In this study,we estimate the absolute vertical land motions at three tidal stations with collocated Global Navigation Satellite System(GNSS)receivers over French Polynesia during the period 2007-2020,and obtain,as an...In this study,we estimate the absolute vertical land motions at three tidal stations with collocated Global Navigation Satellite System(GNSS)receivers over French Polynesia during the period 2007-2020,and obtain,as ancillary results,estimates of the absolute changes in sea level at the same locations.To verify our processing approach to determining vertical motion,we first modeled vertical motion at the International GNSS Service(IGS)THTI station located in the capital island of Tahiti and compared our estimate with previous independent determinations,with a good agreement.We obtained the following estimates for the vertical land motions at the tide gauges:Tubuai island,Austral Archipelago-0.92±0.17 mm/yr,Vairao village,Tahiti Iti:-0.49±0.39 mm/yr,Rikitea,Gambier Archipelago-0.43±0.17 mm/yr.The absolute variations of the sea level are:Tubuai island,Austral Archipelago 5.25±0.60 mm/yr,Vairao village,Tahiti Iti:3.62±0.52 mm/yr,Rikitea,Gambier Archipelago 1.52±0.23 mm/yr.We discuss these absolute values in light of the values obtained from altimetric measurements and other means in French Polynesia.展开更多
The East China Sea(ECS),which is located in the transitional zone between land and ocean,is the main site for the burial of sedimentary organic carbon.Despite good constraints of the modern source to the sinking proce...The East China Sea(ECS),which is located in the transitional zone between land and ocean,is the main site for the burial of sedimentary organic carbon.Despite good constraints of the modern source to the sinking process of organic carbon,its fate in response to changes in climate and sea level since the last deglaciation remains poorly understood.We aim to fill this gap by presenting a high-resolution sedimentary record of core EC2005 to derive a better understanding of the evolution of the depositional environment and its control on the organic deposition since 17.3 kyr.Our results suggest that sedimentary organic carbon was deposited in a terrestrial environment before the seawater reached the study area around 13.1 kyr.This significant transition from a terrestrial environment to a marine environment is reflected by the decrease in TOC/TN and TOC/TS ratios,which is attributed to deglacial sea level rise.The sea level continued to rise until it reached its highstand at approximately 7.3 kyr when the mud depocenter was developed.Our results further indicate that the deposition of the sedimentary organic carbon could respond quickly to abrupt cold events,including the Heinrich stadial 1 and the Younger Dryas during the last deglaciation,as well as‘Bond events'during the Holocene.We propose that the rapid response of the organic deposition to those cold events in the northern hemisphere is linked to the East Asian winter monsoon.These new findings demonstrate that organic carbon deposition and burial on the inner shelf could effectively document sea level and climatic changes.展开更多
The Triassic in the Qomolongma area, southern Tibet, was deposited under an extensional tectonic setting from the Pangea supercontinent to continental rifting. From the Induan to Rhaetian, 12 depositional sequences (...The Triassic in the Qomolongma area, southern Tibet, was deposited under an extensional tectonic setting from the Pangea supercontinent to continental rifting. From the Induan to Rhaetian, 12 depositional sequences (3rd order) have been recognized, which can be grouped into 5 sequence sets and in turn make up a well defined mesosequence (2nd order). Among the recognized marine transgressions, those at 250 Ma, 239 Ma, 231 Ma and 223 Ma respectively are particularly of significance and can be correlated widely across continents. The study shows that in Triassic the Qomolongma area experienced a sedimentary evolution from epicontinental sea to rift basin with the turning point at ca 228 Ma. During the early and middle epochs, the area was under epeiric sea, with carbonate ramp to mixed shoal environments predominant. In the late Carnian, the strong extension initiated listric faulting, thus resulting in rapid basement subsidence and the onset of a rift basin. From the late Norian to Rhaetian, it manifested as a rapid basin filling process in the area. Coupled with long term sea level fall, the excessive terrigenous influx led to the shift of environment from deep water prodelta to shore and finally to fluvial plain.展开更多
In the Late Cambrian, the North China Platform was a typical carbonate ramp platform. The Upper Cambrian of the northern part of the North China Platform is famous for the development of bioherm limestones and storm c...In the Late Cambrian, the North China Platform was a typical carbonate ramp platform. The Upper Cambrian of the northern part of the North China Platform is famous for the development of bioherm limestones and storm calcirudites and can be divided from bottom to top into the Gushan, Changshan and Fengshan formations. In this set of strata, the deep-ramp mudstone and marls and the shallow-ramp packstones and grainstones constitute many carbonate meter-scale cycles of subtidal type. More tidal-flat dolomites are developed in the Upper Cambrian of the southern margin of the North China platform, in which limestone and dolomite beds also constitute many carbonate meter-scale cycles of the peritidal type. These cycles are marked by a variety of litho-facies successions. There are regularly vertical stacking patterns of meter-scale cycles in long-term third-order sequences, which is the key to discerning such sequences. Third- order sequence is marked by a particular sedimentary-facies succession that is the result of the environment-changing process of deepening and shoaling, which is genetically related to third-order sea level changes. Furthermore, four third- order sequences can be grouped in the Upper Cambrian of the North China Platform. The main features of these four third -order sequences in the northern part of the platform can be summarized as follows: firstly, sequence-boundaries are characterized by drowning unconformities; secondly, the sedimentary-facies succession is generally constituted by one from deep-ramp facies to shallow-ramp facies; thirdly, a succession of “CS (?)+HST” (i.e., “condensed section and high- stand system”) forms these four third-order sequences. The chief features for the third-order sequences in the southern part of the North China Platform comprises: more dolomites are developed in the HSTs of third-order sequences and also developed more carbonate meter-scale cycles of peritidal types; the sedimentary-facies succession of the third-order sequences is marked by “shallow ramp-tidal flat”; the sequence boundaries are characterized by exposure punctuated surfaces. According to the changes for the third-order sequences from the north to the south, a regular sequence- stratigraphic framework can be established. From cycles to sequences, the study of sequence stratigraphy from litho-facies successions to sedimentary-facies successions exposes that as follows: meter-scale cycles that are used as the basic working unit actually are litho-facies successions formed by the mechanism of a punctuated aggradational cycle, and third -order sequences that are constituted by regularly vertical stacking patterns of meter-scale cycles are marked by sedimentary-facies successions. On the basis of the changing curve of water depth at each section, the curve of the relative third-order sea level changes in the late Cambrian of the North China Platform can be integrated qualitatively from changing curve of water depth. The correlation of Late Cambrian long-term sea level changes between North China and North America demonstrates that there are not only similarities but also differences, reflecting control of long-term sea level changes both by global eustacy and by regional factors.展开更多
This paper first introduces procedures leading to the establishment of Late Permian-Middle Triassic sea level change curve of Yangtze platform. Bathymetric curves extracted from curve of habitat types are first trans...This paper first introduces procedures leading to the establishment of Late Permian-Middle Triassic sea level change curve of Yangtze platform. Bathymetric curves extracted from curve of habitat types are first transformed to sea level curves stage by stage. Comparison between curves of Yangtze and the world reveals that because the Late Permian marine sequences are lacking in most parts of the world, the Late Permian to Griesbachian curve of Yangtze may serve as an important reference for further revision of the world curve. The Early-Middle Triassic short-term changes of Yangtze are briefly concordant with those of Haq's world curve, whereas their long-term changes are discordant. The latter, however, is representative of the East Asian regions affected by the Indosinian orogeny. Basically the third cycles of Yangtze and the world are only pertly concordant, and even in concordant cases their concrete boundaries are not coincident. This indicater that sea level changes are not strictly synchronous over the world. It seems that the 1st and 2nd cycles (supercycles and megacycles) may be world-wide, but not the 3rd cycles.展开更多
Sea level anomalies observed by altimeter during the 1993-2006 period, thermosteric sea level anomalies estimated by using subsurface temperature data produced by Ishii and SODA reanalysis data, tide gauge records and...Sea level anomalies observed by altimeter during the 1993-2006 period, thermosteric sea level anomalies estimated by using subsurface temperature data produced by Ishii and SODA reanalysis data, tide gauge records and HOAPS freshwater flux data were analyzed to investigate the long term sea level change and the water mass balance in the South China Sea, The altime- ter-observed sea level showed a rising rate of (3.5±0.9)mmyr-1 during the period 1993-2006, but this figure was considered to have been highly distorted by the relatively short time interval and the large inter-decadal variability, which apparently exists in both the thermosteric sea level and the observed sea level. Long term thermosteric sea level from 1945 to 2004 gave a rising rate of 0.15±0.06 mmyr-1. Tide gauge'data revealed this discrepancy and the regional distributions of the sea-level trends. Both the 'real' and the ther- mosteric sea level showed a good correspondence to ENSO: decreasing during El Nino years and increasing during La Nina years. Amplitude and phase differences between the 'real' sea level and the thermosteic sea level were substantially revealed on both sea- sonal and interannual time scales. As one of the possible factors, the freshwater flux might play an important role in balancing the water mass.展开更多
Rising sea level is of great significance to coastal societies;predicting sea level extent in coastal regions is critical.When carrying out predictions,the subsequences obtained using decomposition methods may exhibit...Rising sea level is of great significance to coastal societies;predicting sea level extent in coastal regions is critical.When carrying out predictions,the subsequences obtained using decomposition methods may exhibit a certain regularity and therefore can provide multidimensional information that can be used to improve prediction models.Traditional decomposition methods such as seasonal and trend decomposition using Loess(STL)focus mostly on the fluctuating trend of time series and ignore its impact on prediction.Methods in the signal decomposition domain,such as variational mode decomposition(VMD),have no physical significance.In response to the above problems,a new decomposition method for sea level anomaly time series prediction(DMSLAP)is proposed.With this method,the trend term in a time series can be isolated and the effects of abnormal sea level change behaviors can be attenuated.We decompose multiperiod characteristics using this method while maintaining the smoothness of the analyzed series.Satellite altimetry data from 1993 to 2020 are used in experiments conducted in the study area.The results are then compared with predictions obtained using existing decomposition methods such as the STL and VMD methods and time varying filtering based on empirical mode decomposition(TVF-EMD).The performance of DMSLAP combined with a prediction method resulted in optimal sea level anomaly(SLA)predictions,with a minimum root mean square error(RMSE)of 1.40 cm and a maximum determination coefficient(R^(2))of 0.93 during 2020.The DMSLAP method was more accurate when predicting 1-year data and 3-year data.The TVF-EMD and DMSLAP methods had comparable accuracies,and the periodic term decomposed by the DMSLAP method was more in line with the actual law than that derived using the TVF-EMD method.Thus,DMSLAP can decompose SLA time series better than existing methods and is an effective tool for obtaining short-term SLA prediction.展开更多
The East China Sea shelf basin is a key area for setting up the sea level changes of Cenozoic in the West Pacific. Based upon the characteristics of seismic reflection, the analysis of sequence stratigraphy and depos...The East China Sea shelf basin is a key area for setting up the sea level changes of Cenozoic in the West Pacific. Based upon the characteristics of seismic reflection, the analysis of sequence stratigraphy and depositional system, the high resolution chronostratigraphic framework has been set up by using the data of micropaleontologic biozone fossils. The relative sea level change curve has been set up by combining analysis of paleoecology, genetic facies, specific sedimentary structures and on lap recognized from the seismic profiles with study of geochemical characteristics. There are 4 2nd order basin cycles showing the long term sea level changes, and 22 3rd order cycles showing short term ones with relative changing ranges of 0-150 m. Transgression and regression showing long term sea level changes bear asymmetric feature, which indicates that the speed of transgression is faster than that of regression. There are a lot of differences when compared with Haq ’s curve. The sequence stratigraphic framework has also been set up and 3 tectonic sequences, 7 supersequences and 19 sequences have been subdivided for Tertiary in the East China Sea shelf basin. On the basis of detailed analysis of genetic facies and log facies, 9 sedimentary systems, 20 depositional assemblages and many genetic facies have also been recognized and investigated. Based on the studies mentioned above, the favorable source and reservoir facies of gas and petroleum are indicated.展开更多
Because of the environmental and socioeconomic impacts of anthropogenic sea level rise (SLR), it is very important to understand the processes leading to past and present SLRs towards more reliable future SLR projec...Because of the environmental and socioeconomic impacts of anthropogenic sea level rise (SLR), it is very important to understand the processes leading to past and present SLRs towards more reliable future SLR projections. A regional ocean general circulation model (ROGCM), with a grid refinement in the Bohai, Yellow, and East China Seas (BYECSs), was set up to project SLR induced by the ocean dynamic change in the 21st century. The model does not consider the contributions from ice sheets and glacier melting. Data of all forcing terms required in the model came from the simulation of the Community Climate System Model version 3.0 (CCSM3) under the International Panel on Climate Change (IPCC)-A2 scenario. Simulation results show that at the end of the 21st century, the sea level in the BYECSs will rise about 0.12 to 0.20 m. The SLR in the BYECSs during the 21st century is mainly caused by the ocean mass redistribution due to the ocean dynamic change of the Pacific Ocean, which means that water in the Pacific Ocean tends to move to the continental shelves of the BYECSs, although the local steric sea level change is another factor.展开更多
Four units and twenty-four zones of diatom have been discerned in the Borehole ZK5 in the estuarine plain of the Jiulong River, Fujian Province. Comprehensive analysis of these, together with microbiological assemblag...Four units and twenty-four zones of diatom have been discerned in the Borehole ZK5 in the estuarine plain of the Jiulong River, Fujian Province. Comprehensive analysis of these, together with microbiological assemblages and age determinations in some other boreholes, shows that during the Late Wurm Glacial, sea level of the study area rose and fell frequently, but had principally been in the environments of estuary-bay. This mainly resulted from the tectonic subouction. In this period 3 low sea levels occurred. at 18, 16 and 12 kaBP respectively. During Holocene, sea weter intruded massively and the sea level over the transgnaion maximum had been 5-10 m higher than that of the present.展开更多
The Permian and marine Triassic of eastern Yangtze platform, situated in eastern China, involve 19 orthosequences lasting about 2.7 Ma on average, which can be combined into five orthosequence sets ranging from 8 Ma t...The Permian and marine Triassic of eastern Yangtze platform, situated in eastern China, involve 19 orthosequences lasting about 2.7 Ma on average, which can be combined into five orthosequence sets ranging from 8 Ma to 12 Ma. Affected by the regional Dongwu and Indosinian movements, the sequence stratigraphic pattern and sea level changes in the Permian and Triassic of this region are distinctive and obviously different from most other regions in the world, but typical in the broad eastern Tethys and its neighboring areas. In this region not only did the continuous marine Permian and Triassic boundary sequences cause the orthosequence crossing the boundary belonging to type Ⅱ sequence but also the mesosequence including these stratigraphic intervals had its basal boundary in the upper Longlinian (Artinskian) (ca. 278 Ma), that is, the traditional Carboniferous and Permian boundary, and its top boundary moved from the Permian and Triassic boundary upward into the Anisian of Middle Triassic.展开更多
To better monitor the vertical crustal movements and sea level changes around Greenland,multiple data sources were used in this paper,including global positioning system(GPS),tide gauge,satellite gravimetry,satellite ...To better monitor the vertical crustal movements and sea level changes around Greenland,multiple data sources were used in this paper,including global positioning system(GPS),tide gauge,satellite gravimetry,satellite altimetry,glacial isostatic adjustment(GIA).First,the observations of more than 50 GPS stations from the international GNSS service(IGS)and Greenland network(GNET)in 2007–2018 were processed and the common mode error(CME)was eliminated with using the principal component analysis(PCA).The results show that all GPS stations show an uplift trend and the stations in southern Greenland have a higher vertical speed.Second,by deducting the influence of GIA,the impact of current Gr IS mass changes on GPS stations was analysed,and the GIA-corrected vertical velocity of the GPS is in good agreement with the vertical velocity obtained by gravity recovery and climate experiment(GRACE).Third,the absolute sea level change around Greenland at 4 gauge stations was obtained by combining relative sea level derived from tide gauge observations and crustal uplift rates derived from GPS observations,and was validated by sea level products of satellite altimetry.The results show that although the mass loss of Gr IS can cause considerable global sea level rise,eustatic movements along the coasts of Greenland are quite complex under different mechanisms of sea level changes.展开更多
Detrital sediments derived from the Philippine Islands are one of the main sources of deep-sea sediments in the western Philippine Sea.However,systematic research on their characteristics and transport mechanisms are ...Detrital sediments derived from the Philippine Islands are one of the main sources of deep-sea sediments in the western Philippine Sea.However,systematic research on their characteristics and transport mechanisms are lacking.We used parametric end-member analysis to quantitatively partition the grain size of detrital sediments in core MD06-3052 from the Bicol Shelf in the western Philippine Sea;three endmembers EMI,EM2,and EM3,whose respective modes were at 2,10,and 45 μm,were separated.We also measured the Sr and Nd isotopic compositions of different size fractions(<4 and >20 μm) of the detrital sediments and the results showed that the detrital sediments mainly originate from the Philippine Islands.Components EMI and EM2 are transported to the Bicol Shelf mainly by surface and bottom currents from the islands,and component EM3 is delivered by gravity flow from the exposed shelf during low sea-level stands.The content of the total detrital fraction and the three end-members,as well as the mass accumulation rates(MARs) of the coarse detritus(EM2 and EM3),were considerably higher during glacial periods(40-14 ka and 150-130 ka) than during other intervals;the glacials corresponded to a low sea level,while the MAR of the fine detritus(EMI) did not increase remarkably during 40-14 ka.We therefore concluded that the input of coarse detritus to the Bicol Shelf from the islands was mainly controlled by sea-level change.Variations of the input of fine-grained detritus(EM1) was influenced not only by sea level but also by ocean currents and regional precipitation.Overall,our results help understand "source-to-sink" processes in the western Pacific marginal seas and their response to global change.展开更多
The Devonian is well developed in South China and has drawn a great attention from the geologists both at domestic and abroad. On the basis of study on the sequence stratigraphy in more than 10 sections in Guizhou, Gu...The Devonian is well developed in South China and has drawn a great attention from the geologists both at domestic and abroad. On the basis of study on the sequence stratigraphy in more than 10 sections in Guizhou, Guangxi, Longmenshan and Southern Qinling within South China we have identified 21 sequences and T-R cycles that correspond to third-order sea level changes. These sea level change cycles were controlled by autorhythm(Pragian,Eifelian), allorhythm(Lochkovian,Emsian,Givetian) and coupling rhythm mechanisms (frasian, Famennian and F-F boundary).展开更多
In the present paper, the Holocene sea level changes and coastline shifts in Zhejiang, China are discussed, based on the ancient coastline evidence related with sea level changes and 21 14C dat-ings of shell, peat or ...In the present paper, the Holocene sea level changes and coastline shifts in Zhejiang, China are discussed, based on the ancient coastline evidence related with sea level changes and 21 14C dat-ings of shell, peat or mud and wood samples along the Zhejiang coast. The development of Zhejiang coastline during the Holocene period can be divided into four stages. A lot of data of historical period and modern times have shown that tracing coastline shifts back to its source, we have to consider tremendous effects of man's activities besides natural factors, such as elevation and subsidence of the earth crust, sea level changes, supply of sediment, and littoral hydrodynamics.展开更多
The sea level changes and their correlation from the latest Cambrian C. proavus zone to the Ordovician N. gracilis zone in South China are discussed on the basis of the Ordovician paleogeographic reconstruction in Chi...The sea level changes and their correlation from the latest Cambrian C. proavus zone to the Ordovician N. gracilis zone in South China are discussed on the basis of the Ordovician paleogeographic reconstruction in China. The study of sequence, biostratigraphy and ecostratigraphy suggests that at least 8 major regressive events, occurring in the following levels: basal H. simplex zone (RE1), near the base of C. intermedius zone (RE2), basal C. angulatus zone (RE3), near Mid/Upper G. quadriplicatus zone (RE4) and succeeding the first phase (RE4a) of RE4 at basal P. deltifer zone, Kiaerograptus/Brygograptus zonal boundary (RE5), end S.diversus-P.proteus A. Z.(RE6), end P. originalis zone (RE7) and Early H. teretiusculus or end P. serra zone (RE8), can be recognized in the cratonic plat- form and its shelf-slope tracts of the South China plate based on sequence change or disconformity and associated breaks in biological succession. Most of them can be traced in the other plates or continents.展开更多
In the past nearly two decades,the Argo Program has created an unprecedented global observing array with continuous in situ salinity observations,providing opportunities to extend our knowledge on the variability and ...In the past nearly two decades,the Argo Program has created an unprecedented global observing array with continuous in situ salinity observations,providing opportunities to extend our knowledge on the variability and effects of ocean salinity.In this study,we utilize the Argo data during 2004–2017,together with the satellite observations and a newly released version of ECCO ocean reanalysis,to explore the decadal salinity variability in the Southeast Indian Ocean(SEIO)and its impacts on the regional sea level changes.Both the observations and ECCO reanalysis show that during the Argo era,sea level in the SEIO and the tropical western Pacific experienced a rapid rise in 2005–2013 and a subsequent decline in 2013–2017.Such a decadal phase reversal in sea level could be explained,to a large extent,by the steric sea level variability in the upper 300 m.Argo data further show that,in the SEIO,both the temperature and salinity changes have significant positive contributions to the decadal sea level variations.This is different from much of the Indo-Pacific region,where the halosteric component often has minor or negative contributions to the regional sea level pattern on decadal timescale.The salinity budget analyses based on the ECCO reanalysis indicate that the decadal salinity change in the upper 300 m of SEIO is mainly caused by the horizontal ocean advection.More detailed decomposition reveals that in the SEIO,there exists a strong meridional salinity front between the tropical low-salinity and subtropical high salinity waters.The meridional component of decadal circulation changes will induce strong cross-front salinity exchange and thus the significant regional salinity variations.展开更多
Based on a comparison between the oxygen isotope records of benthic and plank tonic foraminifers from core 8KL of the South China Sea and sea-level change records derived from the Huon Peninsula, New Guinea, it is fou...Based on a comparison between the oxygen isotope records of benthic and plank tonic foraminifers from core 8KL of the South China Sea and sea-level change records derived from the Huon Peninsula, New Guinea, it is found that both records are very similar from 72 K a B.P. to the present, especially for the benthic oxygen isotope record. The linear regression shows that δ18O changes (0.9995‰ for benthic foraminifers and 1.022‰ for planktonic foraminifers) are equal to 100 m in sea-level fluctuation. After making temperature correction in the δ18O record of benthic foraminifers from 72 to 120 Ka B.P., the curve of sea-level oscillation of the South China Sea since 186 Ka B.P. has been reconstructed. The lowermost sea - level that occurred in the last glacial maximum and oxygen isotope stage 6 is approximately - 130 m.展开更多
The construction of dams for intercepting and storing water has altered surface water distributions, landsea water exchanges, and the load response of the solid Earth. The lack of accurate estimation of reservoir prop...The construction of dams for intercepting and storing water has altered surface water distributions, landsea water exchanges, and the load response of the solid Earth. The lack of accurate estimation of reservoir properties through the land surface and hydrological models can lead to water storage simulation and extraction errors. This impact is particularly evident in many artificial reservoirs in China. The study aims to comprehensively assess the spatiotemporal distribution and trends of water storage in medium and large reservoirs(MLRs) in Chinese mainland during 1950-2016, and to investigate the gravity,displacement, and strain effects induced by the reservoir mass concentration using the load elasticity theory. In addition, the impoundment contributions of MLRs to the relative sea level changes were assessed using a sea-level equation. The results show impoundment increases in the MLRs during1950-2016, particularly in the Yangtze River(Changjiang) and southern basins, causing significant elastic load effects in the surrounding areas of the reservoirs and increasing the relative sea level in China's offshore. However, long-term groundwater estimation trends are overestimated and underestimated in the Yangtze River and southwestern basins, respectively, due to the neglect of the MLRs impacts or the uncertainty of the hydrological model's output(e.g., soil moisture, etc.). The construction of MLRs may reduce the water mass input from land to the ocean, thus slowing global sea level rise. The results of the impact of human activities on the regional water cycle provide important references and data support for improving the integration of hydrological models, evaluating Earth's viscoelastic responses under longterm reservoir storage, enhancing in-situ and satellite geodetic measurements, and identifying the main factors driving sea level changes.展开更多
The values of present to future rates in sea level changes vary in an almost chaotic way. In view of the urgent need to handle this question in a constructive way, we must anchor the issue in observational facts, phys...The values of present to future rates in sea level changes vary in an almost chaotic way. In view of the urgent need to handle this question in a constructive way, we must anchor the issue in observational facts, physical laws and long-term scientific experience. Doing so, we can put a solid ultimate frame of any possible rise in sea level in the next centuries: viz. 10.0 mm/yr or 1.0 m per century. If this is the ultimate possible rate, the expected rate in the 21st century must be far less. The author’s proposition is +5 cm ± 15 cm by year 2100.展开更多
基金the University of French Polynesiafunding by several successive“Decision Aide a la Recherche”(DAR)grants to the Geodesy Observatory of Tahiti from the French Space Agency(CNES)+2 种基金fundings from the local government of French Polynesia(Observatoire Polynesien du Rechauffement Climatique)funding by“National Natural Science Foundation of China”(Grand No.41931075)funding by“the Fundamental Research Funds for the Central Universities"(Grand No.2042022kf1198)。
文摘In this study,we estimate the absolute vertical land motions at three tidal stations with collocated Global Navigation Satellite System(GNSS)receivers over French Polynesia during the period 2007-2020,and obtain,as ancillary results,estimates of the absolute changes in sea level at the same locations.To verify our processing approach to determining vertical motion,we first modeled vertical motion at the International GNSS Service(IGS)THTI station located in the capital island of Tahiti and compared our estimate with previous independent determinations,with a good agreement.We obtained the following estimates for the vertical land motions at the tide gauges:Tubuai island,Austral Archipelago-0.92±0.17 mm/yr,Vairao village,Tahiti Iti:-0.49±0.39 mm/yr,Rikitea,Gambier Archipelago-0.43±0.17 mm/yr.The absolute variations of the sea level are:Tubuai island,Austral Archipelago 5.25±0.60 mm/yr,Vairao village,Tahiti Iti:3.62±0.52 mm/yr,Rikitea,Gambier Archipelago 1.52±0.23 mm/yr.We discuss these absolute values in light of the values obtained from altimetric measurements and other means in French Polynesia.
基金the National Natural Science Foundation of China(No.41976053)and the Shandong Province Funds for Excellent Young Scholars(No.ZR2021YQ26)。
文摘The East China Sea(ECS),which is located in the transitional zone between land and ocean,is the main site for the burial of sedimentary organic carbon.Despite good constraints of the modern source to the sinking process of organic carbon,its fate in response to changes in climate and sea level since the last deglaciation remains poorly understood.We aim to fill this gap by presenting a high-resolution sedimentary record of core EC2005 to derive a better understanding of the evolution of the depositional environment and its control on the organic deposition since 17.3 kyr.Our results suggest that sedimentary organic carbon was deposited in a terrestrial environment before the seawater reached the study area around 13.1 kyr.This significant transition from a terrestrial environment to a marine environment is reflected by the decrease in TOC/TN and TOC/TS ratios,which is attributed to deglacial sea level rise.The sea level continued to rise until it reached its highstand at approximately 7.3 kyr when the mud depocenter was developed.Our results further indicate that the deposition of the sedimentary organic carbon could respond quickly to abrupt cold events,including the Heinrich stadial 1 and the Younger Dryas during the last deglaciation,as well as‘Bond events'during the Holocene.We propose that the rapid response of the organic deposition to those cold events in the northern hemisphere is linked to the East Asian winter monsoon.These new findings demonstrate that organic carbon deposition and burial on the inner shelf could effectively document sea level and climatic changes.
基金This paper is supported jointly by the National Natural Science Foundation( No.4982 5 10 2 ) and the Ministry of Science and Te
文摘The Triassic in the Qomolongma area, southern Tibet, was deposited under an extensional tectonic setting from the Pangea supercontinent to continental rifting. From the Induan to Rhaetian, 12 depositional sequences (3rd order) have been recognized, which can be grouped into 5 sequence sets and in turn make up a well defined mesosequence (2nd order). Among the recognized marine transgressions, those at 250 Ma, 239 Ma, 231 Ma and 223 Ma respectively are particularly of significance and can be correlated widely across continents. The study shows that in Triassic the Qomolongma area experienced a sedimentary evolution from epicontinental sea to rift basin with the turning point at ca 228 Ma. During the early and middle epochs, the area was under epeiric sea, with carbonate ramp to mixed shoal environments predominant. In the late Carnian, the strong extension initiated listric faulting, thus resulting in rapid basement subsidence and the onset of a rift basin. From the late Norian to Rhaetian, it manifested as a rapid basin filling process in the area. Coupled with long term sea level fall, the excessive terrigenous influx led to the shift of environment from deep water prodelta to shore and finally to fluvial plain.
文摘In the Late Cambrian, the North China Platform was a typical carbonate ramp platform. The Upper Cambrian of the northern part of the North China Platform is famous for the development of bioherm limestones and storm calcirudites and can be divided from bottom to top into the Gushan, Changshan and Fengshan formations. In this set of strata, the deep-ramp mudstone and marls and the shallow-ramp packstones and grainstones constitute many carbonate meter-scale cycles of subtidal type. More tidal-flat dolomites are developed in the Upper Cambrian of the southern margin of the North China platform, in which limestone and dolomite beds also constitute many carbonate meter-scale cycles of the peritidal type. These cycles are marked by a variety of litho-facies successions. There are regularly vertical stacking patterns of meter-scale cycles in long-term third-order sequences, which is the key to discerning such sequences. Third- order sequence is marked by a particular sedimentary-facies succession that is the result of the environment-changing process of deepening and shoaling, which is genetically related to third-order sea level changes. Furthermore, four third- order sequences can be grouped in the Upper Cambrian of the North China Platform. The main features of these four third -order sequences in the northern part of the platform can be summarized as follows: firstly, sequence-boundaries are characterized by drowning unconformities; secondly, the sedimentary-facies succession is generally constituted by one from deep-ramp facies to shallow-ramp facies; thirdly, a succession of “CS (?)+HST” (i.e., “condensed section and high- stand system”) forms these four third-order sequences. The chief features for the third-order sequences in the southern part of the North China Platform comprises: more dolomites are developed in the HSTs of third-order sequences and also developed more carbonate meter-scale cycles of peritidal types; the sedimentary-facies succession of the third-order sequences is marked by “shallow ramp-tidal flat”; the sequence boundaries are characterized by exposure punctuated surfaces. According to the changes for the third-order sequences from the north to the south, a regular sequence- stratigraphic framework can be established. From cycles to sequences, the study of sequence stratigraphy from litho-facies successions to sedimentary-facies successions exposes that as follows: meter-scale cycles that are used as the basic working unit actually are litho-facies successions formed by the mechanism of a punctuated aggradational cycle, and third -order sequences that are constituted by regularly vertical stacking patterns of meter-scale cycles are marked by sedimentary-facies successions. On the basis of the changing curve of water depth at each section, the curve of the relative third-order sea level changes in the late Cambrian of the North China Platform can be integrated qualitatively from changing curve of water depth. The correlation of Late Cambrian long-term sea level changes between North China and North America demonstrates that there are not only similarities but also differences, reflecting control of long-term sea level changes both by global eustacy and by regional factors.
文摘This paper first introduces procedures leading to the establishment of Late Permian-Middle Triassic sea level change curve of Yangtze platform. Bathymetric curves extracted from curve of habitat types are first transformed to sea level curves stage by stage. Comparison between curves of Yangtze and the world reveals that because the Late Permian marine sequences are lacking in most parts of the world, the Late Permian to Griesbachian curve of Yangtze may serve as an important reference for further revision of the world curve. The Early-Middle Triassic short-term changes of Yangtze are briefly concordant with those of Haq's world curve, whereas their long-term changes are discordant. The latter, however, is representative of the East Asian regions affected by the Indosinian orogeny. Basically the third cycles of Yangtze and the world are only pertly concordant, and even in concordant cases their concrete boundaries are not coincident. This indicater that sea level changes are not strictly synchronous over the world. It seems that the 1st and 2nd cycles (supercycles and megacycles) may be world-wide, but not the 3rd cycles.
基金supported by the National Basic Research Program of China through Grant No. 973-2007CB- 411807
文摘Sea level anomalies observed by altimeter during the 1993-2006 period, thermosteric sea level anomalies estimated by using subsurface temperature data produced by Ishii and SODA reanalysis data, tide gauge records and HOAPS freshwater flux data were analyzed to investigate the long term sea level change and the water mass balance in the South China Sea, The altime- ter-observed sea level showed a rising rate of (3.5±0.9)mmyr-1 during the period 1993-2006, but this figure was considered to have been highly distorted by the relatively short time interval and the large inter-decadal variability, which apparently exists in both the thermosteric sea level and the observed sea level. Long term thermosteric sea level from 1945 to 2004 gave a rising rate of 0.15±0.06 mmyr-1. Tide gauge'data revealed this discrepancy and the regional distributions of the sea-level trends. Both the 'real' and the ther- mosteric sea level showed a good correspondence to ENSO: decreasing during El Nino years and increasing during La Nina years. Amplitude and phase differences between the 'real' sea level and the thermosteic sea level were substantially revealed on both sea- sonal and interannual time scales. As one of the possible factors, the freshwater flux might play an important role in balancing the water mass.
基金Supported by the Fundamental Research Funds for the Central Universities (No.17CX02071)the National Natural Science Foundation of China (No.61571009)the Key R&D Program of Shandong Province (No.2018GHY115046)。
文摘Rising sea level is of great significance to coastal societies;predicting sea level extent in coastal regions is critical.When carrying out predictions,the subsequences obtained using decomposition methods may exhibit a certain regularity and therefore can provide multidimensional information that can be used to improve prediction models.Traditional decomposition methods such as seasonal and trend decomposition using Loess(STL)focus mostly on the fluctuating trend of time series and ignore its impact on prediction.Methods in the signal decomposition domain,such as variational mode decomposition(VMD),have no physical significance.In response to the above problems,a new decomposition method for sea level anomaly time series prediction(DMSLAP)is proposed.With this method,the trend term in a time series can be isolated and the effects of abnormal sea level change behaviors can be attenuated.We decompose multiperiod characteristics using this method while maintaining the smoothness of the analyzed series.Satellite altimetry data from 1993 to 2020 are used in experiments conducted in the study area.The results are then compared with predictions obtained using existing decomposition methods such as the STL and VMD methods and time varying filtering based on empirical mode decomposition(TVF-EMD).The performance of DMSLAP combined with a prediction method resulted in optimal sea level anomaly(SLA)predictions,with a minimum root mean square error(RMSE)of 1.40 cm and a maximum determination coefficient(R^(2))of 0.93 during 2020.The DMSLAP method was more accurate when predicting 1-year data and 3-year data.The TVF-EMD and DMSLAP methods had comparable accuracies,and the periodic term decomposed by the DMSLAP method was more in line with the actual law than that derived using the TVF-EMD method.Thus,DMSLAP can decompose SLA time series better than existing methods and is an effective tool for obtaining short-term SLA prediction.
文摘The East China Sea shelf basin is a key area for setting up the sea level changes of Cenozoic in the West Pacific. Based upon the characteristics of seismic reflection, the analysis of sequence stratigraphy and depositional system, the high resolution chronostratigraphic framework has been set up by using the data of micropaleontologic biozone fossils. The relative sea level change curve has been set up by combining analysis of paleoecology, genetic facies, specific sedimentary structures and on lap recognized from the seismic profiles with study of geochemical characteristics. There are 4 2nd order basin cycles showing the long term sea level changes, and 22 3rd order cycles showing short term ones with relative changing ranges of 0-150 m. Transgression and regression showing long term sea level changes bear asymmetric feature, which indicates that the speed of transgression is faster than that of regression. There are a lot of differences when compared with Haq ’s curve. The sequence stratigraphic framework has also been set up and 3 tectonic sequences, 7 supersequences and 19 sequences have been subdivided for Tertiary in the East China Sea shelf basin. On the basis of detailed analysis of genetic facies and log facies, 9 sedimentary systems, 20 depositional assemblages and many genetic facies have also been recognized and investigated. Based on the studies mentioned above, the favorable source and reservoir facies of gas and petroleum are indicated.
基金supported by the National Natural Science Foundation of China(Grants No.41206021 and 41276018)the National Basic Research Program of China(Grant No.2012CB955601)+2 种基金the Young Scientist Foundation of the State Oceanic Administration,China(Grant No.2012251)the U.S.National Science Foundation Belmont Forum Program(Grant No.ICER-1342644)the GASI-03-01-01-09
文摘Because of the environmental and socioeconomic impacts of anthropogenic sea level rise (SLR), it is very important to understand the processes leading to past and present SLRs towards more reliable future SLR projections. A regional ocean general circulation model (ROGCM), with a grid refinement in the Bohai, Yellow, and East China Seas (BYECSs), was set up to project SLR induced by the ocean dynamic change in the 21st century. The model does not consider the contributions from ice sheets and glacier melting. Data of all forcing terms required in the model came from the simulation of the Community Climate System Model version 3.0 (CCSM3) under the International Panel on Climate Change (IPCC)-A2 scenario. Simulation results show that at the end of the 21st century, the sea level in the BYECSs will rise about 0.12 to 0.20 m. The SLR in the BYECSs during the 21st century is mainly caused by the ocean mass redistribution due to the ocean dynamic change of the Pacific Ocean, which means that water in the Pacific Ocean tends to move to the continental shelves of the BYECSs, although the local steric sea level change is another factor.
文摘Four units and twenty-four zones of diatom have been discerned in the Borehole ZK5 in the estuarine plain of the Jiulong River, Fujian Province. Comprehensive analysis of these, together with microbiological assemblages and age determinations in some other boreholes, shows that during the Late Wurm Glacial, sea level of the study area rose and fell frequently, but had principally been in the environments of estuary-bay. This mainly resulted from the tectonic subouction. In this period 3 low sea levels occurred. at 18, 16 and 12 kaBP respectively. During Holocene, sea weter intruded massively and the sea level over the transgnaion maximum had been 5-10 m higher than that of the present.
文摘The Permian and marine Triassic of eastern Yangtze platform, situated in eastern China, involve 19 orthosequences lasting about 2.7 Ma on average, which can be combined into five orthosequence sets ranging from 8 Ma to 12 Ma. Affected by the regional Dongwu and Indosinian movements, the sequence stratigraphic pattern and sea level changes in the Permian and Triassic of this region are distinctive and obviously different from most other regions in the world, but typical in the broad eastern Tethys and its neighboring areas. In this region not only did the continuous marine Permian and Triassic boundary sequences cause the orthosequence crossing the boundary belonging to type Ⅱ sequence but also the mesosequence including these stratigraphic intervals had its basal boundary in the upper Longlinian (Artinskian) (ca. 278 Ma), that is, the traditional Carboniferous and Permian boundary, and its top boundary moved from the Permian and Triassic boundary upward into the Anisian of Middle Triassic.
基金The National Key R&D Program of China under contract No.2016YFC1402701the National Natural Science Foundation of China under contract Nos 41941010,41531069 and 41476162
文摘To better monitor the vertical crustal movements and sea level changes around Greenland,multiple data sources were used in this paper,including global positioning system(GPS),tide gauge,satellite gravimetry,satellite altimetry,glacial isostatic adjustment(GIA).First,the observations of more than 50 GPS stations from the international GNSS service(IGS)and Greenland network(GNET)in 2007–2018 were processed and the common mode error(CME)was eliminated with using the principal component analysis(PCA).The results show that all GPS stations show an uplift trend and the stations in southern Greenland have a higher vertical speed.Second,by deducting the influence of GIA,the impact of current Gr IS mass changes on GPS stations was analysed,and the GIA-corrected vertical velocity of the GPS is in good agreement with the vertical velocity obtained by gravity recovery and climate experiment(GRACE).Third,the absolute sea level change around Greenland at 4 gauge stations was obtained by combining relative sea level derived from tide gauge observations and crustal uplift rates derived from GPS observations,and was validated by sea level products of satellite altimetry.The results show that although the mass loss of Gr IS can cause considerable global sea level rise,eustatic movements along the coasts of Greenland are quite complex under different mechanisms of sea level changes.
基金the National Natural Science Foundation of China (Nos.41776065,41576050,41830539)the Basic Scientific Fund for National Public Research Institutes of China (Nos.2019S04,2017Y07)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB42000000)the Open Fund of Qingdao National Laboratory for Marine Science and Technology (No.QNLM20160RP0205)
文摘Detrital sediments derived from the Philippine Islands are one of the main sources of deep-sea sediments in the western Philippine Sea.However,systematic research on their characteristics and transport mechanisms are lacking.We used parametric end-member analysis to quantitatively partition the grain size of detrital sediments in core MD06-3052 from the Bicol Shelf in the western Philippine Sea;three endmembers EMI,EM2,and EM3,whose respective modes were at 2,10,and 45 μm,were separated.We also measured the Sr and Nd isotopic compositions of different size fractions(<4 and >20 μm) of the detrital sediments and the results showed that the detrital sediments mainly originate from the Philippine Islands.Components EMI and EM2 are transported to the Bicol Shelf mainly by surface and bottom currents from the islands,and component EM3 is delivered by gravity flow from the exposed shelf during low sea-level stands.The content of the total detrital fraction and the three end-members,as well as the mass accumulation rates(MARs) of the coarse detritus(EM2 and EM3),were considerably higher during glacial periods(40-14 ka and 150-130 ka) than during other intervals;the glacials corresponded to a low sea level,while the MAR of the fine detritus(EMI) did not increase remarkably during 40-14 ka.We therefore concluded that the input of coarse detritus to the Bicol Shelf from the islands was mainly controlled by sea-level change.Variations of the input of fine-grained detritus(EM1) was influenced not only by sea level but also by ocean currents and regional precipitation.Overall,our results help understand "source-to-sink" processes in the western Pacific marginal seas and their response to global change.
文摘The Devonian is well developed in South China and has drawn a great attention from the geologists both at domestic and abroad. On the basis of study on the sequence stratigraphy in more than 10 sections in Guizhou, Guangxi, Longmenshan and Southern Qinling within South China we have identified 21 sequences and T-R cycles that correspond to third-order sea level changes. These sea level change cycles were controlled by autorhythm(Pragian,Eifelian), allorhythm(Lochkovian,Emsian,Givetian) and coupling rhythm mechanisms (frasian, Famennian and F-F boundary).
文摘In the present paper, the Holocene sea level changes and coastline shifts in Zhejiang, China are discussed, based on the ancient coastline evidence related with sea level changes and 21 14C dat-ings of shell, peat or mud and wood samples along the Zhejiang coast. The development of Zhejiang coastline during the Holocene period can be divided into four stages. A lot of data of historical period and modern times have shown that tracing coastline shifts back to its source, we have to consider tremendous effects of man's activities besides natural factors, such as elevation and subsidence of the earth crust, sea level changes, supply of sediment, and littoral hydrodynamics.
文摘The sea level changes and their correlation from the latest Cambrian C. proavus zone to the Ordovician N. gracilis zone in South China are discussed on the basis of the Ordovician paleogeographic reconstruction in China. The study of sequence, biostratigraphy and ecostratigraphy suggests that at least 8 major regressive events, occurring in the following levels: basal H. simplex zone (RE1), near the base of C. intermedius zone (RE2), basal C. angulatus zone (RE3), near Mid/Upper G. quadriplicatus zone (RE4) and succeeding the first phase (RE4a) of RE4 at basal P. deltifer zone, Kiaerograptus/Brygograptus zonal boundary (RE5), end S.diversus-P.proteus A. Z.(RE6), end P. originalis zone (RE7) and Early H. teretiusculus or end P. serra zone (RE8), can be recognized in the cratonic plat- form and its shelf-slope tracts of the South China plate based on sequence change or disconformity and associated breaks in biological succession. Most of them can be traced in the other plates or continents.
基金The National Key Research and Development Program of China under contract No.2019YFA0606702the SOA Global Change and Air-Sea Interaction Project under contract No.GASI-IPOVAI-01-04the National Natural Science Foundation of China under contract Nos 41776003,91858202 and 41630963。
文摘In the past nearly two decades,the Argo Program has created an unprecedented global observing array with continuous in situ salinity observations,providing opportunities to extend our knowledge on the variability and effects of ocean salinity.In this study,we utilize the Argo data during 2004–2017,together with the satellite observations and a newly released version of ECCO ocean reanalysis,to explore the decadal salinity variability in the Southeast Indian Ocean(SEIO)and its impacts on the regional sea level changes.Both the observations and ECCO reanalysis show that during the Argo era,sea level in the SEIO and the tropical western Pacific experienced a rapid rise in 2005–2013 and a subsequent decline in 2013–2017.Such a decadal phase reversal in sea level could be explained,to a large extent,by the steric sea level variability in the upper 300 m.Argo data further show that,in the SEIO,both the temperature and salinity changes have significant positive contributions to the decadal sea level variations.This is different from much of the Indo-Pacific region,where the halosteric component often has minor or negative contributions to the regional sea level pattern on decadal timescale.The salinity budget analyses based on the ECCO reanalysis indicate that the decadal salinity change in the upper 300 m of SEIO is mainly caused by the horizontal ocean advection.More detailed decomposition reveals that in the SEIO,there exists a strong meridional salinity front between the tropical low-salinity and subtropical high salinity waters.The meridional component of decadal circulation changes will induce strong cross-front salinity exchange and thus the significant regional salinity variations.
基金Project 49206062 funded by the National Natural Science Foundation of China
文摘Based on a comparison between the oxygen isotope records of benthic and plank tonic foraminifers from core 8KL of the South China Sea and sea-level change records derived from the Huon Peninsula, New Guinea, it is found that both records are very similar from 72 K a B.P. to the present, especially for the benthic oxygen isotope record. The linear regression shows that δ18O changes (0.9995‰ for benthic foraminifers and 1.022‰ for planktonic foraminifers) are equal to 100 m in sea-level fluctuation. After making temperature correction in the δ18O record of benthic foraminifers from 72 to 120 Ka B.P., the curve of sea-level oscillation of the South China Sea since 186 Ka B.P. has been reconstructed. The lowermost sea - level that occurred in the last glacial maximum and oxygen isotope stage 6 is approximately - 130 m.
基金supported by the National Natural Science Foundation of China (No.42274110 and 42374106)long-term monitoring project in the Three Gorges Reservoir area (the National Natural Science Foundation of China,No.41874090 and 41504065)。
文摘The construction of dams for intercepting and storing water has altered surface water distributions, landsea water exchanges, and the load response of the solid Earth. The lack of accurate estimation of reservoir properties through the land surface and hydrological models can lead to water storage simulation and extraction errors. This impact is particularly evident in many artificial reservoirs in China. The study aims to comprehensively assess the spatiotemporal distribution and trends of water storage in medium and large reservoirs(MLRs) in Chinese mainland during 1950-2016, and to investigate the gravity,displacement, and strain effects induced by the reservoir mass concentration using the load elasticity theory. In addition, the impoundment contributions of MLRs to the relative sea level changes were assessed using a sea-level equation. The results show impoundment increases in the MLRs during1950-2016, particularly in the Yangtze River(Changjiang) and southern basins, causing significant elastic load effects in the surrounding areas of the reservoirs and increasing the relative sea level in China's offshore. However, long-term groundwater estimation trends are overestimated and underestimated in the Yangtze River and southwestern basins, respectively, due to the neglect of the MLRs impacts or the uncertainty of the hydrological model's output(e.g., soil moisture, etc.). The construction of MLRs may reduce the water mass input from land to the ocean, thus slowing global sea level rise. The results of the impact of human activities on the regional water cycle provide important references and data support for improving the integration of hydrological models, evaluating Earth's viscoelastic responses under longterm reservoir storage, enhancing in-situ and satellite geodetic measurements, and identifying the main factors driving sea level changes.
文摘The values of present to future rates in sea level changes vary in an almost chaotic way. In view of the urgent need to handle this question in a constructive way, we must anchor the issue in observational facts, physical laws and long-term scientific experience. Doing so, we can put a solid ultimate frame of any possible rise in sea level in the next centuries: viz. 10.0 mm/yr or 1.0 m per century. If this is the ultimate possible rate, the expected rate in the 21st century must be far less. The author’s proposition is +5 cm ± 15 cm by year 2100.