期刊文献+
共找到6,472篇文章
< 1 2 250 >
每页显示 20 50 100
Elastic-viscoplastic constitutive equations of K439B superalloy and thermal stress simulation during casting process 被引量:1
1
作者 Da-shan Sui Yu Shan +5 位作者 Dong-xin Wang Jun-yi Li Yao Xie Yi-qun Yang An-ping Dong Bao-de Sun 《China Foundry》 SCIE CAS CSCD 2023年第5期403-413,共11页
K439B nickel-based superalloy is a new type of high-temperature material.There is insufficient research on its constitutive equations and numerical modeling of thermal stress.Isothermal tensile experiments of K439B su... K439B nickel-based superalloy is a new type of high-temperature material.There is insufficient research on its constitutive equations and numerical modeling of thermal stress.Isothermal tensile experiments of K439B superalloy at different temperatures(20°C-1,000°C)and strain rates(1.33×10^(-3)s^(-1)-5.33×10^(-3)s^(-1))were performed by using a Gleeble-3800 simulator.The elastic moduli at different temperatures(20°C-650°C)were measured by resonance method.Subsequently,stress-strain curves were measured for K439B superalloy under different conditions.The elastic-viscoplastic constitutive equations were established and the correspongding parameters were solved by employing the Perzyna model.The verification results indicate that the calculated values of the constitutive equations are in good agreement with the experimental values.On this basis,the influence of process parameters on thermal stress was investigated by numerical simulation and orthogonal experimental design.The results of orthogonal experimental design reveal that the cooling mode of casting has a significant influence on the thermal stress,while pouring temperature and preheating temperature of shell mold have minimal impact.The distribution of physical fields under optimal process parameters,determined based on the orthogonal experimental design results,was simulated.The simulation results determine separately the specific positions with maximum values for effective stress,plastic strain,and displacement within the casting.The maximum stress is about 1,000.0 MPa,the plastic strain is about 0.135,and the displacement is about 1.47 mm.Moreover,the distribution states of thermal stress,strain,and displacement are closely related to the distribution of the temperature gradient and cooling rate in the casting.The research would provide a theoretical reference for exploring the stress-strain behavior and numerical modeling of the effective stress of the alloy during the casting process. 展开更多
关键词 nickel-based superalloy investment casting Perzyna model elastic-viscoplastic thermal stress numerical simulation
下载PDF
Numerical simulation of coupling heat transfer and thermal stress for spent fuel dry storage cask with different power distribution and tilt angles 被引量:1
2
作者 Wei‑Hao Ji Jian‑Jie Cheng +1 位作者 Han‑Zhong Tao Wei Li 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第2期109-127,共19页
Dry storage containers must be secured and reliable during long-term storage,and the effect of decay heat released from the internal spent fuel on the cask has become an important research topic.In this paper,a 3D com... Dry storage containers must be secured and reliable during long-term storage,and the effect of decay heat released from the internal spent fuel on the cask has become an important research topic.In this paper,a 3D computational fluid dynamics model is presented,and the accuracy of the calculation is verified,with computational errors of less than 6.2%.The thermal stress of the dry storage cask was estimated by coupling it with a transient temperature field.The total power remained constant and adjusting the power ratio of the inner and outer zones had a small effect on the stress results,with a maximum equivalent stress of approximately 5.2 kPa,which occurred at the lower edge of the shell.In the case of tilt,the temperature gradient varied in a wavy distribution,and the wave crest moved from right to left.Altering the tilt angle affects the air distribution in the annular gap,leading to the shell temperature being transformed,with a maximum equivalent stress of 202 MPa at the bottom of the shell.However,the equivalent stress in both cases was less than the yield stress(205 MPa). 展开更多
关键词 thermal stress CFD simulation Spent nuclear fuel Dry storage cask
下载PDF
Effects of acute and chronic thermal stress on survival,apoptosis,and transcriptional responses of Scapharca broughtonii
3
作者 Desheng ZOU Weian CAO +7 位作者 Guilong LIU Junhao NING Xia LU Jinjing WANG Min CHEN Bo LIU Jinsheng ZHANG Chunde WANG 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2023年第6期2363-2373,共11页
Ocean warming is altering the habitats of marine invertebrates,which has resulted in an increased physiological stress to marine molluscs,especially those intertidal bivalves,such as the ark shell Scapharca broughtoni... Ocean warming is altering the habitats of marine invertebrates,which has resulted in an increased physiological stress to marine molluscs,especially those intertidal bivalves,such as the ark shell Scapharca broughtonii.We investigated the physiological and transcriptional responses of ark shells to acute and chronic thermal stress results showed that at 33℃,a significantly higher cumulative mortality(55.7%)occurred under acute thermal stress than chronic thermal stress.The apoptosis rate of hemocytes was sustained at higher levels and the necrosis rate was increased significantly in a time-dependent manner under acute thermal stress.However,under chronic thermal stress,the apoptosis and necrosis rates exhibited similar change trends:a rapid increase followed by a gradual decline and sustained at a relatively high level until the end of the experiment.The expressions of heat shock protein genes(HSP20 and HSP90),apoptosis-related genes(TRAF6,GRP78,NIX,and Casp-3),antioxidative-related genes(GST and MRP)and cellular detoxification-related genes(HbⅡB,NOS-1,HO-1,and ENO-1)were upregulated significantly under both acute and chronic thermal stresses.These results demonstrated that the anti-apoptotic system,antioxidant defense system,cellular detoxification system,and heat shock proteins(HSPs)played vital roles for ark shells in response to thermal stress.As acute thermal stress can result in irreversible damage to marine molluscs,it is thus advised that chronic thermal stress should be used to select thermal-resistant ark shell strains. 展开更多
关键词 Scapharca broughtonii thermal stress APOPTOSIS NECROSIS gene expression
下载PDF
Thermal stress damage mechanism in single-crystal germanium caused by 1080 nm laser irradiation
4
作者 沙银川 李泽文 +2 位作者 贾志超 韩冰 倪晓武 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第10期572-578,共7页
The process of thermal stress damage during 1080 nm laser ablation of single-crystal germanium was recorded in real time using a high-speed charge-coupled device.A three-dimensional finite element numerical model base... The process of thermal stress damage during 1080 nm laser ablation of single-crystal germanium was recorded in real time using a high-speed charge-coupled device.A three-dimensional finite element numerical model based on Fourier's heat conduction equation,Hooke's law and the Alexander–Hasson equation was developed to analyze the thermal stress damage mechanism involved.The damage morphology of the ablated samples was observed using an optical microscope.The results show that the cooling process has an important influence on fracture in the laser-irradiated region of single-crystal germanium.Fracture is the result of a combination of thermal stress and reduction in local yield strength. 展开更多
关键词 thermal stress single-crystal germanium FRACTURE damage mechanism
下载PDF
Fluid-Structure Coupled Analysis of the Transient Thermal Stress in an Exhaust Manifold
5
作者 Liang Yi Wen Gang +2 位作者 Nenggui Pan Wangui Wang Shengshuai Mo 《Fluid Dynamics & Materials Processing》 EI 2023年第11期2777-2790,共14页
The development of thermal stress in the exhaust manifold of a gasoline engine is considered.The problem is addresses in the frame of a combined approach wherefluid and structure are coupled using the GT-POWER and STA... The development of thermal stress in the exhaust manifold of a gasoline engine is considered.The problem is addresses in the frame of a combined approach wherefluid and structure are coupled using the GT-POWER and STAR-CCM+software.First,the external characteristic curve of the engine is compared with a one-dimen-sional simulation model,then the parameters of the model are modified until the curve matches the available experimental values.GT-POWER is then used to transfer the inlet boundary data under transient conditions to STAR-CCM+in real-time.The temperature profiles of the inner and outer walls of the exhaust manifold are obtained in this way,together with the thermal stress and thermal deformation of the exhaust manifold itself.Using this information,the original model is improved through the addition of connections.Moreover,the local branch pipes are optimized,leading to significant improvements in terms of thermal stress and thermal deforma-tion of the exhaust manifold(a 7%reduction in the maximum thermal stress). 展开更多
关键词 Exhaust manifold fluid-structure coupling temperaturefield thermal stress
下载PDF
Numerical Simulation of Temperature Field and Thermal Stress Field of Work Roll During Hot Strip Rolling 被引量:13
6
作者 LI Chang-sheng YU Hai-liang DENG Guan-yu LIU Xiang-hua WANG Guo-dong 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2007年第5期18-21,共4页
Based on the thermal conduction equations, the three-dimensional (3D) temperature field of a work roll was investigated using finite element method (FEM). The variations in the surface temperature of the work roll... Based on the thermal conduction equations, the three-dimensional (3D) temperature field of a work roll was investigated using finite element method (FEM). The variations in the surface temperature of the work roll during hot strip rolling were described, and the thermal stress field of the work roll was also analyzed. The results showed that the highest roll surface temperature is 593 ℃, and the difference between the minimum and maximum values of thermal stress of the work roll surface is 145.7 MPa. Furthermore, the results of this analysis indicate that temperature and thermal stress are useful parameters for the investigation of roll thermal fatigue and also for improving the quality of strip during rolling. 展开更多
关键词 hot strip mill ROLL temperature field thermal stress finite element method
下载PDF
Application of thermal stress model to paint removal by Q-switched Nd:YAG laser 被引量:5
7
作者 邹万芳 谢应茂 +2 位作者 肖兴 曾祥志 罗颖 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第7期433-438,共6页
In this paper, we demonstrate that thermal stress is the main mechanism in the process of paint removal by Q-switched Nd:YAG laser (λ = 1064 nm, τ = 10 ns). A theoretical model ofpaint removal by short-pulse lase... In this paper, we demonstrate that thermal stress is the main mechanism in the process of paint removal by Q-switched Nd:YAG laser (λ = 1064 nm, τ = 10 ns). A theoretical model ofpaint removal by short-pulse laser is established from the perspective of thermal stress. Thermal stress is generated by thermal expansion, and the temperatures of different samples are calculated according to the one-dimensional (1D) heat conduction equation. The theoretical cleaning threshold can be obtained by comparing thermal stress with the adhesion of paint, and the theoretical damage threshold is obtained by calculating the temperature. Moreover, the theoretical calculations are verified by experimental results. It is shown that the thermal stress model of the laser cleaning is very useful to choose the appropriate laser fluence in the practical applications of paint removal by Q-switched Nd: YAG laser because our model can validly balance the efficiency of laser cleaning and the safety of the substrate. 展开更多
关键词 laser cleaning thermal stress cleaning threshold damage threshold
下载PDF
THERMAL STRESSES RELAXATION DESIGN OF Ni/NiFe_(2)O_(4) SYSTEM FUNCTIONALLY GRADED CERMET INERT ANODE 被引量:4
8
作者 J. Li Q.S. Zhang Y.Q. Lai S.L. Ye Y.X. Liu 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2005年第5期635-641,共7页
The thermal stresses relaxation of Ni/NiFe2O4 system functionally graded cermet inert anode for aluminum electrolysis was optimally designed. The transient thermal stresses of the inert anode under complex boundary co... The thermal stresses relaxation of Ni/NiFe2O4 system functionally graded cermet inert anode for aluminum electrolysis was optimally designed. The transient thermal stresses of the inert anode under complex boundary condition during high-temp (955℃) electrolysis were calculated using the finite-element software ANSYS, the influence of different parameters on the distribution of the thermal stresses were analyzed. The results showed that, during the process of thermal shock, the thermal hoop tensile stress on the surface of the anode is very large, which is possibly the major cause of anode crack; when the radius of the anode is between 0.05-0.15m, a range that can be realized by recent manufacturing technology, the optimum composition distribution exponent p is 0.25; The hoop tensile stresses reduce with the decrease of anode scale and also decrease with the decrease of the convection coefficient between the electrolyte and the anode. 展开更多
关键词 functionally graded material (FGM) transient thermal stresses ANSYS inert anode aluminum electrolysis
下载PDF
EFFECT OF STRUCTURAL PARAMETERS ON THE THERMAL STRESS OF A NiFe_(2)O_(4)-BASED CERMET INERT ANODE IN ALUMINUM ELECTROLYSIS 被引量:4
9
作者 J. Li Z.G. Wang Y.Q. Lai Y.Y. Wu S.L. Ye 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2007年第2期139-147,共9页
Inert anode has been a hot issue in the aluminum industry for many decades. With the help of FEA (finite element analysis) software ANSYS, a model was developed to simulate the thermal stress distribution working co... Inert anode has been a hot issue in the aluminum industry for many decades. With the help of FEA (finite element analysis) software ANSYS, a model was developed to simulate the thermal stress distribution working condition of an inert anode. To reduce its thermal stress, the effect of some parameters on the thermal stress distribution was investigated, including the anode height, the anode radius, the hole depth, the hole radius, and the radius of inner chamfer and outer chamfer. The results showed that in the actual working condition of an inert anode, there existed a large axial tensile stress near the tangent interface between the anode and bath, which was the major cause of anode breaking. Increasing the anode height and reducing the hole depth properly seemed to be beneficial for the stress distribution. With the increase of anode radius, the stress distribution became better first and then deteriorated, the reasonable value was between 0.045 to 0.06m. The hole radius had a significant effect on the stress and a smaller radius would reduce the thermal stress. The effect of the radius of the inner chamfer and the outer chamfer was less than other parameters. 展开更多
关键词 inert anode thermal stress structural parameter aluminum electrolysis
下载PDF
A new analytical model for thermal stresses in multi-phase materials and lifetime prediction methods 被引量:3
10
作者 Ladislav Ceniga 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2008年第2期189-206,共18页
Based on the fundamental equations of the mechanics of solid continuum, the paper employs an analytical model for determination of elastic thermal stresses in isotropic continuum represented by periodically distribute... Based on the fundamental equations of the mechanics of solid continuum, the paper employs an analytical model for determination of elastic thermal stresses in isotropic continuum represented by periodically distributed spherical particles with different distributions in an infinite matrix, imaginarily divided into identical cells with dimensions equal to inter-particle distances, containing a central spherical particle with or without a spherical envelope on the particle surface. Consequently, the multi-particle-(envelope)- matrix system, as a model system regarding the analytical modelling, is applicable to four types of multi-phase materials. As functions of the particle volume fraction v, the inter-particle distances dl, d2, d3 along three mutually per- pendicular axes, and the particle and envelope radii, R1 and R2, respectively, the thermal stresses within the cell, are originated during a cooling process as a consequence of the difference in thermal expansion coefficients of phases rep- resented by the matrix, envelope and particle. Analytical-(experimental)-computational lifetime prediction methods for multi-phase materials are proposed, which can be used in engineering with appropriate values of parameters of real multi-phase materials. 展开更多
关键词 thermal stress Multi-phase material Lifetime prediction Analytical modelling
下载PDF
Modeling in SolidWorks and analysis of temperature and thermal stress during construction of intake tower 被引量:2
11
作者 Hong-yang ZHANG Tong-chun LI Zong-kun LI 《Water Science and Engineering》 EI CAS 2009年第1期95-102,共8页
With a focus on the intake tower of the Yanshan Reservoir, this paper discusses the method of modeling in the 3D CAD software SolidWorks and the interface processing between SolidWorks and the ANSYS code, which decrea... With a focus on the intake tower of the Yanshan Reservoir, this paper discusses the method of modeling in the 3D CAD software SolidWorks and the interface processing between SolidWorks and the ANSYS code, which decreases the difficulty in modeling complicated models in ANSYS. In view of the function of the birth-death element and secondary development with APDL (ANSYS parametric design language), a simulation analysis of the temperature field and thermal stress during the construction period of the intake tower was conveniently conducted. The results show that the temperature rise is about 29.934 ℃ over 3 or 4 days. The temperature differences between any two points are less than 24 ℃. The thermal stress increases with the temperature difference and reaches its maximum of 1.68 MPa at the interface between two concrete layers. 展开更多
关键词 SOLIDWORKS ANSYS APDL birth-death element temperature field thermal stress
下载PDF
Modeling and simulation of 3D thermal stresses of large-sized castings in solidification processes 被引量:2
12
作者 J.Q.Wang D.W.Yu +2 位作者 X.Sun S.F.Su B.Z.Li 《China Foundry》 SCIE CAS 2004年第S1期20-24,共5页
When heavy machines and large scaled receiver system of communication equipment are manufactured, it always needs to produce large-sized steel castings, aluminum castings and etc. Some defects of hot cracking by therm... When heavy machines and large scaled receiver system of communication equipment are manufactured, it always needs to produce large-sized steel castings, aluminum castings and etc. Some defects of hot cracking by thermal stress often appear during solidification process as these castings are produced, which results in failure of castings. Therefore predicting the effects of technological parameters for production of castings on the thermal stress during solidification process becomes an important means. In this paper, the mathematical models have been established and numerical calculation of temperature fields by using finite difference method (FDM) and then thermal stress fields by using finite element method (FEM) during solidification process of castings have been carried out. The technological parameters of production have been optimized by the results of calculation and the defects of hot cracking have been eliminated. Modeling and simulation of 3D thermal stress during solidification processes of large-sized castings provided a scientific basis, which promoted further development of advanced manufacturing technique. 展开更多
关键词 Large-sized castings simulation of 3D temperature fields simulation of 3D thermal stress fields defect of hot cracking solidification process
下载PDF
THERMAL STRESS MEASUREMENT OF QUARTZ OSCILLATOR MODULE PACKAGING 被引量:2
13
作者 Ji Hongwei Qin Yuwen Chen Jinlong 《Acta Mechanica Solida Sinica》 SCIE EI 2001年第3期251-258,共8页
The thermal stress of the quartz oscillator module packaging isinvestigated using digital-im- age correlation method (DICM), and theexperimental results are given. Under the quartz oscillator modulepackaging, the quar... The thermal stress of the quartz oscillator module packaging isinvestigated using digital-im- age correlation method (DICM), and theexperimental results are given. Under the quartz oscillator modulepackaging, the quartz oscillator and the Fe-Sn-Cu alloy frame arejoined together with the electroconductive adhesive (PI), and theelectroconductive adhesive needs to be cured twice at 150 deg. C and275 deg. C respective- ly. 展开更多
关键词 digital-image correlation method (DICM) thermal stress micro-zone strainmeasurement
下载PDF
Iterative reverse deformation optimization design of castings based on numerical simulation of solidification thermal stress 被引量:2
14
作者 Yu-hao Chen Dun-ming Liao +3 位作者 Wei-dong Li Tao Chen Ming Yang Jun-ke Shi 《China Foundry》 SCIE CAS 2022年第4期342-350,共9页
In the casting process,in order to compensate for the solidification shrinkage to obtain higher dimensional accuracy of the casting,it is often necessary to modify the original design of castings,and a suitable compen... In the casting process,in order to compensate for the solidification shrinkage to obtain higher dimensional accuracy of the casting,it is often necessary to modify the original design of castings,and a suitable compensation method has a decisive impact on the dimensional accuracy of the actual casting.In this study,based on solidification simulation,a design method of reverse deformation is proposed,and two compensation methods,empirical compensation and direct reverse deformation,are implemented.The simulation results show that the empirical compensation method has problems such as difficulty in determining the parameters and satisfaction of both the overall and local accuracy at the same time;while based on the simulation results for each node of the casting,the direct reverse deformation design achieves the design with shape.In addition,the casting model can be optimized through iterative revisions,so that higher dimensional accuracy can be continuously obtained in the subsequent design process.Therefore,the direct reverse deformation design is more accurate and reasonable compared to empirical compensation method. 展开更多
关键词 casting simulation thermal stress deformation dimensional compensation dimensional accuracy
下载PDF
Thermal stress analysis method considering geometric effect of risers in sand mold casting process 被引量:1
15
作者 S.Y.Kwak H.Y.Hwang C.Cho 《China Foundry》 SCIE CAS 2014年第6期531-536,共6页
Solidif ication and f luid f low analysis using computer simulation is a current common practice. There is also a high demand for thermal stress analysis in the casting process because casting engineers want to contro... Solidif ication and f luid f low analysis using computer simulation is a current common practice. There is also a high demand for thermal stress analysis in the casting process because casting engineers want to control the defects related to thermal stresses, such as large deformation and crack generation during casting. The riser system is an essential part of preventing the shrinkage defects in the casting process, and it has a great inf luence on thermal phenomena. The analysis domain is dramatically expanded by attaching the riser system to a casting product due to its large volume, and it makes FEM mesh generation diff icult. However, it is diff icult to study and solve the above proposed problem caused by riser system using traditional analysis methods which use single numerical method such as FEM or FDM. In this paper, some research information is presented on the effects of the riser system on thermal stress analysis using a FDM/FEM hybrid method in the casting process simulation. The results show the optimal conditions for stress analysis of the riser model in order to save computation time and memory resources. 展开更多
关键词 thermal stress sand mold casting RISER numerical analysis hybrid method simulation
下载PDF
Prilimary result of temperature distribution and associated thermal stress in crust in Tianshui, China 被引量:1
16
作者 刘耀炜 高安泰Lanzhou Institute of Seismology +4 位作者 China Earthquake Administration 施锦Lanzhou Institute of Seismology China Earthquake Administration 苏鹤军Lanzhou Institute of Seismology China Earthquake Administration 《Acta Seismologica Sinica(English Edition)》 CSCD 2007年第6期641-655,共15页
The heat flow in crust and the thermal stress generated by the flow play a very important role in earthquake occurrence. Different crustal structure has different effect on heat distribution and associated thermal str... The heat flow in crust and the thermal stress generated by the flow play a very important role in earthquake occurrence. Different crustal structure has different effect on heat distribution and associated thermal stress. In all of typical seismogenic crustal structure models, including the bulge of Moho surface, the deep-large fault in the mid-lower crust, low-velocity and high-conductive layer in the middle crust, and the typical crustal structure in mid-upper crust, the thermal stress produced by deep heat disturbance may move up to the mid-upper crest. This leads to upper brittle part of crust break and hence, strong earthquakes. This result is constructive in enhancing our understanding of the role of deep fieat flow in curst in development of earthquake and its generation, as well as the generation mechanism of the shallow flowing fluid. 展开更多
关键词 EARTHQUAKE crust structure thermal stress numerical simulation geothermal field
下载PDF
Thermal stresses in two-and three-component anisotropic materials 被引量:1
17
作者 Ladislav Ceniga 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2010年第5期695-709,共15页
This paper deals with an analytical model of thermal stresses which originate during a cooling process of an anisotropic solid continuum with uniaxial or triaxial anisotropy. The anisotropic solid continuum consists o... This paper deals with an analytical model of thermal stresses which originate during a cooling process of an anisotropic solid continuum with uniaxial or triaxial anisotropy. The anisotropic solid continuum consists of anisotropic spherical particles periodically distributed in an anisotropic infinite matrix. The particles are or are not embedded in an anisotropic spherical envelope, and the infinite matrix is imaginarily divided into identical cubic cells with central particles. The thermal stresses are thus investigated within the cubic cell. This mulfi-particle-(envelope)-matrix system based on the cell model is applicable to two- and three-component materials of precipitate-matrix and precipitate-envelope-matrix types, respectively. Finally, an analysis of the determination of the thermal stresses in the multi-par- ticle-(envelope)-matrix system which consists of isotropic as well as uniaxial- and/or triaxial-anisotropic components is presented. Additionally, the thermal-stress induced elastic energy density for the anisotropic components is also derived. These analytical models which are valid for isotropic, anisotropic and isotropic-anisotropic multi-particle- (envelope)-matrix systems represent the determination of important material characteristics. This analytical determination includes: (1) the determination of a critical particle radius which defines a limit state regarding the crack initiation in an elastic, elastic-plastic and plastic components; (2) the determination of dimensions and a shape of a crack propagated in a ceramic components; (3) the determination of an energy barrier and micro-/macro-strengthening in a component; and (4) analytical-(experimental)-computational methods of the lifetime prediction. The determination of the thermal stresses in the anisotropic components presented in this paper can be used to determine these material characteristics of real two- and three-component materials with anisotropic components or with anisotropic and isotropic components. 展开更多
关键词 thermal stress Component material Anisotropic solid continuum Analytical modelling Cell model
下载PDF
Finite Element Analysis of Thermal Stresses in Ceramic/Metal Gradient Thermal Barrier Coatings 被引量:1
18
作者 明平顺 肖金生 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2005年第3期44-47,共4页
This paper studied the thermal stresses of ceramicl metal gradient thermal barrier coating which combines the conceptions of ceramic thermal barrier coating (TBC) and functionally gradient material (FGM). Thermal ... This paper studied the thermal stresses of ceramicl metal gradient thermal barrier coating which combines the conceptions of ceramic thermal barrier coating (TBC) and functionally gradient material (FGM). Thermal stresses and residual thermal stresses were calculated by an ANSYS finite element analysis software. Negative thermal expansion coefficient method was proposed and element birth and death method was applied to analyze the residual thermal stresses which have non-uniform initial temperature field. The numerical results show a good agreement with the analytical results and the experimental results. 展开更多
关键词 functionally gradient material thermal barrier coating thermal stress finite element analysis ANSYS
下载PDF
Genetic Algorithm for the Thermal Stresses Optimum Design ofFunctionally Gradient Material Plate 被引量:1
19
作者 Xiaodan Zhang Zhengbin Tang Changchun Ge(Applied Science School, University of Science and Technology Beijing, Beijing 100083, China) 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 1999年第3期224-227,共4页
Based on the thermal stress distribution for functionally gradient material (FGM) plates, a Genetic Algorithm (GA) method for the thermal stresses optimum design of FGM plate with computer technologies is given. The m... Based on the thermal stress distribution for functionally gradient material (FGM) plates, a Genetic Algorithm (GA) method for the thermal stresses optimum design of FGM plate with computer technologies is given. The minimum thermal stresses combination distribution for FGM is obtained. 展开更多
关键词 functionally gradient material (FGM) thermal stress Genetic Algorithm (GA) CROSSOVER MUTATION
下载PDF
Thermal stresses in infinite circular cylinder subjected to rotation 被引量:1
20
作者 A.M.ABD-ALLA G.A.YAHYA 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2012年第8期1059-1078,共20页
The present investigation is concerned with the effect of rotation on an infi- nite circular cylinder subjected to certain boundary conditions. An analytical procedure for evaluation of thermal stresses, displacements... The present investigation is concerned with the effect of rotation on an infi- nite circular cylinder subjected to certain boundary conditions. An analytical procedure for evaluation of thermal stresses, displacements, and temperature in rotating cylinder subjected to thermal load along the radius is presented. The dynamic thermal stresses in an infinite elastic cylinder of radius a due to a constant temperature applied to a variable portion of the curved surface while the rest of surface is maintained at zero temperature are discussed. Such situation can arise due to melting of insulating material deposited on the surface cylinder. A solution and numerical results are obtained for the stress components, displacement components, and temperature. The results obtained from the present semi-analytical method are in good agreement with those obtained by using the previously developed methods. 展开更多
关键词 wave propagation THERMOELASTICITY isotropic material rotating cylinder Lam’e potential thermal stress
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部