The effect of bismuth on the optical properties of InGaAsBi/GaAs quantum well structures is investigated using the temperature-dependent photoluminescence from 12 K to 450 K.The incorporation of bismuth in the InGaAsB...The effect of bismuth on the optical properties of InGaAsBi/GaAs quantum well structures is investigated using the temperature-dependent photoluminescence from 12 K to 450 K.The incorporation of bismuth in the InGaAsBi quantum well is confirmed and found to result in a red shift of photoluminescence wavelength of 27.3 meV at 300 K.The photoluminescence intensity is significantly enhanced by about 50 times at 12 K with respect to that of the InGaAs quantum well due to the surfactant effect of bismuth.The temperature-dependent integrated photoluminescence intensities of the two samples reveal different behaviors related to various non-radiative recombination processes.The incorporation of bismuth also induces alloy non-uniformity in the quantum well,leading to an increased photoluminescence linewidth.展开更多
GSMBE grown 1 84 micron wavelength InGaAs/InGaAsP/InP strained quantum well lasers are reported. Lasers with 800 micron long cavity and 40 micron wide planar electrical stripe have been operated under the pulsed r...GSMBE grown 1 84 micron wavelength InGaAs/InGaAsP/InP strained quantum well lasers are reported. Lasers with 800 micron long cavity and 40 micron wide planar electrical stripe have been operated under the pulsed regime at room temperature. At 20℃, the threshold current density is 3 8kA/cm 2 and the external different quantum efficiency is 9 3%.展开更多
The valence subband energies and wave functions of a tensile strained quantum well are calculated by the plane wave expansion method within the 6×6 Luttinger Kohn model.The effect of the number and period of pla...The valence subband energies and wave functions of a tensile strained quantum well are calculated by the plane wave expansion method within the 6×6 Luttinger Kohn model.The effect of the number and period of plane waves used for expansion on the stability of energy eigenvalues is examined.For practical calculation,it should choose the period large sufficiently to ensure the envelope functions vanish at the boundary and the number of plane waves large enough to ensure the energy eigenvalues keep unchanged within a prescribed range.展开更多
We investigate the binding energies of excitons in a strained (111)-oriented zinc-blende GaN/Al0.3 Ga0.7 N quantum well screened by the electron-hole (e-h) gas under hydrostatic pressure by combining a variational...We investigate the binding energies of excitons in a strained (111)-oriented zinc-blende GaN/Al0.3 Ga0.7 N quantum well screened by the electron-hole (e-h) gas under hydrostatic pressure by combining a variational method and a selfconsistent procedure. A built-in electric field produced by the strain-induced piezoelectric polarization is considered in our calculations. The result indicates that the binding energies of excitons increase nearly linearly with pressure,even though the modification of strain with hydrostatic pressure is considered, and the influence of pressure is more apparent under higher e-h densities. It is also found that as the density of an e-h gas increases,the binding energies first increase slowly to a maximum and then decrease rapidly when the e-h density is larger than about 1 ×10^11 cm^-2. The excitonic binding energies increase obviously as the barrier thickness decreases due to the decrease of the built-in electric field.展开更多
2μm InGaSb/AlGaAsSb strained quantum wells and a tellurium-doped GaSb buffer layer were grown by molecular beam epitaxy(MBE).The growth parameters of strained quantum wells were optimized by AFM, XRD and PL at 77 K...2μm InGaSb/AlGaAsSb strained quantum wells and a tellurium-doped GaSb buffer layer were grown by molecular beam epitaxy(MBE).The growth parameters of strained quantum wells were optimized by AFM, XRD and PL at 77 K.The optimal growth temperature of quantum wells is 440℃.The PL peak wavelength of quantum wells at 300 K is 1.98μm,and the FWHM is 115 nm.Tellurium-doped GaSb buffer layers were optimized by Hall measurement.The optimal doping concentration is 1.127×10^(18) cm^(-3) and the resistivity is 5.295×10^(-3)Ω·cm.展开更多
We investigate the band structure of a compressively strained In(Ga)As/In0.53Ga0.47As quantum well (QW) on an InP substrate using the eight-band k.p theory. Aiming at the emission wavelength around 2.33 μm, we di...We investigate the band structure of a compressively strained In(Ga)As/In0.53Ga0.47As quantum well (QW) on an InP substrate using the eight-band k.p theory. Aiming at the emission wavelength around 2.33 μm, we discuss the influences of temperature, strain and well width on the band structure and on the emission wavelength of the QW. The wavelength increases with the increase of temperature, strain and well width. Furthermore, we design an InAs /In0.53Ga0.47As QW with a well width of 4.1 nm emitting at 2.33 μm by optimizing the strain and the well width.展开更多
In this paper the binding energy of the shallow.donor in CdTe/ZnTe strained double quantum well was calculated.The effect of the finite well potential and strain,resulting from the lattice mismatch,on the binding ener...In this paper the binding energy of the shallow.donor in CdTe/ZnTe strained double quantum well was calculated.The effect of the finite well potential and strain,resulting from the lattice mismatch,on the binding energy of the impurity is included in a variational framework.The binding energy is obtained as a function of the well width,barrier width,and impurity position in the barrier by using a variational method.The result of the present calculation shows that the variational law of the binding energy is similar to that of unstrained materials.展开更多
Strained InGaAs/GaAs quantum well (QW) was grown by low-pressuremetallorganic chemical vapor deposition (MOCVD). Growth interruption and strain buffer layer wereintroduced to improve the photoluminescence (PL) perform...Strained InGaAs/GaAs quantum well (QW) was grown by low-pressuremetallorganic chemical vapor deposition (MOCVD). Growth interruption and strain buffer layer wereintroduced to improve the photoluminescence (PL) performance of the InGaAs/GaAs quantum well. GoodPL results were obtained under condition of growth an interruption of 10 s combined with a moderatestrain buffer layer. Wavelength lasers of 1064 nm using the QW were grown and processed intodevices. Broad area lasers (100 μm x 500 μm) show very low threshold current densities (43 A/cm^2)and high slop efficiency (0.34 W/A, per facet).展开更多
Taking into account anisotropy, nonparabolicity of the conduction band, and geometrical confinement, we discuss the heavy-hole excitonic states in a strained GaxIn1-xAs/GaAs quantum dot for various Ga alloy contents. ...Taking into account anisotropy, nonparabolicity of the conduction band, and geometrical confinement, we discuss the heavy-hole excitonic states in a strained GaxIn1-xAs/GaAs quantum dot for various Ga alloy contents. The strained quantum dot is considered as a spherical InAs dot surrounded by a GaAs barrier material. The dependence of the effective excitonic g-factor as a function of dot radius and Ga ion content is numerically measured. Interband optical energy with and without the parabolic effect is computed using structural confinement. The interband matrix element for different Ga concentrations is also calculated. The oscillator strength of interband transitions on the dot radius is studied at different Ga concentrations in the GaxIn1-xAs/GaAs quantum dot. Heavy-hole excitonic absorption spectra are recorded for various Ga alloy contents in the GaxIn1-xAs/GaAs quantum dot. Results show that oscillator strength diminishes when dot size decreases because of the dominance of the quantum size effect. Furthermore, exchange enhancement and exchange sDlitting increase as exciton confinement inereases.展开更多
Within the effective-mass and finite-height potential barrier approximation,a theoretical study of the effects of strain and hydrostatic pressure on the exciton emission wavelength and electron-hole recombination rate...Within the effective-mass and finite-height potential barrier approximation,a theoretical study of the effects of strain and hydrostatic pressure on the exciton emission wavelength and electron-hole recombination rate in wurtzite cylindrical GaN/Al_xGa_(1-x)N quantum dots(QDs) is performed using a variational approach.Numerical results show that the emission wavelength with strain effect is higher than that without strain effect when the QD height is large(〉 3.8 nm),but the status is opposite when the QD height is small(〈 3.8 nm).The height of GaN QDs must be less than 5.5 nm for an efficient electron-hole recombination process due to the strain effect.The emission wavelength decreases linearly and the electron-hole recombination rate increases almost linearly with applied hydrostatic pressure.The hydrostatic pressure has a remarkable influence on the emission wavelength for large QDs,and has a significant influence on the electron-hole recombination rate for small QDs.Furthermore,the present numerical outcomes are in qualitative agreement with previous experimental findings under zero pressure.展开更多
This paper reports a detailed theoretical investigation of strain effects on the performance of electroabsorption optical modulators based on the asym- metric intra-step-barrier coupled double strained quantum wells ...This paper reports a detailed theoretical investigation of strain effects on the performance of electroabsorption optical modulators based on the asym- metric intra-step-barrier coupled double strained quantum wells (AICD-SQWs) active layer. For this purpose, the electroabsorption coefficient was calculated over a range of AICD-SQWs strain from compressive to tensile strain. Then, the extinction ratio (ER) and insertion loss parameters were evaluated from calculated electroabsorp- tion coefficient for transverse electric (TE) input light polarization. The results of the simulation suggest that the tensile strain from 0.05% to 0.2% strain in the wide quantum well has a significant impact on the ER and insertion loss as compared with compressive strain, whereas the compressive strain of the narrow quantum well from -0.5% to -0.7% strain has a more pronounced impact on the improvement of the ER and insertion loss as compared with tensile strain.展开更多
基金Project supported by the National Basic Research Program of China (Grant No. 2012CB619200)the National Natural Science Foundation of China (Grant Nos. 61275113,61204133,and 60906047)+1 种基金the Innovative Founding of Shanghai Institute of Microsystem and Information Technology,Chinese Academy of Sciencesthe Swedish Research Council
文摘The effect of bismuth on the optical properties of InGaAsBi/GaAs quantum well structures is investigated using the temperature-dependent photoluminescence from 12 K to 450 K.The incorporation of bismuth in the InGaAsBi quantum well is confirmed and found to result in a red shift of photoluminescence wavelength of 27.3 meV at 300 K.The photoluminescence intensity is significantly enhanced by about 50 times at 12 K with respect to that of the InGaAs quantum well due to the surfactant effect of bismuth.The temperature-dependent integrated photoluminescence intensities of the two samples reveal different behaviors related to various non-radiative recombination processes.The incorporation of bismuth also induces alloy non-uniformity in the quantum well,leading to an increased photoluminescence linewidth.
文摘GSMBE grown 1 84 micron wavelength InGaAs/InGaAsP/InP strained quantum well lasers are reported. Lasers with 800 micron long cavity and 40 micron wide planar electrical stripe have been operated under the pulsed regime at room temperature. At 20℃, the threshold current density is 3 8kA/cm 2 and the external different quantum efficiency is 9 3%.
文摘The valence subband energies and wave functions of a tensile strained quantum well are calculated by the plane wave expansion method within the 6×6 Luttinger Kohn model.The effect of the number and period of plane waves used for expansion on the stability of energy eigenvalues is examined.For practical calculation,it should choose the period large sufficiently to ensure the envelope functions vanish at the boundary and the number of plane waves large enough to ensure the energy eigenvalues keep unchanged within a prescribed range.
文摘We investigate the binding energies of excitons in a strained (111)-oriented zinc-blende GaN/Al0.3 Ga0.7 N quantum well screened by the electron-hole (e-h) gas under hydrostatic pressure by combining a variational method and a selfconsistent procedure. A built-in electric field produced by the strain-induced piezoelectric polarization is considered in our calculations. The result indicates that the binding energies of excitons increase nearly linearly with pressure,even though the modification of strain with hydrostatic pressure is considered, and the influence of pressure is more apparent under higher e-h densities. It is also found that as the density of an e-h gas increases,the binding energies first increase slowly to a maximum and then decrease rapidly when the e-h density is larger than about 1 ×10^11 cm^-2. The excitonic binding energies increase obviously as the barrier thickness decreases due to the decrease of the built-in electric field.
基金Project supported by the Beijing Natural Science Foundation(No.4112058)the Science Foundation of the Chinese Academy of Sciences(No.CXJJ-11-M20)
文摘2μm InGaSb/AlGaAsSb strained quantum wells and a tellurium-doped GaSb buffer layer were grown by molecular beam epitaxy(MBE).The growth parameters of strained quantum wells were optimized by AFM, XRD and PL at 77 K.The optimal growth temperature of quantum wells is 440℃.The PL peak wavelength of quantum wells at 300 K is 1.98μm,and the FWHM is 115 nm.Tellurium-doped GaSb buffer layers were optimized by Hall measurement.The optimal doping concentration is 1.127×10^(18) cm^(-3) and the resistivity is 5.295×10^(-3)Ω·cm.
基金Project supported by the '100 Talents Program' of Chinese Academy of Sciences,China
文摘We investigate the band structure of a compressively strained In(Ga)As/In0.53Ga0.47As quantum well (QW) on an InP substrate using the eight-band k.p theory. Aiming at the emission wavelength around 2.33 μm, we discuss the influences of temperature, strain and well width on the band structure and on the emission wavelength of the QW. The wavelength increases with the increase of temperature, strain and well width. Furthermore, we design an InAs /In0.53Ga0.47As QW with a well width of 4.1 nm emitting at 2.33 μm by optimizing the strain and the well width.
文摘In this paper the binding energy of the shallow.donor in CdTe/ZnTe strained double quantum well was calculated.The effect of the finite well potential and strain,resulting from the lattice mismatch,on the binding energy of the impurity is included in a variational framework.The binding energy is obtained as a function of the well width,barrier width,and impurity position in the barrier by using a variational method.The result of the present calculation shows that the variational law of the binding energy is similar to that of unstrained materials.
文摘Strained InGaAs/GaAs quantum well (QW) was grown by low-pressuremetallorganic chemical vapor deposition (MOCVD). Growth interruption and strain buffer layer wereintroduced to improve the photoluminescence (PL) performance of the InGaAs/GaAs quantum well. GoodPL results were obtained under condition of growth an interruption of 10 s combined with a moderatestrain buffer layer. Wavelength lasers of 1064 nm using the QW were grown and processed intodevices. Broad area lasers (100 μm x 500 μm) show very low threshold current densities (43 A/cm^2)and high slop efficiency (0.34 W/A, per facet).
文摘Taking into account anisotropy, nonparabolicity of the conduction band, and geometrical confinement, we discuss the heavy-hole excitonic states in a strained GaxIn1-xAs/GaAs quantum dot for various Ga alloy contents. The strained quantum dot is considered as a spherical InAs dot surrounded by a GaAs barrier material. The dependence of the effective excitonic g-factor as a function of dot radius and Ga ion content is numerically measured. Interband optical energy with and without the parabolic effect is computed using structural confinement. The interband matrix element for different Ga concentrations is also calculated. The oscillator strength of interband transitions on the dot radius is studied at different Ga concentrations in the GaxIn1-xAs/GaAs quantum dot. Heavy-hole excitonic absorption spectra are recorded for various Ga alloy contents in the GaxIn1-xAs/GaAs quantum dot. Results show that oscillator strength diminishes when dot size decreases because of the dominance of the quantum size effect. Furthermore, exchange enhancement and exchange sDlitting increase as exciton confinement inereases.
基金Project supported by the National Natural Science Foundation of China(No.11102100)the Technology Projects of the Education Bureau of Fujian Province,China(No.JK2009038)
文摘Within the effective-mass and finite-height potential barrier approximation,a theoretical study of the effects of strain and hydrostatic pressure on the exciton emission wavelength and electron-hole recombination rate in wurtzite cylindrical GaN/Al_xGa_(1-x)N quantum dots(QDs) is performed using a variational approach.Numerical results show that the emission wavelength with strain effect is higher than that without strain effect when the QD height is large(〉 3.8 nm),but the status is opposite when the QD height is small(〈 3.8 nm).The height of GaN QDs must be less than 5.5 nm for an efficient electron-hole recombination process due to the strain effect.The emission wavelength decreases linearly and the electron-hole recombination rate increases almost linearly with applied hydrostatic pressure.The hydrostatic pressure has a remarkable influence on the emission wavelength for large QDs,and has a significant influence on the electron-hole recombination rate for small QDs.Furthermore,the present numerical outcomes are in qualitative agreement with previous experimental findings under zero pressure.
文摘This paper reports a detailed theoretical investigation of strain effects on the performance of electroabsorption optical modulators based on the asym- metric intra-step-barrier coupled double strained quantum wells (AICD-SQWs) active layer. For this purpose, the electroabsorption coefficient was calculated over a range of AICD-SQWs strain from compressive to tensile strain. Then, the extinction ratio (ER) and insertion loss parameters were evaluated from calculated electroabsorp- tion coefficient for transverse electric (TE) input light polarization. The results of the simulation suggest that the tensile strain from 0.05% to 0.2% strain in the wide quantum well has a significant impact on the ER and insertion loss as compared with compressive strain, whereas the compressive strain of the narrow quantum well from -0.5% to -0.7% strain has a more pronounced impact on the improvement of the ER and insertion loss as compared with tensile strain.