Polyimide matrix composites interpenetrated with foamed copper were prepared via pressure impregnation and vacuum immersion to focus on their thermostability, mechanical and tribological behaviors as sliding electrica...Polyimide matrix composites interpenetrated with foamed copper were prepared via pressure impregnation and vacuum immersion to focus on their thermostability, mechanical and tribological behaviors as sliding electrical contact materials. The results show that the interpenetrating phase composites(IPC) are very heat-resistant and exhibit higher hardness as well as bending strength, when compared with homologous polyimide matrix composites without foamed copper. Sliding electrical contact property of the materials is also remarkably improved, from the point of contact voltage drops. Moreover, it is believed that fatigue wear is the main mechanism involved, along with slight abrasive wear and oxidation wear. The better abrasive resistance of the IPC under different testing conditions was detected, which was mainly attributed to the successful hybrid of foamed copper and polyimide.展开更多
Double glow plasma surface metallurgy technique was used to fabricate a Fe?Al?Cr?Nb alloyed layer onto the surface of the 45 steel. The microstructures and composition of th?eA Fl?eCr?Nb alloyed layer were analyzed by...Double glow plasma surface metallurgy technique was used to fabricate a Fe?Al?Cr?Nb alloyed layer onto the surface of the 45 steel. The microstructures and composition of th?eA Fl?eCr?Nb alloyed layer were analyzed by scanning electronic microscopy, X-ray diffraction and energy dispersive spectroscopy. The results indicate thatthe 20 μm alloyed layer is homogeneous and compact. The alloyed elements exhibit a gradient distribution along the cross section. Microhardness and nanoindentation tests imply that the surface hardness of the alloyed layer reaches HV 580, which is almost 2.8 times that of the substrate. Compared with the substrate, the alloyed layer has a much smaller displacement and a larger elastic modulus. According to the friction and wear tests at room temperature, the? FeAl?Cr?Nb alloyed layer has lower friction coefficient and less wear mass, implying that the Fe?Al?Cr?Nb alloyed layer can effectively improve the surface hardness and wear resistance of the substrate.展开更多
Hydrogenated diamond-like carbon (DLC) films were deposited on Si substrate using plasma enhanced chemical vapor deposition(PECVD) technique with CH4 plus H2 as the feedstock. The tribological properties of the hydrog...Hydrogenated diamond-like carbon (DLC) films were deposited on Si substrate using plasma enhanced chemical vapor deposition(PECVD) technique with CH4 plus H2 as the feedstock. The tribological properties of the hydrogenated DLC films were measured on a ball-on-disk tribometer in different testing environments (humid air,dry air, dry O2, dry Ar and dry N2 ) sliding against Si3 N4 balls. The friction surfaces of the films and Si3 N4 balls were observed on a scanning electron microscope (SEM) and investigated by X-ray photoelectron spectroscopy (XPS). The results show that the tribological properties of the hydrogenated DLC films are strongly dependent on the testing environments. In dry Ar and dry N2 environments, the hydrogenated DLC films provide a superlow friction coefficient of about 0. 008 -0.01 and excellent wear resistance (wear life of above 56 km). In dry air and dry O2, the friction coefficient is increased to 0. 025 - 0.04 and the wear life is decreased to about 30 km. When sliding in moist air, the friction coefficient of the films is further increased to 0. 08 and the wear life is decreased to 10. 4 km. SEM and XPS analyses show that the tribological behaviors appear to rely on the transferred carbon-rich layer processes on the Si3 N4 balls and on the friction-induced oxidation of the films controlled by the nature of the testing environments.展开更多
In order to improve the hardness and tribological performance of Ti6Al4V alloy,NiCoCrAlY-B_(4)C composite coatings with B_(4)C of 5%,10%and 15%(mass fraction)were fabricated on its surface by laser cladding(LC).The mo...In order to improve the hardness and tribological performance of Ti6Al4V alloy,NiCoCrAlY-B_(4)C composite coatings with B_(4)C of 5%,10%and 15%(mass fraction)were fabricated on its surface by laser cladding(LC).The morphologies,chemical compositions and phases of obtained coatings were analyzed using scanning electronic microscope(SEM),energy dispersive spectrometer(EDS),and X-ray diffraction(XRD),respectively.The effects of B_(4)C mass fraction on the coefficient of friction(COF)and wear rate of NiCoCrAlY-B_(4)C coatings were investigated using a ball-on-disc wear tester.The results show that the NiCoCrAlY-B_(4)C coatings with different B_(4)C mass fractions are mainly composed of NiTi,NiTi_(2),α-Ti,CoO,AlB_(2),TiC,TiB and TiB_(2)phases.The COFs and wear rates of NiCoCrAlY-B_(4)C coatings decrease with the increase of B_(4)C content,which are contributed to the improvement of coating hardness by the B_(4)C addition.The wear mechanisms of NiCoCrAlY-B_(4)C coatings are changed from adhesive wear and oxidation wear to fatigue wear with the increase of B_(4)C content.展开更多
The AA6061-10 wt.%B4 C mono composite, AA6061-10 wt.%B4 C-Gr(Gr: graphite) hybrid composites containing 2.5, 5, and 7.5 wt.% Gr particles, and AA6061-10 wt.%B4 C-Mo S2 hybrid composites containing 2.5, 5, and 7.5 wt.%...The AA6061-10 wt.%B4 C mono composite, AA6061-10 wt.%B4 C-Gr(Gr: graphite) hybrid composites containing 2.5, 5, and 7.5 wt.% Gr particles, and AA6061-10 wt.%B4 C-Mo S2 hybrid composites containing 2.5, 5, and 7.5 wt.% Mo S2 particles were fabricated through stir casting. The dry sliding tribological behaviors of the mono composite and hybrid composites were studied as a function of temperature on high temperature pin-on-disc tribotester against EN 31 counterface. The wear rate and friction coefficient of the Gr-reinforced and Mo S2-reinforced hybrid composites decreased in the temperature range of 30-100 ℃ due to the combined lubrication offered by the wear protective layer and its solid lubricant phase. Scanning electron microscopy(SEM) observation of the worn pin surface revealed severe adhesion, delamination, and abrasion wear mechanisms at temperatures of 150, 200, and 250 ℃, respectively. At 150 ℃, transmission electron microscopy(TEM) observation of the hybrid composites revealed the formation of deformation bands due to severe plastic deformation and fine crystalline structure due to dynamic recrystallization.展开更多
Brake friction materials with different zinc powder contents(0,2,4,6,8 wt.%)were fabricated via powder metallurgy method.The results indicate that with the increasing zinc powder content,the density and thermal conduc...Brake friction materials with different zinc powder contents(0,2,4,6,8 wt.%)were fabricated via powder metallurgy method.The results indicate that with the increasing zinc powder content,the density and thermal conductivity of the materials gradually increase,while the hardness decreases monotonously.With increasing zinc powder content,the curve of the nominal friction coefficient shows fluctuating trend but the lowest friction coefficient also shows an increase.However,the wear rate and braking noise of the friction material monotonously decrease with increasing zinc content.This effect may be attributed to the transformation of the tribological mechanism from adhesive wear and abrasive wear to adhesive wear.The brake friction material with 4 wt.%zinc powder exhibits both the best tribological and noise performance.展开更多
A metallic glass coating with the composition of Fe51.33Cr14.9Mo25.67Y3.4C3.44B1.26 (mole fraction, %) on the Q235 stainless steel was developed by the detonation gun (D-gun) spraying process. The microstructure a...A metallic glass coating with the composition of Fe51.33Cr14.9Mo25.67Y3.4C3.44B1.26 (mole fraction, %) on the Q235 stainless steel was developed by the detonation gun (D-gun) spraying process. The microstructure and the phase aggregate were analyzed by scanning electron microscopy and X-ray diffractometry, respectively. Microhardness, wear resistance and corrosion behavior were assessed using a Vickers microhardness tester, a ball-on-disk wear testing machine and the electrochemical measurement method, respectively. Microstructural studies show that the coatings possess a densely layered structure with the porosity less than 2.1%. The tribological behavior of the coatings examined under dry conditions shows that their relative wear resistance is five times higher than that of the substrate material. Both adhesive wear and abrasive wear contribute to the friction, but the former is the dominant wear mechanism of the metallic glass coatings. The coatings exhibit low passive current density and extremely wide passive region in 3.5% NaCl solution, thus indicating excellent corrosion resistance.展开更多
In this study,the tribological behaviors of graphene as a lubricant additive for steel/copper and steel/steel friction pairs were compared.For the steel/copper friction pair,the graphene sheets remarkably decreased th...In this study,the tribological behaviors of graphene as a lubricant additive for steel/copper and steel/steel friction pairs were compared.For the steel/copper friction pair,the graphene sheets remarkably decreased the coefficient of friction and wear scar depth under low loads,but these slightly increased under high loads.The steel/steel friction pair showed excellent tribological properties even under high loads.Severe plastic deformation on the copper surface reduced the stability of the graphene tribofilm because of a rough copper transfer film on the steel during the running-in period.The results provide a better understanding of the mechanism of graphene as a lubricant additive.展开更多
Investigation on the law of tribological modifying activity influenced by structure of additives will make prediction and design of materials tribological behaviors possible.Four types of diamine Schiff base Cu(II)com...Investigation on the law of tribological modifying activity influenced by structure of additives will make prediction and design of materials tribological behaviors possible.Four types of diamine Schiff base Cu(II)complexes as additives for modifying UHMWPE are synthesized,they are respectively:Cu(II)complex with ethlenediamion-N,N′-bis(salicylidene),Cu(II)complex with 1,6-hexanediamine-N,N′-bis(salicylidene),Cu(II)complex with 1,2-cyclohexanediamion-N,N′-bis(salicylidene)and Cu(II)complex with 1,2-phenylendiamion-N,N′-bis(salicylidene).Friction coefficient of the modified UHMWPE/Ti6Al4V is studied using a reciprocating friction and wear tester between line/surface contacts sliding in reciprocating under the condition of boundary lubrication with 25 vol% calf serum deionized water solution,at the same time volume loss of wear of the polymers is measured.3D topographies of the worn surfaces of the polymers and images of the worn surfaces of titanium alloys against the polymers are investigated respectively by CWLM and SEM.How the structural unit R of Schiff base copper complexes in the modified UHMWPE influences their tribological modifying activity is also discussed.Results show that the smaller the group R is,the higher the modifying activity is obtained,and the open chain is more reactive than that of alkyl and aromatic ring.Therefore,the Cu(II)complex with ethlenediamion-N,N′-bis(salicylidene)has the highest tribological modifying activity as its R group is the smallest and open.展开更多
A Cr-Si co-alloyed layer was successfully deposited on TA15 alloy by the double glow plasma surface technology to improve its poor wear resistance at elevated temperature.The microstructure,composition,and phase struc...A Cr-Si co-alloyed layer was successfully deposited on TA15 alloy by the double glow plasma surface technology to improve its poor wear resistance at elevated temperature.The microstructure,composition,and phase structure of the layer were investigated by SEM,EDS,and XRD.The tribological behaviors of the Cr-Si co-alloyed layer at 20 ℃ and 500 ℃ were analyzed in details.The results indicated that the friction coefficient and wear rate of the Cr-Si coalloyed layer at 20 ℃ and 500 ℃ were much lower than those of the substrate,which was due to higher hardness and superior elastic modulus.This layer may become an approach to effectively improving the wear resistance of TA15 alloy at elevated temperature.展开更多
There has been a growing demand for safety parts with tailored properties in automobile industry.However,the understanding of tribological behavior of press hardening steels(PHS)on the tailored conditions is highly in...There has been a growing demand for safety parts with tailored properties in automobile industry.However,the understanding of tribological behavior of press hardening steels(PHS)on the tailored conditions is highly inadequate.The present work aims at creating new knowledge about the tribological characteristics of PHS on the tailored conditions and bridging this existing gap.The paper proposes an improved hot drawing tribo-simulator to simulate the realistic experimental conditions industry.Investigations were carried out on the condition of different initial heating temperatures,tool temperatures,austenitizing temperatures,cooling rates and microstructures.The presented results show that the whole frictional process is divided into three stages for both coated and uncoated steels.The frictional factor changes a lot and the peak value of frictional factor occurs for serious adhesive wear.The frictional factor rises as the tool temperature and austenitizing temperature rise.The surface morphology of tools indicates that the coating adhering to tool gets thicker as the tool temperature increases.With the increase of cooling rate,the frictional factor declines firstly and then rises to some extent.Flat dies with different temperatures are used to form specimens with different microstructures,which also affects the frictional factor and wear.展开更多
Highly pure and dense Ti2AlC and Ti2AlSn0.2C bulks were prepared by hot pressing with molar ratios of 1∶1.1∶0.9 and 1∶0.9∶0.2∶0.85,respectively,at 1450 ℃ for 30 min with 28 MPa in Ar atmosphere.The phase composi...Highly pure and dense Ti2AlC and Ti2AlSn0.2C bulks were prepared by hot pressing with molar ratios of 1∶1.1∶0.9 and 1∶0.9∶0.2∶0.85,respectively,at 1450 ℃ for 30 min with 28 MPa in Ar atmosphere.The phase compositions were investigated by X-ray diffraction (XRD);the surface morphology and topography of the crystal grains were also analyzed by scanning electron microscopy (SEM).The flexural strengths of Ti2AlC and Ti2AlSn0.2C have been measured as 430 and 410 MPa,respectively.Both Vickers hardness decreased slowly as the load increased.The tribological behavior was investigated by dry sliding a low-carbon steel under normal load of 20-80 N and sliding speed of 10-30 m/s.Ti2AlC bulk has a friction coefficient of 0.3-0.45 and a wear rate of (1.64-2.97)×10-6 mm3/(N·m),while Ti2AlSn0.2C bulk has a friction coefficient of 0.25-0.35 and a wear rate of (2.5-4.31)× 10-6 mm3/(N·m).The influences of Sn incorporation on the microstructure and properties of Ti2AlC have also been discussed.展开更多
The crack-free Ni60 A coating was fabricated on 45 steel substrate by laser cladding and the microstructure including solidification characteristics, phases constitution and phase distribution was systematically inves...The crack-free Ni60 A coating was fabricated on 45 steel substrate by laser cladding and the microstructure including solidification characteristics, phases constitution and phase distribution was systematically investigated. The high temperature friction and wear behavior of the cladding coating and substrate sliding against GCr15 ball under different loads was systematically evaluated. It was found that the coating has homogenous and fine microstructure consisting of γ(Ni) solid solution, a considerable amount of network Ni-Ni3 B eutectics, m^23C6 with the floret-shape structure and Cr B with the dark spot-shape structure uniformly distributing in interdendritic eutectics. The microhardness of the coating is about 2.6 times as much as that of the substrate. The coating produces higher friction values than the substrate under the same load condition, but the friction process on the coating keeps relatively stable. Wear rates of the coating are about 1/6.2 of that of the substrate under the higher load(300 g). Wear mechanism of the substrate includes adhesion wear, abrasive wear, severe plastic deformation and oxidation wear, while that of the coating is merely a combination of mild abrasive wear and moderate oxidation wear.展开更多
The tribological behavior of a Zr-based bulk metallic glass(BMG) was investigated using pin-on-disk sliding measurements in two different environments,i.e.,air and argon,against an yttria-stabilized zirconia counter...The tribological behavior of a Zr-based bulk metallic glass(BMG) was investigated using pin-on-disk sliding measurements in two different environments,i.e.,air and argon,against an yttria-stabilized zirconia counterface.It was found that the wear of the Zr-based BMG was reduced by more than 45% due to the removal of oxygen from the test environment at two different loads,i.e.,16 N and 23 N.The wear pins were examined using X-ray diffractometry,differential scanning calorimetry,scanning electron microscopy and optical surface profilometry.A number of abrasive particles and grooves presented on the worn surface of the pin tested in air,while a relatively smooth worn surface was observed in the specimens tested in argon.The wear mechanism of the pin worn in air was dominated by abrasive wear compared with an adhesive wear controlled process in the tests performed in argon.展开更多
To decrease the size effects of friction in microforming, three kinds of surface coatings, such as diamond-like carbon(DLC), TiN and MoS2, were deposited on surfaces of dies with plasma based ion implantation and de...To decrease the size effects of friction in microforming, three kinds of surface coatings, such as diamond-like carbon(DLC), TiN and MoS2, were deposited on surfaces of dies with plasma based ion implantation and deposition(PBII D) method and magnetron sputtering technique, respectively. The tribological behavior of surface coatings was analyzed considering plastic deformation of specimen at contact interface. The analyses indicate that there is a lower coefficient of friction(COF) and a high wear resistance under the condition of large strain/stress when using the DLC film. The graphitization of DLC film occurs after 100 times of tests. The mechanism of graphitization was analyzed considering energy induced by friction work. The effects of DLC film properties on qualities of micro-deep drawn parts were investigated by analyzing the reduction of wall thickness, etc. The results indicate that DLC film is very helpful for improving the qualities of the micro-parts.展开更多
CNTs-Cu and graphite-Cu composites were separately prepared by powder metallurgy technique under the same consolidation processing. Tribological behavior of the composites with electric current was investigated by usi...CNTs-Cu and graphite-Cu composites were separately prepared by powder metallurgy technique under the same consolidation processing. Tribological behavior of the composites with electric current was investigated by using a pin-on-disk friction and wear tester. The results show that the friction coefficient and wear rate of the composites decrease with increasing the reinforcement content, and increase with increasing the electric current density; the effects of electric current are more obvious on tribological properties of graphite-Cu composites than on CNTs-Cu composites; for graphite-Cu composites the dominant wear mechanisms are electric arc erosion and adhesive wear, while for CNTs-Cu composites are adhesive wear.展开更多
The tribological properties and thermal-stress behaviors of C/C-SiC composites during braking were investigated aiming to simulate braking tests of high-speed trains. The temperature and structural fields of C/C-SiC c...The tribological properties and thermal-stress behaviors of C/C-SiC composites during braking were investigated aiming to simulate braking tests of high-speed trains. The temperature and structural fields of C/C-SiC composites during braking were fully coupled and simulated with ANSYS software. The results of tribological tests indicated that the C/C-SiC composites showed excellent static friction coefficient (0.68) and dynamic friction coefficient (average value of 0.36). The highest temperature on friction surface was 445℃. The simulated temperature field showed that the highest temperature which appeared on the friction surface during braking was about 463℃. Analysis regarding thermal-stress field showed that the highest thermal-stress on friction surface was 11.5 MPa. The temperature and thermal-stress distributions on friction surface during braking showed the same tendency.展开更多
The tribological behavior of aged Al-Sn-Cu alloy rubbed in the presence of lubricant over a range of sliding velocities and normal loads was investigated. The results showed that peak-aged (PA) alloy had a better tr...The tribological behavior of aged Al-Sn-Cu alloy rubbed in the presence of lubricant over a range of sliding velocities and normal loads was investigated. The results showed that peak-aged (PA) alloy had a better tribological behavior than under-aged (UA) and over-aged (OA) alloys, which could be attributed to the optimized strength-ductility matching and a better hardness under PA condition. Wear rate and friction coefficient showed great sensitivity to applied sliding velocity and normal load. The wear rate and friction coefficient of the alloy exhibited a reduction trend with the increase in sliding velocity. The low wear rate and friction coefficient of alloy at high velocities were due to the effectively protected film and homogeneous Sn on surface. However, an increase in normal load led to an obvious increment in wear rate. The friction coefficient exhibited a fluctuant trend with the increase of normal loads. The seriously destroyed film and abraded Sn resulted in poor tribological behavior at high normal loads. The Sn particles and lubricant film which includes low shear interfacial lubricating layer and oxide tribolayer are the key to the tribological behavior of Al-Sn-Cu alloy.展开更多
Tribological behavior and wear mechanisms of mechanically milled Al5083 alloy and Al5083−5wt.%B4C composite at room temperature and 200°C were discussed.Results revealed that due to the oxidative wear at room tem...Tribological behavior and wear mechanisms of mechanically milled Al5083 alloy and Al5083−5wt.%B4C composite at room temperature and 200°C were discussed.Results revealed that due to the oxidative wear at room temperature,a mechanically mixed layer(MML)was formed to protect the surface of the samples.Under 80 N of load at room temperature,the milled Al5083 and the Al5083−5wt.%B4C samples showed evidence of abrasion with limited volume loss.In this case,the wear rates were 5.8×10−7 and 4.4×10−7 mm3/(m·N),respectively.At 200°C and under 80 N of applied load,severe wear occurred in the milled Al5083 sample,and wear rate reached 10.8×10−7 mm3/(m·N)while the Al5083−5wt.%B4C sample showed mild wear with local 3-body abrasion and the wear rate reached 5.3×10−7 mm3/(m·N).Strengthening mechanisms such as dislocation pinning and the Hall−Petch theory,high hardness and the load transfer effect were crucial in determining the wear behavior of the Al5083−5wt.%B4C composite.On the other hand,the milled Al5083 sample represented a relatively high wear rate at 200°C,which seemed to be related to the local grain growth and a drop in its hardness.展开更多
The effect of diamond-like carbon(DLC)coating(fabricated by cathodic arc deposition)on mechanical properties,tribological behavior and corrosion performance of the Ni−Al−bronze(NAB)alloy was investigated.Nano-hardness...The effect of diamond-like carbon(DLC)coating(fabricated by cathodic arc deposition)on mechanical properties,tribological behavior and corrosion performance of the Ni−Al−bronze(NAB)alloy was investigated.Nano-hardness and pin-on-plate test showed that DLC coating had a greater hardness compared with NAB alloy.Besides,the decrease in friction coefficient from 0.2 for NAB substrate to 0.13 for the DLC-coated sample was observed.Potentiodynamic polarization and EIS results showed that the corrosion current density decreased from 2.5μA/cm2 for bare NAB alloy to 0.14μA/cm2 for DLC-coated sample in 3.5 wt.%NaCl solution.Moreover,the charge transfer resistance at the substrate−electrolyte interface increased from 3.3 kΩ·cm2 for NAB alloy to 120.8 kΩ·cm2 for DLC-coated alloy,which indicated an increase in corrosion resistance due to the DLC coating.展开更多
文摘Polyimide matrix composites interpenetrated with foamed copper were prepared via pressure impregnation and vacuum immersion to focus on their thermostability, mechanical and tribological behaviors as sliding electrical contact materials. The results show that the interpenetrating phase composites(IPC) are very heat-resistant and exhibit higher hardness as well as bending strength, when compared with homologous polyimide matrix composites without foamed copper. Sliding electrical contact property of the materials is also remarkably improved, from the point of contact voltage drops. Moreover, it is believed that fatigue wear is the main mechanism involved, along with slight abrasive wear and oxidation wear. The better abrasive resistance of the IPC under different testing conditions was detected, which was mainly attributed to the successful hybrid of foamed copper and polyimide.
基金Project(51371097)supported by the National Natural Science Foundation of ChinaProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘Double glow plasma surface metallurgy technique was used to fabricate a Fe?Al?Cr?Nb alloyed layer onto the surface of the 45 steel. The microstructures and composition of th?eA Fl?eCr?Nb alloyed layer were analyzed by scanning electronic microscopy, X-ray diffraction and energy dispersive spectroscopy. The results indicate thatthe 20 μm alloyed layer is homogeneous and compact. The alloyed elements exhibit a gradient distribution along the cross section. Microhardness and nanoindentation tests imply that the surface hardness of the alloyed layer reaches HV 580, which is almost 2.8 times that of the substrate. Compared with the substrate, the alloyed layer has a much smaller displacement and a larger elastic modulus. According to the friction and wear tests at room temperature, the? FeAl?Cr?Nb alloyed layer has lower friction coefficient and less wear mass, implying that the Fe?Al?Cr?Nb alloyed layer can effectively improve the surface hardness and wear resistance of the substrate.
基金Projects(59925513 50323007) supported by the National Natural Science Foundation of China+1 种基金 Project(2003AA305670) supported by Hi-tech Research and Development Program of China Project supported by the "Top Hundred Talents Program" of Chinese Academy of Sciences
文摘Hydrogenated diamond-like carbon (DLC) films were deposited on Si substrate using plasma enhanced chemical vapor deposition(PECVD) technique with CH4 plus H2 as the feedstock. The tribological properties of the hydrogenated DLC films were measured on a ball-on-disk tribometer in different testing environments (humid air,dry air, dry O2, dry Ar and dry N2 ) sliding against Si3 N4 balls. The friction surfaces of the films and Si3 N4 balls were observed on a scanning electron microscope (SEM) and investigated by X-ray photoelectron spectroscopy (XPS). The results show that the tribological properties of the hydrogenated DLC films are strongly dependent on the testing environments. In dry Ar and dry N2 environments, the hydrogenated DLC films provide a superlow friction coefficient of about 0. 008 -0.01 and excellent wear resistance (wear life of above 56 km). In dry air and dry O2, the friction coefficient is increased to 0. 025 - 0.04 and the wear life is decreased to about 30 km. When sliding in moist air, the friction coefficient of the films is further increased to 0. 08 and the wear life is decreased to 10. 4 km. SEM and XPS analyses show that the tribological behaviors appear to rely on the transferred carbon-rich layer processes on the Si3 N4 balls and on the friction-induced oxidation of the films controlled by the nature of the testing environments.
文摘In order to improve the hardness and tribological performance of Ti6Al4V alloy,NiCoCrAlY-B_(4)C composite coatings with B_(4)C of 5%,10%and 15%(mass fraction)were fabricated on its surface by laser cladding(LC).The morphologies,chemical compositions and phases of obtained coatings were analyzed using scanning electronic microscope(SEM),energy dispersive spectrometer(EDS),and X-ray diffraction(XRD),respectively.The effects of B_(4)C mass fraction on the coefficient of friction(COF)and wear rate of NiCoCrAlY-B_(4)C coatings were investigated using a ball-on-disc wear tester.The results show that the NiCoCrAlY-B_(4)C coatings with different B_(4)C mass fractions are mainly composed of NiTi,NiTi_(2),α-Ti,CoO,AlB_(2),TiC,TiB and TiB_(2)phases.The COFs and wear rates of NiCoCrAlY-B_(4)C coatings decrease with the increase of B_(4)C content,which are contributed to the improvement of coating hardness by the B_(4)C addition.The wear mechanisms of NiCoCrAlY-B_(4)C coatings are changed from adhesive wear and oxidation wear to fatigue wear with the increase of B_(4)C content.
文摘The AA6061-10 wt.%B4 C mono composite, AA6061-10 wt.%B4 C-Gr(Gr: graphite) hybrid composites containing 2.5, 5, and 7.5 wt.% Gr particles, and AA6061-10 wt.%B4 C-Mo S2 hybrid composites containing 2.5, 5, and 7.5 wt.% Mo S2 particles were fabricated through stir casting. The dry sliding tribological behaviors of the mono composite and hybrid composites were studied as a function of temperature on high temperature pin-on-disc tribotester against EN 31 counterface. The wear rate and friction coefficient of the Gr-reinforced and Mo S2-reinforced hybrid composites decreased in the temperature range of 30-100 ℃ due to the combined lubrication offered by the wear protective layer and its solid lubricant phase. Scanning electron microscopy(SEM) observation of the worn pin surface revealed severe adhesion, delamination, and abrasion wear mechanisms at temperatures of 150, 200, and 250 ℃, respectively. At 150 ℃, transmission electron microscopy(TEM) observation of the hybrid composites revealed the formation of deformation bands due to severe plastic deformation and fine crystalline structure due to dynamic recrystallization.
基金Project(2016YFB1100103)supported by the National Key Research and Development Program of ChinaProject(KC1703004)supported by the Science and Technology Planning Project of Changsha City,ChinaProject(2018ZZTS127)supported by the Fundamental Research Funds for the Central Universities of Central South University,China。
文摘Brake friction materials with different zinc powder contents(0,2,4,6,8 wt.%)were fabricated via powder metallurgy method.The results indicate that with the increasing zinc powder content,the density and thermal conductivity of the materials gradually increase,while the hardness decreases monotonously.With increasing zinc powder content,the curve of the nominal friction coefficient shows fluctuating trend but the lowest friction coefficient also shows an increase.However,the wear rate and braking noise of the friction material monotonously decrease with increasing zinc content.This effect may be attributed to the transformation of the tribological mechanism from adhesive wear and abrasive wear to adhesive wear.The brake friction material with 4 wt.%zinc powder exhibits both the best tribological and noise performance.
基金Project(51301205)supported by the National Natural Science Foundation of ChinaProject(20130162120001)supported by the Doctoral Program of Higher Education of China+2 种基金Project(K1502003-11)supported by the Changsha Municipal Major Science and Technology Program,ChinaProject(K1406012-11)supported by the Changsha Municipal Science and Technology Plan,ChinaProject(2016CX003)supported by the Innovation-driven Plan in Central South University,China
文摘A metallic glass coating with the composition of Fe51.33Cr14.9Mo25.67Y3.4C3.44B1.26 (mole fraction, %) on the Q235 stainless steel was developed by the detonation gun (D-gun) spraying process. The microstructure and the phase aggregate were analyzed by scanning electron microscopy and X-ray diffractometry, respectively. Microhardness, wear resistance and corrosion behavior were assessed using a Vickers microhardness tester, a ball-on-disk wear testing machine and the electrochemical measurement method, respectively. Microstructural studies show that the coatings possess a densely layered structure with the porosity less than 2.1%. The tribological behavior of the coatings examined under dry conditions shows that their relative wear resistance is five times higher than that of the substrate material. Both adhesive wear and abrasive wear contribute to the friction, but the former is the dominant wear mechanism of the metallic glass coatings. The coatings exhibit low passive current density and extremely wide passive region in 3.5% NaCl solution, thus indicating excellent corrosion resistance.
基金This work was supported by National Natural Science Foundation of China(Nos.51527901 and 51335005)the National Key Basic Research Program of China(973 Program,No.2014CB046404)Tribology Science Fund of State Key Laboratory of Tribology(No.SKLTKF18A02).
文摘In this study,the tribological behaviors of graphene as a lubricant additive for steel/copper and steel/steel friction pairs were compared.For the steel/copper friction pair,the graphene sheets remarkably decreased the coefficient of friction and wear scar depth under low loads,but these slightly increased under high loads.The steel/steel friction pair showed excellent tribological properties even under high loads.Severe plastic deformation on the copper surface reduced the stability of the graphene tribofilm because of a rough copper transfer film on the steel during the running-in period.The results provide a better understanding of the mechanism of graphene as a lubricant additive.
基金supported by the National Natural Science Foundation of China(Grant No.51075309)the Hubei Fund for Distinguished Young Scientists(Grant No.2010CDA086)
文摘Investigation on the law of tribological modifying activity influenced by structure of additives will make prediction and design of materials tribological behaviors possible.Four types of diamine Schiff base Cu(II)complexes as additives for modifying UHMWPE are synthesized,they are respectively:Cu(II)complex with ethlenediamion-N,N′-bis(salicylidene),Cu(II)complex with 1,6-hexanediamine-N,N′-bis(salicylidene),Cu(II)complex with 1,2-cyclohexanediamion-N,N′-bis(salicylidene)and Cu(II)complex with 1,2-phenylendiamion-N,N′-bis(salicylidene).Friction coefficient of the modified UHMWPE/Ti6Al4V is studied using a reciprocating friction and wear tester between line/surface contacts sliding in reciprocating under the condition of boundary lubrication with 25 vol% calf serum deionized water solution,at the same time volume loss of wear of the polymers is measured.3D topographies of the worn surfaces of the polymers and images of the worn surfaces of titanium alloys against the polymers are investigated respectively by CWLM and SEM.How the structural unit R of Schiff base copper complexes in the modified UHMWPE influences their tribological modifying activity is also discussed.Results show that the smaller the group R is,the higher the modifying activity is obtained,and the open chain is more reactive than that of alkyl and aromatic ring.Therefore,the Cu(II)complex with ethlenediamion-N,N′-bis(salicylidene)has the highest tribological modifying activity as its R group is the smallest and open.
基金supported by the National Natural Science Foundation of China(No.51474131)a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘A Cr-Si co-alloyed layer was successfully deposited on TA15 alloy by the double glow plasma surface technology to improve its poor wear resistance at elevated temperature.The microstructure,composition,and phase structure of the layer were investigated by SEM,EDS,and XRD.The tribological behaviors of the Cr-Si co-alloyed layer at 20 ℃ and 500 ℃ were analyzed in details.The results indicated that the friction coefficient and wear rate of the Cr-Si coalloyed layer at 20 ℃ and 500 ℃ were much lower than those of the substrate,which was due to higher hardness and superior elastic modulus.This layer may become an approach to effectively improving the wear resistance of TA15 alloy at elevated temperature.
基金supported by the National Natural Science Foundation of China(Grant Nos.51275185 and 51405171)the National Basic Research Program of China("973"Project)(Grant No.2010CB630802-3)+1 种基金the Fundamental Research Funds for the Central Universities(HUST,No0118110621)the Graduate Innovation and Entrepreneurship Fund of Huazhong University of Science and Technology(HUST,No.0109070112)
文摘There has been a growing demand for safety parts with tailored properties in automobile industry.However,the understanding of tribological behavior of press hardening steels(PHS)on the tailored conditions is highly inadequate.The present work aims at creating new knowledge about the tribological characteristics of PHS on the tailored conditions and bridging this existing gap.The paper proposes an improved hot drawing tribo-simulator to simulate the realistic experimental conditions industry.Investigations were carried out on the condition of different initial heating temperatures,tool temperatures,austenitizing temperatures,cooling rates and microstructures.The presented results show that the whole frictional process is divided into three stages for both coated and uncoated steels.The frictional factor changes a lot and the peak value of frictional factor occurs for serious adhesive wear.The frictional factor rises as the tool temperature and austenitizing temperature rise.The surface morphology of tools indicates that the coating adhering to tool gets thicker as the tool temperature increases.With the increase of cooling rate,the frictional factor declines firstly and then rises to some extent.Flat dies with different temperatures are used to form specimens with different microstructures,which also affects the frictional factor and wear.
基金the Fundamental Research Funds for the Central Universities,the National Natural Science Foundation of China,the Beijing Government Funds for the Constructive Project of Central Universities
文摘Highly pure and dense Ti2AlC and Ti2AlSn0.2C bulks were prepared by hot pressing with molar ratios of 1∶1.1∶0.9 and 1∶0.9∶0.2∶0.85,respectively,at 1450 ℃ for 30 min with 28 MPa in Ar atmosphere.The phase compositions were investigated by X-ray diffraction (XRD);the surface morphology and topography of the crystal grains were also analyzed by scanning electron microscopy (SEM).The flexural strengths of Ti2AlC and Ti2AlSn0.2C have been measured as 430 and 410 MPa,respectively.Both Vickers hardness decreased slowly as the load increased.The tribological behavior was investigated by dry sliding a low-carbon steel under normal load of 20-80 N and sliding speed of 10-30 m/s.Ti2AlC bulk has a friction coefficient of 0.3-0.45 and a wear rate of (1.64-2.97)×10-6 mm3/(N·m),while Ti2AlSn0.2C bulk has a friction coefficient of 0.25-0.35 and a wear rate of (2.5-4.31)× 10-6 mm3/(N·m).The influences of Sn incorporation on the microstructure and properties of Ti2AlC have also been discussed.
基金Project(2012AA040210)supported by the National High-Tech Research and Development Program of ChinaProject(510-C10293)supported by the Central Finance Special Fund to Support the Local University,ChinaProject(2010A090200048)supported by the Key Project of Industry,Education,Research of Guangdong Province and Ministry of Education,China
文摘The crack-free Ni60 A coating was fabricated on 45 steel substrate by laser cladding and the microstructure including solidification characteristics, phases constitution and phase distribution was systematically investigated. The high temperature friction and wear behavior of the cladding coating and substrate sliding against GCr15 ball under different loads was systematically evaluated. It was found that the coating has homogenous and fine microstructure consisting of γ(Ni) solid solution, a considerable amount of network Ni-Ni3 B eutectics, m^23C6 with the floret-shape structure and Cr B with the dark spot-shape structure uniformly distributing in interdendritic eutectics. The microhardness of the coating is about 2.6 times as much as that of the substrate. The coating produces higher friction values than the substrate under the same load condition, but the friction process on the coating keeps relatively stable. Wear rates of the coating are about 1/6.2 of that of the substrate under the higher load(300 g). Wear mechanism of the substrate includes adhesion wear, abrasive wear, severe plastic deformation and oxidation wear, while that of the coating is merely a combination of mild abrasive wear and moderate oxidation wear.
基金Project(DE-FG02-07ER46392) supported by U.S.Department of Energy,Office of Basic Energy ScienceProject(2011JQ002) supported by the Fundamental Research Funds for the Central Universities,ChinaProject supported by the Open-End Fund for the Valuable and Precision Instruments of Central South University,China
文摘The tribological behavior of a Zr-based bulk metallic glass(BMG) was investigated using pin-on-disk sliding measurements in two different environments,i.e.,air and argon,against an yttria-stabilized zirconia counterface.It was found that the wear of the Zr-based BMG was reduced by more than 45% due to the removal of oxygen from the test environment at two different loads,i.e.,16 N and 23 N.The wear pins were examined using X-ray diffractometry,differential scanning calorimetry,scanning electron microscopy and optical surface profilometry.A number of abrasive particles and grooves presented on the worn surface of the pin tested in air,while a relatively smooth worn surface was observed in the specimens tested in argon.The wear mechanism of the pin worn in air was dominated by abrasive wear compared with an adhesive wear controlled process in the tests performed in argon.
基金Projects(51375113,50805035)supported by the National Natural Science Foundation of China
文摘To decrease the size effects of friction in microforming, three kinds of surface coatings, such as diamond-like carbon(DLC), TiN and MoS2, were deposited on surfaces of dies with plasma based ion implantation and deposition(PBII D) method and magnetron sputtering technique, respectively. The tribological behavior of surface coatings was analyzed considering plastic deformation of specimen at contact interface. The analyses indicate that there is a lower coefficient of friction(COF) and a high wear resistance under the condition of large strain/stress when using the DLC film. The graphitization of DLC film occurs after 100 times of tests. The mechanism of graphitization was analyzed considering energy induced by friction work. The effects of DLC film properties on qualities of micro-deep drawn parts were investigated by analyzing the reduction of wall thickness, etc. The results indicate that DLC film is very helpful for improving the qualities of the micro-parts.
基金Project (2007CB607603) supported by the National Basic Research Program of China
文摘CNTs-Cu and graphite-Cu composites were separately prepared by powder metallurgy technique under the same consolidation processing. Tribological behavior of the composites with electric current was investigated by using a pin-on-disk friction and wear tester. The results show that the friction coefficient and wear rate of the composites decrease with increasing the reinforcement content, and increase with increasing the electric current density; the effects of electric current are more obvious on tribological properties of graphite-Cu composites than on CNTs-Cu composites; for graphite-Cu composites the dominant wear mechanisms are electric arc erosion and adhesive wear, while for CNTs-Cu composites are adhesive wear.
基金Project(51575536)supported by the National Natural Science Foundation of ChinaProject(2016YFB0301403)supported by the National Key Research and Development Program of ChinaProject(2017zzts435)supported by Graduate Degree Thesis Innovation Foundation of Central South University,China
文摘The tribological properties and thermal-stress behaviors of C/C-SiC composites during braking were investigated aiming to simulate braking tests of high-speed trains. The temperature and structural fields of C/C-SiC composites during braking were fully coupled and simulated with ANSYS software. The results of tribological tests indicated that the C/C-SiC composites showed excellent static friction coefficient (0.68) and dynamic friction coefficient (average value of 0.36). The highest temperature on friction surface was 445℃. The simulated temperature field showed that the highest temperature which appeared on the friction surface during braking was about 463℃. Analysis regarding thermal-stress field showed that the highest thermal-stress on friction surface was 11.5 MPa. The temperature and thermal-stress distributions on friction surface during braking showed the same tendency.
基金Project(2013AH100055)supported by the Special Foundation for Science and Technology Innovation of Foshan,China
文摘The tribological behavior of aged Al-Sn-Cu alloy rubbed in the presence of lubricant over a range of sliding velocities and normal loads was investigated. The results showed that peak-aged (PA) alloy had a better tribological behavior than under-aged (UA) and over-aged (OA) alloys, which could be attributed to the optimized strength-ductility matching and a better hardness under PA condition. Wear rate and friction coefficient showed great sensitivity to applied sliding velocity and normal load. The wear rate and friction coefficient of the alloy exhibited a reduction trend with the increase in sliding velocity. The low wear rate and friction coefficient of alloy at high velocities were due to the effectively protected film and homogeneous Sn on surface. However, an increase in normal load led to an obvious increment in wear rate. The friction coefficient exhibited a fluctuant trend with the increase of normal loads. The seriously destroyed film and abraded Sn resulted in poor tribological behavior at high normal loads. The Sn particles and lubricant film which includes low shear interfacial lubricating layer and oxide tribolayer are the key to the tribological behavior of Al-Sn-Cu alloy.
基金Authors would like to appreciate the former chief of Faculty of Materials&Manufacturing Processes of the Malek-Ashtar University of Technology,Professor EHSANI and the chief of the Composite Department,Dr.POURHOSSEINI along with the Razi and Kimiazi SEM labs and mechanical properties and SEM labs of Iran University of Science and Technology.Furthermore,the authors would like to thank Professor REZAEI,Ms.HAMIDI,and Ms.DAYYANI,Mr.SA'ADAT,and Mr.ATAEI from Iran University of Science and Technology.Special thanks to Mrs.KESHAVARZ,Ms.HAMEDANIZADEH,Ms.SHABANI,Ms.SHOJAEI and Mr.GANDOMKAR for their help and support.
文摘Tribological behavior and wear mechanisms of mechanically milled Al5083 alloy and Al5083−5wt.%B4C composite at room temperature and 200°C were discussed.Results revealed that due to the oxidative wear at room temperature,a mechanically mixed layer(MML)was formed to protect the surface of the samples.Under 80 N of load at room temperature,the milled Al5083 and the Al5083−5wt.%B4C samples showed evidence of abrasion with limited volume loss.In this case,the wear rates were 5.8×10−7 and 4.4×10−7 mm3/(m·N),respectively.At 200°C and under 80 N of applied load,severe wear occurred in the milled Al5083 sample,and wear rate reached 10.8×10−7 mm3/(m·N)while the Al5083−5wt.%B4C sample showed mild wear with local 3-body abrasion and the wear rate reached 5.3×10−7 mm3/(m·N).Strengthening mechanisms such as dislocation pinning and the Hall−Petch theory,high hardness and the load transfer effect were crucial in determining the wear behavior of the Al5083−5wt.%B4C composite.On the other hand,the milled Al5083 sample represented a relatively high wear rate at 200°C,which seemed to be related to the local grain growth and a drop in its hardness.
文摘The effect of diamond-like carbon(DLC)coating(fabricated by cathodic arc deposition)on mechanical properties,tribological behavior and corrosion performance of the Ni−Al−bronze(NAB)alloy was investigated.Nano-hardness and pin-on-plate test showed that DLC coating had a greater hardness compared with NAB alloy.Besides,the decrease in friction coefficient from 0.2 for NAB substrate to 0.13 for the DLC-coated sample was observed.Potentiodynamic polarization and EIS results showed that the corrosion current density decreased from 2.5μA/cm2 for bare NAB alloy to 0.14μA/cm2 for DLC-coated sample in 3.5 wt.%NaCl solution.Moreover,the charge transfer resistance at the substrate−electrolyte interface increased from 3.3 kΩ·cm2 for NAB alloy to 120.8 kΩ·cm2 for DLC-coated alloy,which indicated an increase in corrosion resistance due to the DLC coating.