期刊文献+
共找到370篇文章
< 1 2 19 >
每页显示 20 50 100
Assessment of soil erosion in the Irga watershed on the eastern edge of the Chota Nagpur Plateau,India 被引量:1
1
作者 Ratan PAL Buddhadev HEMBRAM Narayan Chandra JANA 《Regional Sustainability》 2024年第1期54-68,共15页
Human activities to improve the quality of life have accelerated the natural rate of soil erosion.In turn,these natural disasters have taken a great impact on humans.Human activities,particularly the conversion of veg... Human activities to improve the quality of life have accelerated the natural rate of soil erosion.In turn,these natural disasters have taken a great impact on humans.Human activities,particularly the conversion of vegetated land into agricultural land and built-up area,stand out as primary contributors to soil erosion.The present study investigated the risk of soil erosion in the Irga watershed located on the eastern fringe of the Chota Nagpur Plateau in Jharkhand,India,which is dominated by sandy loam and sandy clay loam soil with low soil organic carbon(SOC)content.The study used the Revised Universal Soil Loss Equation(RUSLE)and Geographical Information System(GIS)technique to determine the rate of soil erosion.The five parameters(rainfall-runoff erosivity(R)factor,soil erodibility(K)factor,slope length and steepness(LS)factor,cover-management(C)factor,and support practice(P)factor)of the RUSLE were applied to present a more accurate distribution characteristic of soil erosion in the Irga watershed.The result shows that the R factor is positively correlated with rainfall and follows the same distribution pattern as the rainfall.The K factor values in the northern part of the study area are relatively low,while they are relatively high in the southern part.The mean value of the LS factor is 2.74,which is low due to the flat terrain of the Irga watershed.There is a negative linear correlation between Normalized Difference Vegetation Index(NDVI)and the C factor,and the high values of the C factor are observed in places with low NDVI.The mean value of the P factor is 0.210,with a range from 0.000 to 1.000.After calculating all parameters,we obtained the average soil erosion rate of 1.43 t/(hm^(2)•a),with the highest rate reaching as high as 32.71 t/(hm^(2)•a).Therefore,the study area faces a low risk of soil erosion.However,preventative measures are essential to avoid future damage to productive and constructive activities caused by soil erosion.This study also identifies the spatial distribution of soil erosion rate,which will help policy-makers to implement targeted soil erosion control measures. 展开更多
关键词 soil erosion soil organic carbon Rainfall-runoff erosivity factor soil erodibility factor Slope length and steepness factor Cover-management factor Support practice factor Irga watershed
下载PDF
Soil erosion susceptibility mapping of Hangu Region,Kohat Plateau of Pakistan using GIS and RS-based models
2
作者 Fakhrul ISLAM Liaqat Ali WASEEM +5 位作者 Tehmina BIBI Waqar AHMAD Muhammad SADIQ Matee ULLAH Walid SOUFAN Aqil TARIQ 《Journal of Mountain Science》 SCIE CSCD 2024年第8期2547-2561,共15页
Soil erosion is a crucial geo-environmental hazard worldwide that affects water quality and agriculture,decreases reservoir storage capacity due to sedimentation,and increases the danger of flooding and landslides.Thu... Soil erosion is a crucial geo-environmental hazard worldwide that affects water quality and agriculture,decreases reservoir storage capacity due to sedimentation,and increases the danger of flooding and landslides.Thus,this study uses geospatial modeling to produce soil erosion susceptibility maps(SESM)for the Hangu region,Khyber Pakhtunkhwa(KPK),Pakistan.The Hangu region,located in the Kohat Plateau of KPK,Pakistan,is particularly susceptible to soil erosion due to its unique geomorphological and climatic characteristics.Moreover,the Hangu region is characterized by a combination of steep slopes,variable rainfall patterns,diverse land use,and distinct soil types,all of which contribute to the complexity and severity of soil erosion processes.These factors necessitate a detailed and region-specific study to develop effective soil conservation strategies.In this research,we detected and mapped 1013 soil erosion points and prepared 12 predisposing factors(elevation,aspect,slope,Normalized Differentiate Vegetation Index(NDVI),drainage network,curvature,Land Use Land Cover(LULC),rainfall,lithology,contour,soil texture,and road network)of soil erosion using GIS platform.Additionally,GIS-based statistical models like the weight of evidence(WOE)and frequency ratio(FR)were applied to produce the SESM for the study area.The SESM was reclassified into four classes,i.e.,low,medium,high,and very high zone.The results of WOE for SESM show that 16.39%,33.02%,29.27%,and 21.30%of areas are covered by low,medium,high,and very high zones,respectively.In contrast,the FR results revealed that 16.50%,24.33%,35.55%,and 23.59%of the areas are occupied by low,medium,high,and very high classes.Furthermore,the reliability of applied models was evaluated using the Area Under Curve(AUC)technique.The validation results utilizing the area under curve showed that the success rate curve(SRC)and predicted rate curve(PRC)for WOE are 82%and 86%,respectively,while SRC and PRC for FR are 85%and 96%,respectively.The validation results revealed that the FR model performance is better and more reliable than the WOE. 展开更多
关键词 soil erosion Geospatial technology Statistical models Hangu Pakistan
下载PDF
Evaluation of soil erosion vulnerability in Hubei Province of China using RUSLE model and combination weighting method
3
作者 YANG Yanpan TIAN Pei +3 位作者 JIA Tinghui WANG Fei YANG Yang HUANG Jianwu 《Journal of Mountain Science》 SCIE CSCD 2024年第10期3318-3336,共19页
Soil erosion has been recognized as a critical environmental issue worldwide.While previous studies have primarily focused on watershed-scale soil erosion vulnerability from a natural factor perspective,there is a not... Soil erosion has been recognized as a critical environmental issue worldwide.While previous studies have primarily focused on watershed-scale soil erosion vulnerability from a natural factor perspective,there is a notable gap in understanding the intricate interplay between natural and socio-economic factors,especially in the context of spatial heterogeneity and nonlinear impacts of human-land interactions.To address this,our study evaluates the soil erosion vulnerability at a provincial scale,taking Hubei Province as a case study to explore the combined effects of natural and socio-economic factors.We developed an evaluation index system based on 15 indicators of soil erosion vulnerability:exposure,sensitivity,and adaptability.In addition,the combination weighting method was applied to determine index weights,and the spatial interaction was analyzed using spatial autocorrelation,geographical temporally weighted regression and geographical detector.The results showed an overall decreasing soil erosion intensity in Hubei Province during 2000 and 2020.The soil erosion vulnerability increased before 2000 and then.The areas with high soil erosion vulnerability were mainly confined in the central and southern regions of Hubei Province(Xiantao,Tianmen,Qianjiang and Ezhou)with obvious spatial aggregation that intensified over time.Natural factors(habitat quality index)had negative impacts on soil erosion vulnerability,whereas socio-economic factors(population density)showed substantial spatial variability in their influences.There was a positive correlation between soil erosion vulnerability and erosion intensity,with the correlation coefficients ranging from-0.41 and 0.93.The increase of slope was found to enhance the positive correlation between soil erosion vulnerability and intensity. 展开更多
关键词 soil erosion vulnerability RUSLE model Combination weighting method Driving factors Spatial heterogeneity
下载PDF
Soil erosion and its causes in high-filling body:A case study of a valley area on the Loess Plateau,China 被引量:2
4
作者 BAO Han TANG Ming +3 位作者 LAN Heng-xing PENG Jian-bing ZHENG Han GUO Guan-miao 《Journal of Mountain Science》 SCIE CSCD 2023年第1期182-196,共15页
Large-scale land consolidation projects(LCPs)have been carried out on the Loess Plateau to increase the area of agriculture land.The newly created land is prone to soil erosion under the effects of water and gravity.T... Large-scale land consolidation projects(LCPs)have been carried out on the Loess Plateau to increase the area of agriculture land.The newly created land is prone to soil erosion under the effects of water and gravity.Taking a typical high-filling body(HFB)formed by LCPs in Yan’an,China as the subject,this study comprehensively investigated the types and causes of soil erosion with multiple methods of field investigation,on-site monitoring and laboratory tests.Results showed that the HFB presented a composite pattern of soil erosion with multiple types mainly including underground erosion,mixed water-gravity erosion,seepage erosion,and scouring erosion.The type of erosion varied spatially in different parts of the HFB depending on the dominant factors,mainly including the groundwater state,rainfall,runoff,gravity action,topography,and soil erodibility.The underground erosion mainly occurred at the positions with higher groundwater level and larger hydraulic gradient,while scouring erosion mainly occurred at the positions with extensive interactions of surface runoff,channel slope gradient and soil properties.And near the leading edge of the top of the slope,a band of mixed watergravity erosion occurred owing to the effects of water and gravity.In addition,nearly saturated soils at the toe of HFB displayed groundwater exfiltration and slope-face slumping.Based on our findings on the causes and variation of soil erosion for the HFB,we proposed the following erosion prevention and control measures to protect the LCPs on the Loess Plateau:to construct drainage ditches and blind ditches to form a complete drainage system,plant alfalfa on the top platform to increase rainfall interception and reduce surface runoff,set seepage ditches and plant deep-rooted plants at the toe of the slope to improve slope toe stability,monitor groundwater level and slope deformation to learn the erosion dynamics and slope stability,and optimize the geometry of HFB such as the slope gradient and slope steps to reduce soil erosion. 展开更多
关键词 Land consolidation High-filling body soil erosion Loess Plateau On-site monitoring Influence factors
下载PDF
Combining RUSLE model and the vegetation health index to unravel the relationship between soil erosion and droughts in southeastern Tunisia 被引量:1
5
作者 Olfa TERWAYET BAYOULI ZHANG Wanchang Houssem TERWAYET BAYOULI 《Journal of Arid Land》 SCIE CSCD 2023年第11期1269-1289,共21页
Droughts and soil erosion are among the most prominent climatic driven hazards in drylands,leading to detrimental environmental impacts,such as degraded lands,deteriorated ecosystem services and biodiversity,and incre... Droughts and soil erosion are among the most prominent climatic driven hazards in drylands,leading to detrimental environmental impacts,such as degraded lands,deteriorated ecosystem services and biodiversity,and increased greenhouse gas emissions.In response to the current lack of studies combining drought conditions and soil erosion processes,in this study,we developed a comprehensive Geographic Information System(GIS)-based approach to assess soil erosion and droughts,thereby revealing the relationship between soil erosion and droughts under an arid climate.The vegetation condition index(VCI)and temperature condition index(TCI)derived respectively from the enhanced vegetation index(EVI)MOD13A2 and land surface temperature(LST)MOD11A2 products were combined to generate the vegetation health index(VHI).The VHI has been conceived as an efficient tool to monitor droughts in the Negueb watershed,southeastern Tunisia.The revised universal soil loss equation(RUSLE)model was applied to quantitatively estimate soil erosion.The relationship between soil erosion and droughts was investigated through Pearson correlation.Results exhibited that the Negueb watershed experienced recurrent mild to extreme drought during 2000–2016.The average soil erosion rate was determined to be 1.8 t/(hm2•a).The mountainous western part of the watershed was the most vulnerable not only to soil erosion but also to droughts.The slope length and steepness factor was shown to be the most significant controlling parameter driving soil erosion.The relationship between droughts and soil erosion had a positive correlation(r=0.3);however,the correlation was highly varied spatially across the watershed.Drought was linked to soil erosion in the Negueb watershed.The current study provides insight for natural disaster risk assessment,land managers,and stake-holders to apply appropriate management measures to promote sustainable development goals in fragile environments. 展开更多
关键词 DROUGHTS soil erosion vegetation health index(VHI) revised universal soil loss equation(RUSLE)model southeastern Tunisia
下载PDF
Soil erosion differences in paired grassland and forestland catchments on the Chinese Loess Plateau
6
作者 YANG Si-qi LUO Da +1 位作者 HAN Hao JIN Zhao 《Journal of Mountain Science》 SCIE CSCD 2023年第5期1336-1348,共13页
In this study,two adjacent gauged catchments on the Chinese Loess Plateau were selected,in which one catchment was afforested and one was restored with natural vegetation in 1954.The distributions of soil erosion rate... In this study,two adjacent gauged catchments on the Chinese Loess Plateau were selected,in which one catchment was afforested and one was restored with natural vegetation in 1954.The distributions of soil erosion rates were estimated between 2010 and 2020 with a high spatial resolution of 2 m in the paired catchments based on the Revised Universal Soil Loss Equation model(RUSLE)and Geographic Information Systems(GIS).The results showed that the simulated soil erosion rates in 2010-2020 averaged 12.58 and 8.56 t ha^(-1)a^(-1)for the grassland and forestland catchment,respectively.Moreover,areas with high soil erosion rates(>80t ha^(-1)a^(-1))were mainly distributed in the topography with steep slope gradients(>45°).Comparisons between simulated soil erosion rates and observed annual sediment loads indicated that the simulation results of the grassland catchment were lower than the observed values,while it was reversed in the forestland catchment.We conclude that the RUSLE model cannot simulate the gravity erosion induced by extreme rainfall events.For the forestland catchment,insufficient streamflow and dense vegetation coverage are crucial factors resulting in hindering the movement of sediments. 展开更多
关键词 Catchment comparison soil erosion RUSLE model Vegetation effect Topography effect Spatial analysis
下载PDF
Elevation,bedrock exposure,land use,interbedded limestone and clastic rock,and vegetation coverage dominate the spatiotemporal variability of soil erosion in karst basin
7
作者 CHEN Mei GAO Jia-yong +2 位作者 CHEN Hong-lian JING Jun LI Rui 《Journal of Mountain Science》 SCIE CSCD 2023年第9期2519-2535,共17页
Soil erosion is a prominent environmental problem in karst regions.Exploring the spatiotemporal variability of soil erosion and the factors that influence soil erosion is of great significance for regional soil erosio... Soil erosion is a prominent environmental problem in karst regions.Exploring the spatiotemporal variability of soil erosion and the factors that influence soil erosion is of great significance for regional soil erosion prevention and control.However,the mechanisms influencing the characteristic features of the karst basins,such as bedrock exposure and lithology,still need to be further explored.This study used GIS technology,the Revised Universal Soil Loss Equation model,Getis–Ord Gi*,and partial least squares regression(PLSR)to identify the dominant factors influencing soil erosion and the spatiotemporal variability of soil erosion in 31 sub-basins of the Dabang River Basin(DRB),a typical karst area of Southwest China,from 2010 to 2020.The results indicated that soil erosion in the DRB from 2010 to 2020 was generally decreasing,the mean soil erosion in the DRB in 2010,2015 and 2020 was 18.46,16.51 and 15.29 t ha^(-1)a^(-1),respectively.During the study period,the area of slight erosion increased by 26.39%(706.54 km^(2)),while severe erosion enlarged by 26.36 km^(2).Spatially,the DRB was primarily affected by medium and slight soil erosion.The hot spot areas of soil erosion(key control areas)were mainly concentrated in the central and southern parts of the basin,decreasing each year,and the area of soil erosion hot pots has decreased from 43.22%to 20.60%.PLSR decoupling results show that elevation,bedrock exposure,land use type,interbedded limestone and clastic rock,and vegetation coverage were identified as the key variables affecting soil erosion,explaining 52.8%of soil erosion variability,with a high value of the Variable Importance on Projection(VIP)more than 1.These results can be used as a reference for comprehensive control of soil erosion and water loss in the basin. 展开更多
关键词 soil erosion Karst basin RUSLE model Spatiotemporal variability PLSR
下载PDF
First application of plutonium in soil erosion research on terraces
8
作者 Yong-Jing Guan Wu Chen +12 位作者 Shen-Zhen Wang Yu-Xin Hua Qiao-Yan Jing Zhi-Yong Liu Chun-Ping Huang De-Yu Wang Hui-Juan Wang Xian-Wen He Mario De Cesare Liang-Jia Cui Hua He Kai-Di Fan Zi-Chen Guo 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第4期41-53,共13页
The spatial distributions of ^(239+240)Pu and ^(137)Cs in soils from Longji Rice Terraces were investigated to evaluate soil erosion.The activity concentrations of ^(239+240)Pu and ^(137)Cs in the surface soils of the... The spatial distributions of ^(239+240)Pu and ^(137)Cs in soils from Longji Rice Terraces were investigated to evaluate soil erosion.The activity concentrations of ^(239+240)Pu and ^(137)Cs in the surface soils of the paddy fields were in the range of 0.089–0.734 and1.80–7.88 mBq/g,respectively.The activities of ^(239+240)Pu and ^(137)Cs showed very similar distribution trends,first increasing and then decreasing with increasing elevation.The 240Pu/239Pu atom ratios in the surface soils ranged from 0.162 to 0.232.The activities of ^(239+240)Pu and ^(137)Cs in the soil cores tended to be uniformly distributed within the plowed layer and declined exponentially below this depth.The mean soil erosion rates of Longji Rice Terraces estimated by ^(239+240)Pu and ^(137)Cs tracer methods were 5.44 t/(ha·a)and 5.16 t/(ha·a),respectively,which demonstrated that plutonium can replace ^(137)Cs as an ideal tracer for soil erosion research in the future.Landform features are the main factors affecting the distribution of plutonium and ^(137)Cs as well as soil erosion in the Longji Rice Terraces. 展开更多
关键词 soil erosion PLUTONIUM ^(137)Cs Tracer method TERRACES
下载PDF
Driving forces and their interactions of soil erosion in soil and water conservation regionalization at the county scale with a high cultivation rate
9
作者 LUO Bang-lin LI Jiang-wen +2 位作者 GONG Chun-ming ZHONG Shou-qin WEI Chao-fu 《Journal of Mountain Science》 SCIE CSCD 2023年第9期2502-2518,共17页
Soil erosion control based on county scale Soil and Water Conservation Regionalization(SWCR)is an essential component of China's ecological civilization construction.In SWCR,the quantitative analysis of the spatia... Soil erosion control based on county scale Soil and Water Conservation Regionalization(SWCR)is an essential component of China's ecological civilization construction.In SWCR,the quantitative analysis of the spatial heterogeneity and driving factors of soil erosion among different regions is still lacking.It is of great significance for soil erosion control to deeply examine the factors contributing to soil erosion(natural,land use,and socioeconomic factors)and their interaction at the county and regional levels.This study focused on a highly cultivated area,Hechuan District of Chongqing in the Sichuan Basin.The district(with 30 townships)was divided into four soil and water conservation regions(Ⅰ-Ⅳ)using principal component and hierarchical cluster analysis.The driving factors of soil erosion were identified using the geographical detector model.The results showed thatⅰ)the high cultivation rate was a prominent factor of soil erosion,and the sloping farmland accounted for 78.4%of the soil erosion in the study area;ⅱ)land use factors demonstrated the highest explanatory power in soil erosion,and the average interaction of land use factors explained 60.1%of soil erosion in the study area;ⅲ)the interaction between natural factors,socioeconomic factors,and land use factors greatly contributes to regional soil erosion through nonlinear-enhancement of double-factor enhancement.This study highlights the importance of giving special attention to the effects of land use factors on soil erosion at the county scale,particularly in mountainous and hilly areas with extensive sloping farmland and a high cultivation rate. 展开更多
关键词 soil and Water Conservation Regionalization Driving factors soil erosion Geographical detector model Spatial heterogeneity
下载PDF
Effect of Different Vegetation Types on Soil Erosion by Water 被引量:26
10
作者 张岩 刘宝元 +1 位作者 张清春 谢云 《Acta Botanica Sinica》 CSCD 2003年第10期1204-1209,共6页
The C factor in Universal Soil loss Equation reflecting the effect of vegetation on soil erosion by water is one of the important parameters for estimating soil erosion rate and selecting appropriate land use patterns... The C factor in Universal Soil loss Equation reflecting the effect of vegetation on soil erosion by water is one of the important parameters for estimating soil erosion rate and selecting appropriate land use patterns. In this study, the C factor for nine types of grassland and woodland was estimated from 195 plot-year observation data of six groups of soil erosion experiments on Loess Plateau. The result indicates that the effects of woodland and grassland on soil erosion keep approximately uniform after two or three years' growth. The estimated woodland C factor ranges from 0.004 to 0.164, and the grassland C factor ranges from 0.071 to 0.377, showing that the effect of woodland and grassland on soil conservation is greatly better than that of cropland. The study results can be used to compare or estimate the soil loss from land with different vegetation cover, and are the useful references for land use pattern selection and the project of returning cropland to forest or grassland. 展开更多
关键词 soil erosion by water C factor WOODLAND GRASSLAND CROPLAND
下载PDF
Construction and Application of Soil Erosion Control and Circular Agriculture Mode in Hilly Red Soil of Southern China 被引量:2
11
作者 翁伯琦 钟珍梅 +3 位作者 罗旭辉 应朝阳 王义祥 叶菁 《Agricultural Science & Technology》 CAS 2012年第7期1536-1542,1557,共8页
[Objective] The paper was to construct soil erosion control and circular agriculture mode in hilly red soil of southern China, and analyze its application effort. [Method] The cause of soil erosion in hilly red soil o... [Objective] The paper was to construct soil erosion control and circular agriculture mode in hilly red soil of southern China, and analyze its application effort. [Method] The cause of soil erosion in hilly red soil of southern China and the reason for long-term treatment without remarkable effort were analyzed. On this basis, the key technology, economic benefit, ecological service function and carbon sequestration sink enhancement effect of various modes were further analyzed. [Result] The basic idea for comprehensive control of hilly soil erosion in southern China was as follows: the control of soil erosion was combined with modern agricultural production, in order to build "fruit(tea)-grass-livestock-methane" circular agriculture mode with comprehensive control of soil erosion; application effect analysis showed that the establishment of circular agriculture mode in southern hilly area to control soil erosion had remarkable effect, which could simultaneously meet the coordinated development of ecological, economic and social benefits. [Conclusion] This study established an effective mode suitable for soil erosion control and agricultural protection development in southern red soil mountain, which could drive the sustainable development of ecological restoration of mountainous area and rural agricultural economy. 展开更多
关键词 Red soil hilly region soil erosion control Integrated productivity Emergy analysis Carbon sequestration sink enhancement
下载PDF
Synthesis Analysis of Soil Erosion for Three-River Headwater Region Based on GIS 被引量:11
12
作者 陈琼 吴万贞 +3 位作者 周强 杨玉含 Wan-zhen Yu-han 《Agricultural Science & Technology》 CAS 2010年第5期155-158,共4页
In this paper,based on the common soil erosion model,the Three-River Headwaters region was select for study object. GIS methods are applied to conduct Semi-quantitative assessment for different types of soil erosion,a... In this paper,based on the common soil erosion model,the Three-River Headwaters region was select for study object. GIS methods are applied to conduct Semi-quantitative assessment for different types of soil erosion,and some results are concluded. The water erosion occurs in High Mountain and extra-high mountain of Yushu,Nangqian,Banma and Jiuzhi County in the southeast and south of the Three-River Headwaters region. The degree of erosion is prone to topography,precipitation,river and human activity. The freeze-thaw erosion mainly distributes in the northwest of the Three-River Headwaters region. The area of middle and above middle erosion degree accounts for roughly 50%. 展开更多
关键词 Three-River Headwaters region soil erosion Comprehensive analysis
下载PDF
Soil Erosion under Different Land Use Types and Zones of Jinsha River Basin in Yunnan Province,China 被引量:13
13
作者 YANGZisheng LIANGLuohui 《Journal of Mountain Science》 SCIE CSCD 2004年第1期46-56,共11页
Severe soil erosion in the middle and upper reaches of Yangtze River has been regarded as a major environmental problem. The on-site impact of soil erosion on agricultural production and the off-site impact on floods ... Severe soil erosion in the middle and upper reaches of Yangtze River has been regarded as a major environmental problem. The on-site impact of soil erosion on agricultural production and the off-site impact on floods and sedimentation in Yangtze Rive are well known. A quantitative assessment of soil erosion intensity is still scanty for developing appropriate soil erosion control measures for different land use types and zones in this region. This article constructs a localized USLE and estimates the average soil loss in the Jinsha River Region in Yunnan Province, one of the priority areas for soil erosion control in the middle and upper reaches of Yangtze River. The estimation is done under different land uses and zones in this basin. The estimation shows that while soil erosion in the cultivated land is the most severe, 36~40% of the garden and forest land suffers from soil erosion of various degrees due to lack of ground cover and other factors. Soil erosion in the pasture is modest when the ground cover is well maintained. It also confirmed that terracing can reduce soil erosion intensity significantly on the cultivated land. Research findings suggest that sufficient attention must be paid to regeneration of the ground cover in reforestation programs. In addition to mass reforestation efforts, restoration of grassland and terracing of the cultivated land should also play an important role in erosion control. 展开更多
关键词 soil erosion soil loss equation land use type soil erosion control Jinsha River Basin in Yunnan
下载PDF
Current Situation and Prevention of Soil Erosion from Construction of West-East Natural Gas Transmission (Ningxia-Shaanxi Section) 被引量:1
14
作者 李永红 高照良 周茂玲 《Agricultural Science & Technology》 CAS 2012年第6期1320-1327,共8页
In the research, problems and damages of soil erosions in West -East Natural Gas Transmission were analyzed; the reasons were summarized and the characteristics of soil erosion were researched in order to explore prin... In the research, problems and damages of soil erosions in West -East Natural Gas Transmission were analyzed; the reasons were summarized and the characteristics of soil erosion were researched in order to explore principles of pipeline prevention and seek countermeasures. 展开更多
关键词 West-East Natural Gas Transmission Pipeline project Engineering construction Impact on environment soil erosion
下载PDF
A GIS-based Modeling Approach for Fast Assessment of Soil Erosion by Water at Regional Scale, Loess Plateau of China 被引量:2
15
作者 HU Llangjun YANG Haijun +1 位作者 YANG Qinke LI Rui 《Chinese Geographical Science》 SCIE CSCD 2010年第5期423-433,共11页
The objective of this study is to develop a unique modeling approach for fast assessment of massive soil erosion by water at a regional scale in the Loess Plateau, China. This approach relies on an understanding of bo... The objective of this study is to develop a unique modeling approach for fast assessment of massive soil erosion by water at a regional scale in the Loess Plateau, China. This approach relies on an understanding of both regional patterns of soil loss and its impact factors in the plateau area. Based on the regional characteristics of precipitation, vegetation and land form, and with the use of Landsat TM and ground investigation data, the entire Loess Plateau was first divided into 3 380 Fundamental Assessment Units (FAUs) to adapt to this regional modeling and fast assessment. A set of easily available parameters reflecting relevant water erosion factors at a regional scale was then developed, in which dynamic and static factors were discriminated. Arclnfo GIS was used to integrate all essential data into a central database. A resulting mathematical model was established to link the sediment yields and the selected variables on the basis of FAUs through overlay in GIS and multiple regression analyses. The sensitivity analyses and validation results show that this approach works effectively in assessing large area soil erosion, and also helps to understand the regional associations of erosion and its impact factors, and thus might significantly contribute to planning and policymaking for a large area erosion control in the Loess Plateau. 展开更多
关键词 soil erosion by water G/S-based modeling soil erosion assessment regional scale Loess Plateau
下载PDF
Study on Soil Erosion Model Under Different Slopes in Southwest Karst Mountain Area
16
作者 高翔 王济 +1 位作者 蔡雄飞 胡丰青 《Agricultural Science & Technology》 CAS 2013年第12期1847-1851,共5页
The aim was to further research soil erosion characteristics and accurately predict soil erosion amount in karst areas. Based on field surveys and research achievements available, yellow soils, which are widely distri... The aim was to further research soil erosion characteristics and accurately predict soil erosion amount in karst areas. Based on field surveys and research achievements available, yellow soils, which are widely distributed, were chosen as test soil samples and slope, rain intensity, vegetation coverage and bare-rock ratio were taken as soil erosion factors. Artificial rain simulation instruments (needle-type) were made use of to simulate correlation of rain intensity, vegetation coverage, and bare-rock ratio with soil erosion quantity. Furthermore, multiple-factor linear regression analysis, stepwise regression analysis and multiple-factor non-linear regression analy- sis were made to establish a multiple-factor formula of soil erosion modulus with dif- ferent slopes and select regression models with high correlation coefficients. The re- sults show that a non-linear regression model reached extremely significant level or significant level (0.692〈FF〈0.988) and linear regression model achieved significant lev- el (0.523〈FF〈0.634). The effects of erosion modulus changed from decreasing to in- creasing and the erosion factors from high to low were rain intensity, vegetation cov- erage and bare-rock ratio when slope gradient was at 6~, 16~, 26~ and 36~. The mod- el is of high accuracy for predicting gentle slope and abtupt slope, which reveals correlation of erosion modulus with erosion factors in karst areas. 展开更多
关键词 Southwest karst mountain area SLOPE soil erosion model
下载PDF
Effect of Soil Erosion on Productivity of Sloping Field in a Micro-plot Experiment
17
作者 刘建香 涂仕华 +1 位作者 郭云周 贾秋鸿 《Agricultural Science & Technology》 CAS 2013年第1期127-130,168,共5页
[Objective] This study aimed to explore the effects of soil erosion on the productivity of sloping field. [Method] Through removing of and covering with topsoil in a micro-plot experiment, the effect of soil erosion o... [Objective] This study aimed to explore the effects of soil erosion on the productivity of sloping field. [Method] Through removing of and covering with topsoil in a micro-plot experiment, the effect of soil erosion on productivity of sloping field was studied. [Result] The results showed that there was extremely significantly posi- tive correlation between the thicknesses of covered topsoil with either the yield of maize seeds or the yield of maize stalks, which indicated that the yields of maize seeds and maize stalks decreased extremely significantly with the increase of the amount of surface soil loss caused by erosion on the sloping field. The yields of maize seeds and maize stalks decreased by 29.62% and 24.46% respectively in the treatment with removal of a 15 cm thick layer of mature topsoil in the plow layer; the yields of maize seeds and maize stalks decreased by 17.31% and 20.14% re- spectively in the treatment with removal of a 10 cm thick layer of mature topsoil in the plow layer; the yields of maize seeds and maize stalks decreased by 12.69% and 11.51% respectively in the treatment with removal of a 5 cm thick layer of ma- ture topsoil in the plow layer; the yields of maize seeds and maize stalks increased by 10.00% and 9.35% respectively in the treatment with covering with a 5 cm thick layer of mature topsoil in the plow layer; the yields of maize seeds and maize stalks increased by 15.77% and 16.19% respectively in the treatment with covering with a 10 cm thick layer of mature topsoil in the plow layer; the yields of maize seeds and maize stalks increased by 17.69% and 25.18% respectively in the treat- ment with covering with a 15 cm thick layer of mature topsoil in the plow layer. [Conclusion] This study provides a basis for assessing the effect of soil erosion on sloping field. 展开更多
关键词 soil erosion Productivity of sloping field a micro-plot experiment
下载PDF
Effect of Vegetation Changes on Soil Erosion on the Loess Plateau 被引量:94
18
作者 ZHENG Fen-Li 《Pedosphere》 SCIE CAS CSCD 2006年第4期420-427,共8页
Vegetation is one of the key factors affecting soil erosion on the Loess Plateau. The effects of vegetation destruction and vegetation restoration on soil erosion were quantified using data from long-term field runoff... Vegetation is one of the key factors affecting soil erosion on the Loess Plateau. The effects of vegetation destruction and vegetation restoration on soil erosion were quantified using data from long-term field runoff plots established on the eastern slope of the Ziwuling secondary forest region, China and a field survey. The results showed that before the secondary vegetation restoration period (before about 1866-1872), soil erosion in the Ziwuling region of the Loess Plateau was similar to the current erosion conditions in neighboring regions, where the soil erosion rate now is 8000 to 10000 t km-2 year-1. After the secondary vegetation restoration, soil erosion was very low; influences of rainfall and slope gradient on soil erosion were small; the vegetation effect on soil erosion was predominant; shallow gully and gully erosion ceased; and sediment deposition occurred in shallow gully and gully channels. In modern times when human activities destroyed secondary forests, soil erosion increased markedly, and erosion rates in the deforested lands reached 10000 to 24000 t km-2 year-1, which was 797 to 1682 times greater than those in the forested land prior to deforestation. Rainfall intensity and landform greatly affected the soil erosion process after deforestation. These results showed that accelerated erosion caused by vegetation destruction played a key role in soil degradation and eco-environmental deterioration in deforested regions. 展开更多
关键词 DEFORESTATION Loess Plateau natural vegetation restoration soil erosion
下载PDF
Effect of Different Vegetation Systems on Soil Erosion and Soil Nutrients in Red Soil Region of Southeastern China 被引量:57
19
作者 S. KUMAR 《Pedosphere》 SCIE CAS CSCD 2003年第2期121-128,共8页
The effect of different vegetation systems including bamboo plantation (BP), forest ecosystem (CF),citrus orchard (Ctr) and farmland (FL) on erosion and nutrients of red soil were investigated in hilly region of south... The effect of different vegetation systems including bamboo plantation (BP), forest ecosystem (CF),citrus orchard (Ctr) and farmland (FL) on erosion and nutrients of red soil were investigated in hilly region of southeastern China to find effective control measures for soil erosion. The results showed that all the vegetation systems could significantly reduce soil erosion and nutrient losses compared to bare land (Br).The ability of different vegetation systems to conserve soil and water was in the order of Ctr > BP > CF > FL > Br. Vegetation could also improve soil fertility. The soil organic matter, total N and total P contents were much higher in all the vegetation systems than in bare land, especially for the top soils. Vegetation systems improved soil physical properties remarkably. Compared to the bare land, soil organic matter, TP,TK and available K, especially soil microbial biomass C, N and P, increased under all the vegetation covers.However, they were still much lower than expected, thus these biological measurements are still needed to be carried out continuously. 展开更多
关键词 microbial biomass NUTRIENTS red soil soil erosion vegetation systems
下载PDF
Estimation of soil erosion risk within a small mountainous sub-watershed in Kerala,India,using Revised Universal Soil Loss Equation(RUSLE) and geo-information technology 被引量:35
20
作者 V.Prasannakumar H.Vijith +1 位作者 S.Abinod N.Geetha 《Geoscience Frontiers》 SCIE CAS 2012年第2期209-215,共7页
A comprehensive methodology that integrates Revised Universal Soil Loss Equation (RUSLE) model and Geographic Information System (GIS) techniques was adopted to determine the soil erosion vulner- ability of a fore... A comprehensive methodology that integrates Revised Universal Soil Loss Equation (RUSLE) model and Geographic Information System (GIS) techniques was adopted to determine the soil erosion vulner- ability of a forested mountainous sub-watershed in Kerala, India. The spatial pattern of annual soil erosion rate was obtained by integrating geo-environmental variables in a raster based GIS method. GIS data layers including, rainfall erosivity (R), soil erodability (K), slope length and steepness (LS), cover management (C) and conservation practice (P) factors were computed to determine their effects on average annual soil loss in the area. The resultant map of annual soil erosion shows a maximum soil loss of 17.73 t h-1 y i with a close relation to grass land areas, degraded forests and deciduous forests on the steep side-slopes (with high LS ). The spatial erosion maps generated with RUSLE method and GIS can serve as effective inputs in deriving strategies for land planning and management in the environmentally sensitive mountainous areas. 展开更多
关键词 soil erosion Revised Universal soil Loss Equation (RUSLE)GIS Pamba Western Ghats KERALA
下载PDF
上一页 1 2 19 下一页 到第
使用帮助 返回顶部