Prof. Zhou Peiyuan (P.Y.Chou) was a celebrated scientist, educationalist and social activist well-known both at home and abroad. He was an outstanding leader in the Chinese science and technology community, a founder ...Prof. Zhou Peiyuan (P.Y.Chou) was a celebrated scientist, educationalist and social activist well-known both at home and abroad. He was an outstanding leader in the Chinese science and technology community, a founder of modern mechanics in China, a fighter dedicated to world peace and an international envoy of peace and goodwill sent by the Chinese people as well as a peopleto-people diplomat for the promotion ofinternational exchange and cooperation in science and technology.展开更多
Currently, the collaboration in scientific communities has been studied in order to explain, among other things, the knowledge diffusion. The quality of Graduate Programmes is often associated with the scientific coll...Currently, the collaboration in scientific communities has been studied in order to explain, among other things, the knowledge diffusion. The quality of Graduate Programmes is often associated with the scientific collaboration. This paper discusses how scientific collaboration processes can be identified and characterized through social and complex networks. For this purpose, collaboration networks of bibliographic production, research projects, and committees of PhD theses and Masters’ dissertations by researchers from a graduate program in computational modeling were studied. The data were obtained from CAPES’ reports of the period from 2001 to 2009. Among the studied indices, centrality indices indicate the presence of prominent researchers who influence others and promptly interact with other researchers in the network. The indices of complex networks reveal the presence of the small-world (i.e. these networks are favorable to increase coordination between researchers) phenomenon and indicate a behavior of scale-free degree distribution (i.e. some researchers promote clustering more than others) for one of the studied networks.展开更多
Thomas S. Kuhn's theory of normal science (NS), aside from being a provocative philosophical reconstruction of the relatively conservative phase of scientific research, contains useful ideas for systematic analysis...Thomas S. Kuhn's theory of normal science (NS), aside from being a provocative philosophical reconstruction of the relatively conservative phase of scientific research, contains useful ideas for systematic analysis of specific episodes in the history of science. Therefore, although the theory has been looked at from different angles since the first edition of The Structure of Scientific Revolutions (TSSR) was published in 1962, its detailed exploration of the cumulative phase of research in mature science is of abiding relevance in the philosophy of science. This is because NS provides a compelling account of how and why members of scientific communities succeed, largely, to produce reliable knowledge about an incompletely known phenomenal world. Again, the theory elucidates special features of scientific research that differentiate it from other creative enterprises. In that regard, this paper reconstructs Arthur Compton's research into x-ray scattering as a good instantiation of NS. Discussion of Compton's convincing demonstration of the particulate properties of electromagnetic radiation within the framework of NS showcases the elucidatory power of Kuhn's theory with respect to selected episodes in science, and corroborates the notion that the bulk of scientific work is a conservative puzzle-solving activity with the potential for precipitating scientific revolutions. To the best of my knowledge, this is the first time that Compton's groundbreaking work on x-ray scattering has been analysed within the framework of Kuhn's philosophy of science.展开更多
The FAIR principles were received with broad acceptance in several scientific communities.However,there is still some degree of uncertainty on how they should be implemented.Several self-report questionnaires have bee...The FAIR principles were received with broad acceptance in several scientific communities.However,there is still some degree of uncertainty on how they should be implemented.Several self-report questionnaires have been proposed to assess the implementation of the FAIR principles.Moreover,the FAIRmetrics group released 14,general-purpose maturity for representing FAIRness.Initially,these metrics were conducted as open-answer questionnaires.Recently,these metrics have been implemented into a software that can automatically harvest metadata from metadata providers and generate a principle-specific FAIRness evaluation.With so many different approaches for FAIRness evaluations,we believe that further clarification on their limitations and advantages,as well as on their interpretation and interplay should be considered.展开更多
文摘Prof. Zhou Peiyuan (P.Y.Chou) was a celebrated scientist, educationalist and social activist well-known both at home and abroad. He was an outstanding leader in the Chinese science and technology community, a founder of modern mechanics in China, a fighter dedicated to world peace and an international envoy of peace and goodwill sent by the Chinese people as well as a peopleto-people diplomat for the promotion ofinternational exchange and cooperation in science and technology.
基金financial support from CNPq(the Brazilian federal grant agency).
文摘Currently, the collaboration in scientific communities has been studied in order to explain, among other things, the knowledge diffusion. The quality of Graduate Programmes is often associated with the scientific collaboration. This paper discusses how scientific collaboration processes can be identified and characterized through social and complex networks. For this purpose, collaboration networks of bibliographic production, research projects, and committees of PhD theses and Masters’ dissertations by researchers from a graduate program in computational modeling were studied. The data were obtained from CAPES’ reports of the period from 2001 to 2009. Among the studied indices, centrality indices indicate the presence of prominent researchers who influence others and promptly interact with other researchers in the network. The indices of complex networks reveal the presence of the small-world (i.e. these networks are favorable to increase coordination between researchers) phenomenon and indicate a behavior of scale-free degree distribution (i.e. some researchers promote clustering more than others) for one of the studied networks.
文摘Thomas S. Kuhn's theory of normal science (NS), aside from being a provocative philosophical reconstruction of the relatively conservative phase of scientific research, contains useful ideas for systematic analysis of specific episodes in the history of science. Therefore, although the theory has been looked at from different angles since the first edition of The Structure of Scientific Revolutions (TSSR) was published in 1962, its detailed exploration of the cumulative phase of research in mature science is of abiding relevance in the philosophy of science. This is because NS provides a compelling account of how and why members of scientific communities succeed, largely, to produce reliable knowledge about an incompletely known phenomenal world. Again, the theory elucidates special features of scientific research that differentiate it from other creative enterprises. In that regard, this paper reconstructs Arthur Compton's research into x-ray scattering as a good instantiation of NS. Discussion of Compton's convincing demonstration of the particulate properties of electromagnetic radiation within the framework of NS showcases the elucidatory power of Kuhn's theory with respect to selected episodes in science, and corroborates the notion that the bulk of scientific work is a conservative puzzle-solving activity with the potential for precipitating scientific revolutions. To the best of my knowledge, this is the first time that Compton's groundbreaking work on x-ray scattering has been analysed within the framework of Kuhn's philosophy of science.
基金M.Dumontier was supported by grants from NWO(400.17.605628.011.011)+5 种基金NIH(3OT3TR002027-01S11OT3OD025467-011OT3OD025464-01)H2020-EU EOSClife(824087)ELIXIR,the research infrastructure for life-science data.R.de Miranda Azevedo was supported by grants from H2020-EU EOSClife(824087)ELIXIR,the research infrastructure for life-science data.
文摘The FAIR principles were received with broad acceptance in several scientific communities.However,there is still some degree of uncertainty on how they should be implemented.Several self-report questionnaires have been proposed to assess the implementation of the FAIR principles.Moreover,the FAIRmetrics group released 14,general-purpose maturity for representing FAIRness.Initially,these metrics were conducted as open-answer questionnaires.Recently,these metrics have been implemented into a software that can automatically harvest metadata from metadata providers and generate a principle-specific FAIRness evaluation.With so many different approaches for FAIRness evaluations,we believe that further clarification on their limitations and advantages,as well as on their interpretation and interplay should be considered.