algorithm(GA),a set of algorithms is designed to find final solution.For each process in genetic algorithm,including choices of fitness function,parameters determination and coding scheme selection,classic algorithm is used to realize the various steps,and ultimately to find solution of problems.
文摘The development of new robot structures, in particular of parallel kinematic machines(PKM), is widely systematized by different structure synthesis methods. Recent research increasingly focuses on PKM with less than six degrees of freedom(DOF). However, an overall comparison and evaluation of these structures is missing. In order to compare symmetrical PKM with three translational DOF, different evaluation criteria are used. Workspace, maximum actuation forces and velocities, power, actuator stiffness, accuracy and transmission behavior are taken into account to investigate strengths and weaknesses of the PKMs. A selection scheme based on possible configurations of translational PKM including different frame configurations is presented. Moreover, an optimization method based on a genetic algorithm is described to determine the geometric parameters of the selected PKM for an exemplary load case and a prescribed workspace. The values of the mentioned criteria are determined for all considered PKM with respect to certain boundary conditions. The distribution and spreading of these values within the prescribed workspace is presented by using box plots for each criterion. Thereby, the performance characteristics of the different structures can be compared directly. The results show that there is no "best" PKM. Further inquiries such as dynamic or stiffness analysis are necessary to extend the comparison and to finally select a PKM.
基金The article has been supported by the College of Engineering and Technology,American University of the Middle East,Kuwait.Homepage:https://www.aum.edu.kw.
文摘Rotman lens,which is a radio frequency beam-former that consists of multiple input and multiple output beam ports,can be used in industrial,scientific,and medical applications as a beam steering device.The input ports collect the signals to be propagated through the lens cavity toward the output ports before being transmitted by the antenna arrays to the destination in order to enhance the error performance by optimizing the overall signal to noise ratio(SNR).In this article,a low-cost Rotman lens antenna is designed and deployed to enhance the overall performance of the conventional cooperative communication systems without needing any additional power,extra time or frequency slots.In the suggested system,the smart Rotman lens antennas generate a beam steering in the direction of the destination to maximize the received SNR at the destination by applying the proposed optimal beamforming technique.The suggested optimal beamforming technique enjoys high diversity,as well as,low encoding and decoding complexity.Furthermore,we proved the advantages of our suggested strategy through both theoretical results and simulations using Monte Carlo runs.The Monte Carlo simulations show that the suggested strategy enjoys better error performance compared to the current state-of-the-art distributed multiantenna strategies.In addition,the bit error rate(BER)curves drawn from the analytical results are closely matching to those drawn from our conducted Monte Carlo simulations.
文摘A new approach for peak-to-average power ratio (PAPR) reduction in orthogonal frequency division multiplexing (OFDM) systems was proposed.This approach is based on assigning powers to the different subcarriers of OFDM using an unequal power distribution strategy.In addition,a reduced complexity selective mapping (RC-SLM) scheme was proposed.The proposed scheme is based on partitioning the frequency domain symbol sequence into several sub-blocks,and then each sub-block is multiplied by different phase sequences whose length is shorter than that used in the conventional SLM scheme.Then,a kind of low complexity conversions is used to replace the IFFT blocks.The performance of the proposed RC-SLM scheme along with the new approach was studied with computer simulation.The obtained results show that the proposed RC-SLM scheme is able to achieve the lowest computational complexity when compared with other low complexity schemes proposed in the literature while at the same time improves the PAPR reduction performance by about 0.3 dB.
文摘Selection of air conditioning(AC) cold/heat sources generally concerns about certain aspects and cannot reveal the whole profile of the problems. Grey relation analysis (GRA) is a data processing method to categorize the correlation extent of compared sequences and a certain reference sequence in a system with uncertain information. It is applied to evaluating and selecting AC cold/heat sources from four main aspects, which are technology, economy, reliability, and operation and management. Case study shows that the result for selecting AC cold/heat sources with the GRA method can be more reasonable and convincible. Thus it offers a new approach for designers in heating, ventilating and air conditioning field to compare and evaluate different AC cold/heat sou rces.
基金supported by the Hi-Tech Research and Development Program of China (2007AA01Z261)the National Natural Science Foundation of China (60702051)Doctoral Foundation Program of Ministry of Education (20070013028),and Nokia Collaborative Program
文摘Relay is a promising technology in wireless communications. There are several relaying modes for different channel conditions In this article, an adaptive relaying mode selection scheme by destination and relay is proposed. The proposed scheme changes the signal forwarding mode at the relay station. It adaptively chooses among amplify-and-forward (AF), decode-and-forward (DF) and direct mode according to cyclic redundancy check (CRC) detection at relay and destination. Moreover, block error rate (BLER) and throughput are adopted to evaluate system performance. The simulation results demonstrate that the proposed scheme significantly outperforms other existing relaying mode selection schemes.