Most of volatile organic compounds (VOCs) are harmful to the atmosphere and human health. Cata‐lytic combustion is an effective way to eliminate VOCs. The key issue is the availability of high per‐formance catalys...Most of volatile organic compounds (VOCs) are harmful to the atmosphere and human health. Cata‐lytic combustion is an effective way to eliminate VOCs. The key issue is the availability of high per‐formance catalysts. Many catalysts including transition metal oxides, mixed metal oxides, and sup‐ported noble metals have been developed. Among these catalysts, the porous ones attract much attention. In this review, we focus on recent advances in the synthesis of ordered mesoporous and macroporous transition metal oxides, perovskites, and supported noble metal catalysts and their catalytic oxidation of VOCs. The porous catalysts outperformed their bulk counterparts. This excel‐lent catalytic performance was due to their high surface areas, high concentration of adsorbed oxy‐gen species, low temperature reducibility, strong interaction between noble metal and support and highly dispersed noble metal nanoparticles and unique porous structures. Catalytic oxidation of carbon monoxide over typical catalysts was also discussed. We made conclusive remarks and pro‐posed future work for the removal of VOCs.展开更多
As a main oxidizer in solid composite propellants,ammonium perchlorate(AP)plays an important role because its thermal decomposition behavior has a direct influence on the characteristic of solid composite propellants....As a main oxidizer in solid composite propellants,ammonium perchlorate(AP)plays an important role because its thermal decomposition behavior has a direct influence on the characteristic of solid composite propellants.To improve the performance of solid composite propellant,it is necessary to take measures to modify the thermal decomposition behavior of AP.In recent years,transition metal oxides and carbon-supported transition metal oxides have drawn considerable attention due to their extraordinary catalytic activity.In this review,we highlight strategies to enhance the thermal decomposition of AP by tuning morphology,varying the types of metal ion,and coupling with carbon analogue.The enhanced catalytic performance can be ascribed to synergistic effect,increased surface area,more exposed active sites,and accelerated electron transportation and so on.The mechanism of AP decomposition mixed with catalyst has also been briefly summarized.Finally,a conclusive outlook and possible research directions are suggested to address challenges such as lacking practical application in actual formulation of solid composite propellant and batch manufacturing.展开更多
g-C_(3)N_(4) emerges as a star 2D photocatalyst due to its unique layered structure,suitable band structure and low cost.However,its photocatalytic application is limited by the fast charge recombination and low photo...g-C_(3)N_(4) emerges as a star 2D photocatalyst due to its unique layered structure,suitable band structure and low cost.However,its photocatalytic application is limited by the fast charge recombination and low photoabsorption.Rationally designing g-C_(3)N_(4)-based heterojunction is promising for improving photocatalytic activity.Besides,g-C_(3)N_(4) exhibits great potentials in electrochemical energy storage.In view of the excellent performance of typical transition metal oxides(TMOs)in photocatalysis and energy storage,this review summarized the advances of TMOs/g-C_(3)N_(4) heterojunctions in the above two areas.Firstly,we introduce several typical TMOs based on their crystal structures and band structures.Then,we summarize different kinds of TMOs/g-C_(3)N_(4) heterojunctions,including type Ⅰ/Ⅱ heterojunction,Z-scheme,p-n junction and Schottky junction,with diverse photocatalytic applications(pollutant degradation,water splitting,CO_(2) reduction and N_(2) fixation)and supercapacitive energy storage.Finally,some promising strategies for improving the performance of TMOs/g-C_(3)N_(4) were proposed.Particularly,the exploration of photocatalysis-assisted supercapacitors was discussed.展开更多
Faraday pseudocapacitors take both advantages of secondary battery with high energy density and supercapacitors with high power density,and electrode material is the key to determine the performance of Faraday pseudoc...Faraday pseudocapacitors take both advantages of secondary battery with high energy density and supercapacitors with high power density,and electrode material is the key to determine the performance of Faraday pseudocapacitors.Transition metal oxides and nitrides,as the two main kinds of pseudocapacitor electrode materials,can enhance energy density while maintaining high power capability.Recent advances in designing nanostructured architectures and preparing composites with high specific surface areas based on transition metal oxides and nitrides,including ruthenium oxides,nickel oxides,manganese oxides,vanadium oxides,cobalt oxides,iridium oxides,titanium nitrides,vanadium nitrides,molybdenum nitrides and niobium nitrides,are addressed,which would provide important significances for deep researches on pseudocapacitor electrode materials.展开更多
Although CoO is a promising electrode material for supercapacitors due to its high theoretical capacitance,the practical applications still suffering from inferior electrochemical activity owing to its low electrical ...Although CoO is a promising electrode material for supercapacitors due to its high theoretical capacitance,the practical applications still suffering from inferior electrochemical activity owing to its low electrical conductivity,poor structural stability and inefficient nanostructure.Herein,we report a novel Cu0/Cu+co-doped CoO composite with adjustable metallic Cu0 and ion Cu+via a facile strategy.Through interior(Cu+)and exterior(Cu0)decoration of CoO,the electrochemical performance of CoO electrode has been significantly improved due to both the beneficial flower-like nanostructure and the synergetic effect of Cu0/Cu+co-doping,which results in a significantly enhanced specific capacitance(695 F g^(-1) at 1 A g^(-1))and high cyclic stability(93.4%retention over 10,000 cycles)than pristine CoO.Furthermore,this co-doping strategy is also applicable to other transition metal oxide(NiO)with enhanced electrochemical performance.In addition,an asymmetric hybrid supercapacitor was assembled using the Cu0/Cu+co-doped CoO electrode and active carbon,which delivers a remarkable maximal energy density(35 Wh kg^(-1)),exceptional power density(16 kW kg^(-1))and ultralong cycle life(91.5%retention over 10,000 cycles).Theoretical calculations further verify that the co-doping of Cu^(0)/Cu^(+)can tune the electronic structure of CoO and improve the conductivity and electron transport.This study demonstrates a facile and favorable strategy to enhance the electrochemical performance of transition metal oxide electrode materials.展开更多
Electrochemical insertion/extraction of Li on cathode materials of spinel type LiMn2O4 and ordered rock-salt type LiCo0.5 Ni0.5O2 was measured on samples of which structures were well characterized. On the basis of ex...Electrochemical insertion/extraction of Li on cathode materials of spinel type LiMn2O4 and ordered rock-salt type LiCo0.5 Ni0.5O2 was measured on samples of which structures were well characterized. On the basis of experimental results on structure, morphology and charge-discharge characteristics, the effect of crystallinity of the cathode materiaIs on electrochemical Li insertion/extraction performance was discussed. These two transition metal oxides belong to onegroup that the crystallinity of these oxides affects to the performance.展开更多
This paper systematically studies the reaction mechanisms of formic acid catalyzed by transition metal oxide MoO. Three different reaction pathways of Routes I, Ⅱ and Ⅲ were found through studying the reaction mecha...This paper systematically studies the reaction mechanisms of formic acid catalyzed by transition metal oxide MoO. Three different reaction pathways of Routes I, Ⅱ and Ⅲ were found through studying the reaction mechanism of transition metal oxide MoO catalyzing the formic acid. The transition metal oxide MoO interacts with the C=O double bond to form chiral chain compounds(Routes I and Ⅱ) and metallic compound MoOH2(Route Ⅲ). In this paper, we have studied the mechanisms of two addition reaction pathways and hydrogen abstraction reaction pathway. Routes I and Ⅱ are both addition reactions, and their products are two different chiral compounds MoO3CH2, which are enantiomeric to each other. In Route Ⅲ, metal compounds MoOH2 and CO2 are obtained from the hydrogen abstraction reaction. Among them, the hydrogen abstraction reaction occurring in Route Ⅲ is more likely to occur than the others. By comparing the results of previous studies on the reaction of MxOy-+ ROH(M= Mo,W; R = Me, Et), we found that the hydrogen abstraction mechanism is completely different from the mechanism of oxygen-containing organic compound catalyzed by MxOy.展开更多
NF3 decomposition over transition metal oxides coated MgO reagents in the absence of water is investigated. The results show that NF3 can be decomposed completely over pure MgO but the time of NF3 steady full conversi...NF3 decomposition over transition metal oxides coated MgO reagents in the absence of water is investigated. The results show that NF3 can be decomposed completely over pure MgO but the time of NF3 steady full conversion kept as short as 80 min, while the reactivities of coated MgO reagents were remarkably enhanced by transition metal oxides, for example the time of NF3 complete conversion over 12%Fe/MgO extended to 380 min. It is suggested that not only an increase in surface area but also a significant enhancement in the fluorination of MgO substrate caused by the surface transition metal oxides result in an improved reactivity of coated MgO reagents for NF3 decomposition.展开更多
Electrochemical insertion/extraction of Li on cathode materials of anatase type TiO_2, quasilayered structure V_2O_5 and layered structure MoO_3 was measured on samples of which structures were well characterized and...Electrochemical insertion/extraction of Li on cathode materials of anatase type TiO_2, quasilayered structure V_2O_5 and layered structure MoO_3 was measured on samples of which structures were well characterized and showed a wide range of crystallinity. On the basis of experimental results on structure, morphology and charge-discharge characteristics, the effect of crystallinity of the cathode materials on electrochemical Li insertion/extraction pedermance was discussed. These three transition metal oxides were classified as one group on the basis of whether the crystallinity of these oxides affects to the performance or not; LiMn_2O_4 and LiCo_(0.5)O_2 belongs to the former group and TiO_2, V_2O_5 and MoO_3 to the latter.展开更多
A serial of protonated and layered transition metal oxides, including layered HTaWO6, HNbMoO6 as well as HNbWO6, were synthesized by solid-state reaction and ion-exchange. The layered HTaWO6 has been systematically st...A serial of protonated and layered transition metal oxides, including layered HTaWO6, HNbMoO6 as well as HNbWO6, were synthesized by solid-state reaction and ion-exchange. The layered HTaWO6 has been systematically studied as a solid acid to realize the dehydration of fructose to 5-hydroxymethylfurfural (HMF). The transition metal oxide samples were characterized with ICP-OES, EDS, XRD, XPS, SEM, TGA, FT-IR, N-2 adsorption-desorption and NH3-TPD. The influential factors such as reaction temperature, reaction time, solvent, catalyst amount and substrate concentration were deeply investigated. The optimized fructose conversion rate of 99% with HMF yield of 67% were achieved after 30 min at 140 degrees C in dimethylsulfoxide. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.展开更多
In order to improve the pyrotechnical reagent with potassium perchlorate,composite catalyst of active carbon supporting transition metal oxides (TMO),Fe2O3 and CuO,were prepared and added into pyrotechnical reagent ...In order to improve the pyrotechnical reagent with potassium perchlorate,composite catalyst of active carbon supporting transition metal oxides (TMO),Fe2O3 and CuO,were prepared and added into pyrotechnical reagent with potassium perchlorate.Accelerating rate calorimeter (ARC) was used to study the catalysis of pyrotechnical reagent which is consisted of potassium perchlorate and composite catalyst.Composite catalyst of both Fe2O3 and CuO supported by active carbon can catalyze pyrotechnical reagent with potassium perchlorate.Furthermore,it can lower the apparent activation energy and accelerate the reaction with a smaller quantity than that with Fe2O3 and CuO.The maximal reaction rate of pyrotechnical reagent with potassium perchlorate mixed with Fe2O3/active carbon and CuO/active carbon is 8.31 min-1 and 9.13 min-1,which is 1.74 times and 1.91 times of pyrotechnical reagent mixed with no catalyst;time to maximal rate was 18.99 min and 1.96 min respectively,which is lower than pyrotechnical reagent mixed with no catalyst by 86.46% and 98.67% ;the apparent activation energy is 368.10 kJ·mol-1 and 325.29 kJ·mol-1,which is lower than pyrotechnical reagent mixed with no catalyst by 31.89% and 39.81% respectively.展开更多
Electrochemical nitrate reduction reaction(NO_(3)RR)towards ammonia,as an emerging and appealing technology alternative to the energy-intensive Haber-Bosch process and inefficient nitrogen reduction reaction,has recen...Electrochemical nitrate reduction reaction(NO_(3)RR)towards ammonia,as an emerging and appealing technology alternative to the energy-intensive Haber-Bosch process and inefficient nitrogen reduction reaction,has recently aroused wide concern and research.However,the current research of the NO_(3)RR towards ammonia lacks the overall performance comparison of various electrocatalysts.Given this,we here make a comparison of 12 common transition metal oxide catalysts for the NO_(3)RR under a high cathodic current density of 0.25 A·cm^(-2),wherein Co_(3)O_(4) catalyst displays the highest ammonia Faradaic efficiency(85.15%)and moderate activity(ca.-0.25 V vs.reversible hydrogen electrode).Other external factors,such as nitrate concentrations in the electrolyte and applied potential ranges,have also been specifically investigated for the NO_(3)RR.展开更多
This review provides insight into the current research trend in transition metal oxides(TMOs)-based photocatalysis in removing the organic colouring matters from water.For easy understanding,the research progress has ...This review provides insight into the current research trend in transition metal oxides(TMOs)-based photocatalysis in removing the organic colouring matters from water.For easy understanding,the research progress has been presented in four generations according to the catalyst composition and mode of application,viz:single component TMOs(the firstgeneration),doped TMOs/binary TMOs/doped binary TMOs(the second-generation),inactive/active support-immobilized TMOs(the third-generation),and ternary/quaternary compositions(the fourth-generation).The first two generations represent suspended catalysts,the third generation is supported catalysts,and the fourth generation can be suspended or supported.The review provides an elaborated comparison between suspended and supported catalysts,their general/specific requirements,key factors controlling degradation,and the methodologies for performance evaluation.All the plausible fundamental and advanced dye degradation mechanisms involved in each generation of catalysts were demonstrated.The existing challenges in TMOs-based photocatalysis and how the researchers approach the hitch to resolve it effectively are discussed.Future research trends are also presented.展开更多
Metal oxide supported metal catalysts show promising catalytic performance in many industry-relevant reactions.However,the enhancement of performance is often limited by the insufficient metal/metal oxide interface.In...Metal oxide supported metal catalysts show promising catalytic performance in many industry-relevant reactions.However,the enhancement of performance is often limited by the insufficient metal/metal oxide interface.In this work,we demonstrate a general synthesis of Pt-early transition metal oxide(Pt-MO_(x),M=Ti,Zr,V,and Y)catalysts with rich interfacial sites,which is based on the air-induced surface segregation and oxidation of M in the supported Pt-M alloy catalysts.Systematic characterizations verify the dynamic structural response of Pt-M alloy catalysts to air and the formation of Pt-MO_(x) catalysts with abundant interfacial sites.The prepared Pt-TiO_(x) interfacial catalysts exhibit improved performance in hydrogenation reactions of benzaldehyde,nitrobenzene,styrene,and furfural,as a result of the heterolytic dissociation of H_(2) at Pt-metal oxide interfacial sites.展开更多
Platinum(Pt)-based noble metal catalysts(PGMs)are the most widely used commercial catalysts,but they have the problems of high cost,low reserves,and susceptibility to small-molecule toxicity.Transition metal oxides(TM...Platinum(Pt)-based noble metal catalysts(PGMs)are the most widely used commercial catalysts,but they have the problems of high cost,low reserves,and susceptibility to small-molecule toxicity.Transition metal oxides(TMOs)are regarded as potential substitutes for PGMs because of their stability in oxidizing environments and excellent catalytic performance.In this study,comprehensive investigation into the influence of elastic strains on the adsorption energies of carbon(C),hydrogen(H)and oxygen(O)on TMOs was conducted.Based on density functional theory(DFT)calculations,these effects in both tetragonal structures(PtO_(2),PdO_(2))and hexagonal structures(ZnO,CdO),along with their respective transition metals were systematically explored.It was identified that the optimal adsorption sites on metal oxides pinpointed the top of oxygen or the top of metal atom,while face-centered cubic(FCC)and hexagonal close-packed(HCP)holes were preferred for the transition metals.Furthermore,under the influence of elastic strains,the results demonstrated significant disparities in the adsorption energies of H and O between oxides and transition metals.Despite these differences,the effect of elastic strains on the adsorption energies of C,H and O on TMOs mirrored those on transition metals:adsorption energies increased under compressive strains,indicating weaker adsorption,and decreased under tension strains,indicating stronger adsorption.This behavior was rationalized based on the d-band model for adsorption atop a metallic atom or the p-band model for adsorption atop an oxygen atom.Consequently,elastic strains present a promising avenue for tailoring the catalytic properties of TMOs.展开更多
In this work,a new ZnO/CoNiO_(2)/CoO/C metal oxides composite is prepared by cost-effective hydrothermal method coupled with annealing process under N_(2) atmosphere.Notably,the oxidation-defect annealing environment ...In this work,a new ZnO/CoNiO_(2)/CoO/C metal oxides composite is prepared by cost-effective hydrothermal method coupled with annealing process under N_(2) atmosphere.Notably,the oxidation-defect annealing environment is conducive to both morphology and component of the composite,which flower-like ZnO/CoNiO_(2)/CoO/C is obtained.Benefited from good chemical stability of ZnO,high energy capacity of CoNiO_(2) and CoO and good conductivity of C,the as-prepared sample shows promising electrochemical behavior,including the specific capacity of 1435 C·g^(-1) at 1 A·g^(-1),capacity retention of 87.3%at 20 A·g^(-1),and cycling stability of 90.5%for 3000 cycles at 5 A·g^(-1),respectively.Furthermore,the prepared ZnO/CoNiO_(2)/CoO/C/NF//AC aqueous hybrid supercapacitors device delivers the best specific energy of 55.9 W·h·kg^(-1) at 850 W·kg^(-1).The results reflect that the as-prepared ZnO/CoNiO_(2)/CoO/C microflowers are considered as high performance electrode materials for supercapacitor,and the strategy mentioned in this paper is benefit to prepare mixed metal oxides composite for energy conversion and storage.展开更多
Layered lithium transition metal oxide(LTMO)cathode materials have attracted much attention for lithium-ion batteries and are shining in the current market.Establishing a clear structure-performance relationship is ne...Layered lithium transition metal oxide(LTMO)cathode materials have attracted much attention for lithium-ion batteries and are shining in the current market.Establishing a clear structure-performance relationship is necessary for the performance improvement of LTMO cathode materials.The combination of synchrotron X-ray diffraction(XRD)with high intensity and XRD Rietveld refinement is powerful for revealing the structural characteristics of LTMO cathode materials.This review summarizes the application of high energy XRD and Rietveld refinement in LTMO cathode materials,including the brief introduction of synchrotron XRD and Rietveld refinement and their applications in understanding the structural evolution related to the synthetic,thermal runaway,cycling,and high-rate charge/discharge process of LTMO cathode materials.Synchrotron XRD can provide insights into the intermediates and reaction paths in the synthesis process,the origin of thermal runaway,the mechanism of structural decay during cycles,and the structural evolution during high-rate charging/discharging.Future works should focus on the development of higher intensity X-rays to gain more in-depth insights into the intrinsic relationship between their structural characteristics and properties.展开更多
The electrochemical carbon dioxide reduction reaction(CO_(2)RR),which can produce value-added chemical feedstocks,is a proton-coupled-electron process with sluggish kinetics.Thus,highly efficient,cheap catalysts are u...The electrochemical carbon dioxide reduction reaction(CO_(2)RR),which can produce value-added chemical feedstocks,is a proton-coupled-electron process with sluggish kinetics.Thus,highly efficient,cheap catalysts are urgently required.Transition metal oxides such as CoO_(x),FeO_(x),and NiO_(x)are low-cost,low toxicity,and abundant materials for a wide range of electrochemical reactions,but are almost inert for CO_(2)RR.Here,we report for the first time that nitrogen doped carbon nanotubes(N-CNT)have a surprising activation effect on the activity and selectivity of transition metal-oxide(MO_(x)where M=Fe,Ni,and Co)nanoclusters for CO_(2)RR.MO_(x)supported on N-CNT,MO_(x)/N-CNT,achieves a CO yield of 2.6–2.8 mmol cm−2 min−1 at an overpotential of−0.55 V,which is two orders of magnitude higher than MO_(x)supported on acid treated CNTs(MO_(x)/O-CNT)and four times higher than pristine N-CNT.The faraday efficiency for electrochemical CO_(2)-to-CO conversion is as high as 90.3%at overpotential of 0.44 V.Both in-situ XAS measurements and DFT calculations disclose that MO_(x)nanoclusters can be hydrated in CO_(2)saturated KHCO_(3),and the N defects of N-CNT effectively stabilize these metal hydroxyl species under carbon dioxide reduction reaction conditions,which can split the water molecules and provide local protons to inhibit the poisoning of active sites under carbon dioxide reduction reaction conditions.展开更多
The emergence of anionic redox reactions in layered transition metal oxide cathodes provides practical opportunity to boost the energy density of rechargeable batteries.However,the activation of anionic redox reaction...The emergence of anionic redox reactions in layered transition metal oxide cathodes provides practical opportunity to boost the energy density of rechargeable batteries.However,the activation of anionic redox reaction in layered oxides has significant voltage hysteresis and decay that reduce battery performance and limit commercialization.Here,we critically review the up-todate development of anionic redox reaction in layered oxide cathodes,summarize the proposed reaction mechanism,and unveil their connection to voltage hysteresis and decay based on the state-of-the-art progress.In addition,advances associated with various modification approaches to mitigate the voltage hysteresis/decay in layered transition metal oxide cathodes are also included.Finally,we conclude with an appraisal of further research directions including rational design of high-performance layered oxide cathodes with reversible anionic redox reactions and suppressed voltage hysteresis/decay.Findings will be of immediate benefit to the development of layered oxide cathodes for high performance rechargeable batteries.展开更多
Atmospheric pollutants can deteriorate air quality and put human health at risk.There is a growing need for green,economical,and efficient technologies,among which catalytic elimination technology is the most promisin...Atmospheric pollutants can deteriorate air quality and put human health at risk.There is a growing need for green,economical,and efficient technologies,among which catalytic elimination technology is the most promising,to remove atmospheric pollutants.Two-dimensional transition metal oxides(2D TMOs)have recently become attractive catalysts due to their highly exposed active sites,excellent reactant transport properties,and extraordinary catalytic performance.This review systematically summarizes the topdown and bottom-up preparation methods of 2D TMOs and focuses on the specific applications of 2D TMOs in the catalytic elimination of atmospheric inorganic pollutants and volatile organic pollutants.The development of 2D TMOs in the catalytic elimination of atmospheric pollutants is prospected.This review is expected to provide design insights into efficient 2D TMOs to remove atmospheric pollutants.展开更多
基金supported by the National High Technology Research and Development Program (863 Program,2015AA034603)the National Natural Science Foundation of China (21377008,201077007,20973017)+1 种基金Foundation on the Creative Research Team Construction Promotion Project of Beijing Municipal InstitutionsScientific Research Base Construction-Science and Technology Creation Platform National Materials Research Base Construction~~
文摘Most of volatile organic compounds (VOCs) are harmful to the atmosphere and human health. Cata‐lytic combustion is an effective way to eliminate VOCs. The key issue is the availability of high per‐formance catalysts. Many catalysts including transition metal oxides, mixed metal oxides, and sup‐ported noble metals have been developed. Among these catalysts, the porous ones attract much attention. In this review, we focus on recent advances in the synthesis of ordered mesoporous and macroporous transition metal oxides, perovskites, and supported noble metal catalysts and their catalytic oxidation of VOCs. The porous catalysts outperformed their bulk counterparts. This excel‐lent catalytic performance was due to their high surface areas, high concentration of adsorbed oxy‐gen species, low temperature reducibility, strong interaction between noble metal and support and highly dispersed noble metal nanoparticles and unique porous structures. Catalytic oxidation of carbon monoxide over typical catalysts was also discussed. We made conclusive remarks and pro‐posed future work for the removal of VOCs.
基金This work was financially supported by the Science and Technology project of Jiangsu province(BN2015021,XZ-SZ201819).
文摘As a main oxidizer in solid composite propellants,ammonium perchlorate(AP)plays an important role because its thermal decomposition behavior has a direct influence on the characteristic of solid composite propellants.To improve the performance of solid composite propellant,it is necessary to take measures to modify the thermal decomposition behavior of AP.In recent years,transition metal oxides and carbon-supported transition metal oxides have drawn considerable attention due to their extraordinary catalytic activity.In this review,we highlight strategies to enhance the thermal decomposition of AP by tuning morphology,varying the types of metal ion,and coupling with carbon analogue.The enhanced catalytic performance can be ascribed to synergistic effect,increased surface area,more exposed active sites,and accelerated electron transportation and so on.The mechanism of AP decomposition mixed with catalyst has also been briefly summarized.Finally,a conclusive outlook and possible research directions are suggested to address challenges such as lacking practical application in actual formulation of solid composite propellant and batch manufacturing.
基金financially supported by the National Natural Science Foundation (No.52072347, 51972288, 51672258 and 51572246)the Fundamental Research Funds for the Central Universities (No. 2652019144 and 2652018287)+1 种基金the financial supports from the Science and Technology Program of Guangdong Province (2019A050510012)Shenzhen Science, Technology and Innovation Commission (SGDX2019081623240364).
文摘g-C_(3)N_(4) emerges as a star 2D photocatalyst due to its unique layered structure,suitable band structure and low cost.However,its photocatalytic application is limited by the fast charge recombination and low photoabsorption.Rationally designing g-C_(3)N_(4)-based heterojunction is promising for improving photocatalytic activity.Besides,g-C_(3)N_(4) exhibits great potentials in electrochemical energy storage.In view of the excellent performance of typical transition metal oxides(TMOs)in photocatalysis and energy storage,this review summarized the advances of TMOs/g-C_(3)N_(4) heterojunctions in the above two areas.Firstly,we introduce several typical TMOs based on their crystal structures and band structures.Then,we summarize different kinds of TMOs/g-C_(3)N_(4) heterojunctions,including type Ⅰ/Ⅱ heterojunction,Z-scheme,p-n junction and Schottky junction,with diverse photocatalytic applications(pollutant degradation,water splitting,CO_(2) reduction and N_(2) fixation)and supercapacitive energy storage.Finally,some promising strategies for improving the performance of TMOs/g-C_(3)N_(4) were proposed.Particularly,the exploration of photocatalysis-assisted supercapacitors was discussed.
基金Project(51274248) supported by the National Natural Science Foundation of ChinaProjects(2015DFR50580,2013DFA31440) supported by the International Scientific and Technological Cooperation Projects of China
文摘Faraday pseudocapacitors take both advantages of secondary battery with high energy density and supercapacitors with high power density,and electrode material is the key to determine the performance of Faraday pseudocapacitors.Transition metal oxides and nitrides,as the two main kinds of pseudocapacitor electrode materials,can enhance energy density while maintaining high power capability.Recent advances in designing nanostructured architectures and preparing composites with high specific surface areas based on transition metal oxides and nitrides,including ruthenium oxides,nickel oxides,manganese oxides,vanadium oxides,cobalt oxides,iridium oxides,titanium nitrides,vanadium nitrides,molybdenum nitrides and niobium nitrides,are addressed,which would provide important significances for deep researches on pseudocapacitor electrode materials.
基金financially supported by the National Science Foundation of China(Grant No.11804106)。
文摘Although CoO is a promising electrode material for supercapacitors due to its high theoretical capacitance,the practical applications still suffering from inferior electrochemical activity owing to its low electrical conductivity,poor structural stability and inefficient nanostructure.Herein,we report a novel Cu0/Cu+co-doped CoO composite with adjustable metallic Cu0 and ion Cu+via a facile strategy.Through interior(Cu+)and exterior(Cu0)decoration of CoO,the electrochemical performance of CoO electrode has been significantly improved due to both the beneficial flower-like nanostructure and the synergetic effect of Cu0/Cu+co-doping,which results in a significantly enhanced specific capacitance(695 F g^(-1) at 1 A g^(-1))and high cyclic stability(93.4%retention over 10,000 cycles)than pristine CoO.Furthermore,this co-doping strategy is also applicable to other transition metal oxide(NiO)with enhanced electrochemical performance.In addition,an asymmetric hybrid supercapacitor was assembled using the Cu0/Cu+co-doped CoO electrode and active carbon,which delivers a remarkable maximal energy density(35 Wh kg^(-1)),exceptional power density(16 kW kg^(-1))and ultralong cycle life(91.5%retention over 10,000 cycles).Theoretical calculations further verify that the co-doping of Cu^(0)/Cu^(+)can tune the electronic structure of CoO and improve the conductivity and electron transport.This study demonstrates a facile and favorable strategy to enhance the electrochemical performance of transition metal oxide electrode materials.
文摘Electrochemical insertion/extraction of Li on cathode materials of spinel type LiMn2O4 and ordered rock-salt type LiCo0.5 Ni0.5O2 was measured on samples of which structures were well characterized. On the basis of experimental results on structure, morphology and charge-discharge characteristics, the effect of crystallinity of the cathode materiaIs on electrochemical Li insertion/extraction performance was discussed. These two transition metal oxides belong to onegroup that the crystallinity of these oxides affects to the performance.
基金supported by the National Natural Science Foundation of China(No.21373025)the major project of Tangshan Normal College(No.2017B01)
文摘This paper systematically studies the reaction mechanisms of formic acid catalyzed by transition metal oxide MoO. Three different reaction pathways of Routes I, Ⅱ and Ⅲ were found through studying the reaction mechanism of transition metal oxide MoO catalyzing the formic acid. The transition metal oxide MoO interacts with the C=O double bond to form chiral chain compounds(Routes I and Ⅱ) and metallic compound MoOH2(Route Ⅲ). In this paper, we have studied the mechanisms of two addition reaction pathways and hydrogen abstraction reaction pathway. Routes I and Ⅱ are both addition reactions, and their products are two different chiral compounds MoO3CH2, which are enantiomeric to each other. In Route Ⅲ, metal compounds MoOH2 and CO2 are obtained from the hydrogen abstraction reaction. Among them, the hydrogen abstraction reaction occurring in Route Ⅲ is more likely to occur than the others. By comparing the results of previous studies on the reaction of MxOy-+ ROH(M= Mo,W; R = Me, Et), we found that the hydrogen abstraction mechanism is completely different from the mechanism of oxygen-containing organic compound catalyzed by MxOy.
基金financially supported by the National Natural Science Foundation of China(No.20976149)
文摘NF3 decomposition over transition metal oxides coated MgO reagents in the absence of water is investigated. The results show that NF3 can be decomposed completely over pure MgO but the time of NF3 steady full conversion kept as short as 80 min, while the reactivities of coated MgO reagents were remarkably enhanced by transition metal oxides, for example the time of NF3 complete conversion over 12%Fe/MgO extended to 380 min. It is suggested that not only an increase in surface area but also a significant enhancement in the fluorination of MgO substrate caused by the surface transition metal oxides result in an improved reactivity of coated MgO reagents for NF3 decomposition.
文摘Electrochemical insertion/extraction of Li on cathode materials of anatase type TiO_2, quasilayered structure V_2O_5 and layered structure MoO_3 was measured on samples of which structures were well characterized and showed a wide range of crystallinity. On the basis of experimental results on structure, morphology and charge-discharge characteristics, the effect of crystallinity of the cathode materials on electrochemical Li insertion/extraction pedermance was discussed. These three transition metal oxides were classified as one group on the basis of whether the crystallinity of these oxides affects to the performance or not; LiMn_2O_4 and LiCo_(0.5)O_2 belongs to the former group and TiO_2, V_2O_5 and MoO_3 to the latter.
基金supported by the National Natural Science Foundation of China (21472189)National Basic Research Program of China (973 Program, 2012CB215304)+2 种基金the Natural Science Foundation of Guangdong Province, China (2015A030312007)Guangdong Key Laboratory of New and Renewable Energy Research and Development (Y607jl1001)Science and Technology Planning Project of Guangdong Province, China (2015A010106010)
文摘A serial of protonated and layered transition metal oxides, including layered HTaWO6, HNbMoO6 as well as HNbWO6, were synthesized by solid-state reaction and ion-exchange. The layered HTaWO6 has been systematically studied as a solid acid to realize the dehydration of fructose to 5-hydroxymethylfurfural (HMF). The transition metal oxide samples were characterized with ICP-OES, EDS, XRD, XPS, SEM, TGA, FT-IR, N-2 adsorption-desorption and NH3-TPD. The influential factors such as reaction temperature, reaction time, solvent, catalyst amount and substrate concentration were deeply investigated. The optimized fructose conversion rate of 99% with HMF yield of 67% were achieved after 30 min at 140 degrees C in dimethylsulfoxide. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.
基金Sponsored by the National Natural Science Foundation of China(50874017)
文摘In order to improve the pyrotechnical reagent with potassium perchlorate,composite catalyst of active carbon supporting transition metal oxides (TMO),Fe2O3 and CuO,were prepared and added into pyrotechnical reagent with potassium perchlorate.Accelerating rate calorimeter (ARC) was used to study the catalysis of pyrotechnical reagent which is consisted of potassium perchlorate and composite catalyst.Composite catalyst of both Fe2O3 and CuO supported by active carbon can catalyze pyrotechnical reagent with potassium perchlorate.Furthermore,it can lower the apparent activation energy and accelerate the reaction with a smaller quantity than that with Fe2O3 and CuO.The maximal reaction rate of pyrotechnical reagent with potassium perchlorate mixed with Fe2O3/active carbon and CuO/active carbon is 8.31 min-1 and 9.13 min-1,which is 1.74 times and 1.91 times of pyrotechnical reagent mixed with no catalyst;time to maximal rate was 18.99 min and 1.96 min respectively,which is lower than pyrotechnical reagent mixed with no catalyst by 86.46% and 98.67% ;the apparent activation energy is 368.10 kJ·mol-1 and 325.29 kJ·mol-1,which is lower than pyrotechnical reagent mixed with no catalyst by 31.89% and 39.81% respectively.
基金supported by the Fundamental Research Funds for the Central Universities,China(No.20720210010)the National Natural Science Foundation of China(Nos.22001081,22075236)the Science and Technology Projects of Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province(IKKEM,No.HRTP-[2022]-7).
文摘Electrochemical nitrate reduction reaction(NO_(3)RR)towards ammonia,as an emerging and appealing technology alternative to the energy-intensive Haber-Bosch process and inefficient nitrogen reduction reaction,has recently aroused wide concern and research.However,the current research of the NO_(3)RR towards ammonia lacks the overall performance comparison of various electrocatalysts.Given this,we here make a comparison of 12 common transition metal oxide catalysts for the NO_(3)RR under a high cathodic current density of 0.25 A·cm^(-2),wherein Co_(3)O_(4) catalyst displays the highest ammonia Faradaic efficiency(85.15%)and moderate activity(ca.-0.25 V vs.reversible hydrogen electrode).Other external factors,such as nitrate concentrations in the electrolyte and applied potential ranges,have also been specifically investigated for the NO_(3)RR.
基金supporting us by providing technical facilities(access to journals)。
文摘This review provides insight into the current research trend in transition metal oxides(TMOs)-based photocatalysis in removing the organic colouring matters from water.For easy understanding,the research progress has been presented in four generations according to the catalyst composition and mode of application,viz:single component TMOs(the firstgeneration),doped TMOs/binary TMOs/doped binary TMOs(the second-generation),inactive/active support-immobilized TMOs(the third-generation),and ternary/quaternary compositions(the fourth-generation).The first two generations represent suspended catalysts,the third generation is supported catalysts,and the fourth generation can be suspended or supported.The review provides an elaborated comparison between suspended and supported catalysts,their general/specific requirements,key factors controlling degradation,and the methodologies for performance evaluation.All the plausible fundamental and advanced dye degradation mechanisms involved in each generation of catalysts were demonstrated.The existing challenges in TMOs-based photocatalysis and how the researchers approach the hitch to resolve it effectively are discussed.Future research trends are also presented.
基金support from the National Natural Science Foundation of China(Nos.22221003 and 22071225)the Plan for Anhui Major Provincial Science&Technology Project(Nos.202203a0520013 and 2021d05050006)the fellowship of China Postdoctoral Science Foundation(No.2022M712179).
文摘Metal oxide supported metal catalysts show promising catalytic performance in many industry-relevant reactions.However,the enhancement of performance is often limited by the insufficient metal/metal oxide interface.In this work,we demonstrate a general synthesis of Pt-early transition metal oxide(Pt-MO_(x),M=Ti,Zr,V,and Y)catalysts with rich interfacial sites,which is based on the air-induced surface segregation and oxidation of M in the supported Pt-M alloy catalysts.Systematic characterizations verify the dynamic structural response of Pt-M alloy catalysts to air and the formation of Pt-MO_(x) catalysts with abundant interfacial sites.The prepared Pt-TiO_(x) interfacial catalysts exhibit improved performance in hydrogenation reactions of benzaldehyde,nitrobenzene,styrene,and furfural,as a result of the heterolytic dissociation of H_(2) at Pt-metal oxide interfacial sites.
基金Science and Technology Commission of Shanghai Municipality(21ZR1472900,22ZR1471600)。
文摘Platinum(Pt)-based noble metal catalysts(PGMs)are the most widely used commercial catalysts,but they have the problems of high cost,low reserves,and susceptibility to small-molecule toxicity.Transition metal oxides(TMOs)are regarded as potential substitutes for PGMs because of their stability in oxidizing environments and excellent catalytic performance.In this study,comprehensive investigation into the influence of elastic strains on the adsorption energies of carbon(C),hydrogen(H)and oxygen(O)on TMOs was conducted.Based on density functional theory(DFT)calculations,these effects in both tetragonal structures(PtO_(2),PdO_(2))and hexagonal structures(ZnO,CdO),along with their respective transition metals were systematically explored.It was identified that the optimal adsorption sites on metal oxides pinpointed the top of oxygen or the top of metal atom,while face-centered cubic(FCC)and hexagonal close-packed(HCP)holes were preferred for the transition metals.Furthermore,under the influence of elastic strains,the results demonstrated significant disparities in the adsorption energies of H and O between oxides and transition metals.Despite these differences,the effect of elastic strains on the adsorption energies of C,H and O on TMOs mirrored those on transition metals:adsorption energies increased under compressive strains,indicating weaker adsorption,and decreased under tension strains,indicating stronger adsorption.This behavior was rationalized based on the d-band model for adsorption atop a metallic atom or the p-band model for adsorption atop an oxygen atom.Consequently,elastic strains present a promising avenue for tailoring the catalytic properties of TMOs.
基金supported by the National Natural Science Foundation of China(22078215)Research Project by Shanxi Scholarship Council of China(2021-055)。
文摘In this work,a new ZnO/CoNiO_(2)/CoO/C metal oxides composite is prepared by cost-effective hydrothermal method coupled with annealing process under N_(2) atmosphere.Notably,the oxidation-defect annealing environment is conducive to both morphology and component of the composite,which flower-like ZnO/CoNiO_(2)/CoO/C is obtained.Benefited from good chemical stability of ZnO,high energy capacity of CoNiO_(2) and CoO and good conductivity of C,the as-prepared sample shows promising electrochemical behavior,including the specific capacity of 1435 C·g^(-1) at 1 A·g^(-1),capacity retention of 87.3%at 20 A·g^(-1),and cycling stability of 90.5%for 3000 cycles at 5 A·g^(-1),respectively.Furthermore,the prepared ZnO/CoNiO_(2)/CoO/C/NF//AC aqueous hybrid supercapacitors device delivers the best specific energy of 55.9 W·h·kg^(-1) at 850 W·kg^(-1).The results reflect that the as-prepared ZnO/CoNiO_(2)/CoO/C microflowers are considered as high performance electrode materials for supercapacitor,and the strategy mentioned in this paper is benefit to prepare mixed metal oxides composite for energy conversion and storage.
基金This work was supported by the National Natural Science Foundation of China(Nos.22121005,22020102002,and 21835004)the Frontiers Science Center for New Organic Matter of Nankai University(No.63181206).
文摘Layered lithium transition metal oxide(LTMO)cathode materials have attracted much attention for lithium-ion batteries and are shining in the current market.Establishing a clear structure-performance relationship is necessary for the performance improvement of LTMO cathode materials.The combination of synchrotron X-ray diffraction(XRD)with high intensity and XRD Rietveld refinement is powerful for revealing the structural characteristics of LTMO cathode materials.This review summarizes the application of high energy XRD and Rietveld refinement in LTMO cathode materials,including the brief introduction of synchrotron XRD and Rietveld refinement and their applications in understanding the structural evolution related to the synthetic,thermal runaway,cycling,and high-rate charge/discharge process of LTMO cathode materials.Synchrotron XRD can provide insights into the intermediates and reaction paths in the synthesis process,the origin of thermal runaway,the mechanism of structural decay during cycles,and the structural evolution during high-rate charging/discharging.Future works should focus on the development of higher intensity X-rays to gain more in-depth insights into the intrinsic relationship between their structural characteristics and properties.
基金Y.C.and J.C.are contributed equally to the paper.Project supported by the National Natural Science Foundation of China (U19A2017)the Fundamental Research Funds for the Central South University and the Australian Research Council (DP180100731 and DP180100568)。
文摘The electrochemical carbon dioxide reduction reaction(CO_(2)RR),which can produce value-added chemical feedstocks,is a proton-coupled-electron process with sluggish kinetics.Thus,highly efficient,cheap catalysts are urgently required.Transition metal oxides such as CoO_(x),FeO_(x),and NiO_(x)are low-cost,low toxicity,and abundant materials for a wide range of electrochemical reactions,but are almost inert for CO_(2)RR.Here,we report for the first time that nitrogen doped carbon nanotubes(N-CNT)have a surprising activation effect on the activity and selectivity of transition metal-oxide(MO_(x)where M=Fe,Ni,and Co)nanoclusters for CO_(2)RR.MO_(x)supported on N-CNT,MO_(x)/N-CNT,achieves a CO yield of 2.6–2.8 mmol cm−2 min−1 at an overpotential of−0.55 V,which is two orders of magnitude higher than MO_(x)supported on acid treated CNTs(MO_(x)/O-CNT)and four times higher than pristine N-CNT.The faraday efficiency for electrochemical CO_(2)-to-CO conversion is as high as 90.3%at overpotential of 0.44 V.Both in-situ XAS measurements and DFT calculations disclose that MO_(x)nanoclusters can be hydrated in CO_(2)saturated KHCO_(3),and the N defects of N-CNT effectively stabilize these metal hydroxyl species under carbon dioxide reduction reaction conditions,which can split the water molecules and provide local protons to inhibit the poisoning of active sites under carbon dioxide reduction reaction conditions.
基金the support of China Scholarship Council(No.202108430035)G.M.L.acknowledges the Australian Institute of Nuclear Science and Engineering(AINSE)Limited for financial assistance in the form of a Post Graduate Research Award(PGRA)supported by the Australian Research Council(Nos.DP200101862,DP210101486,and FL210100050).
文摘The emergence of anionic redox reactions in layered transition metal oxide cathodes provides practical opportunity to boost the energy density of rechargeable batteries.However,the activation of anionic redox reaction in layered oxides has significant voltage hysteresis and decay that reduce battery performance and limit commercialization.Here,we critically review the up-todate development of anionic redox reaction in layered oxide cathodes,summarize the proposed reaction mechanism,and unveil their connection to voltage hysteresis and decay based on the state-of-the-art progress.In addition,advances associated with various modification approaches to mitigate the voltage hysteresis/decay in layered transition metal oxide cathodes are also included.Finally,we conclude with an appraisal of further research directions including rational design of high-performance layered oxide cathodes with reversible anionic redox reactions and suppressed voltage hysteresis/decay.Findings will be of immediate benefit to the development of layered oxide cathodes for high performance rechargeable batteries.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences,China(Nos.XDA23010300 and XDA23010000)National Natural Science Foundation of China(Nos.51878644 and 41573138)+1 种基金the National Key Research and Development Program of China(No.2016YFA0203000)the Plan for"National Youth Talents"of the Organization Department of the Central Committee。
文摘Atmospheric pollutants can deteriorate air quality and put human health at risk.There is a growing need for green,economical,and efficient technologies,among which catalytic elimination technology is the most promising,to remove atmospheric pollutants.Two-dimensional transition metal oxides(2D TMOs)have recently become attractive catalysts due to their highly exposed active sites,excellent reactant transport properties,and extraordinary catalytic performance.This review systematically summarizes the topdown and bottom-up preparation methods of 2D TMOs and focuses on the specific applications of 2D TMOs in the catalytic elimination of atmospheric inorganic pollutants and volatile organic pollutants.The development of 2D TMOs in the catalytic elimination of atmospheric pollutants is prospected.This review is expected to provide design insights into efficient 2D TMOs to remove atmospheric pollutants.