The present article represents an analysis of reflection of P-wave and SV-wave on the boundary of an isotropic and homogeneous generalized thermoelastic half-space when the boundary is stress-free as well as isotherma...The present article represents an analysis of reflection of P-wave and SV-wave on the boundary of an isotropic and homogeneous generalized thermoelastic half-space when the boundary is stress-free as well as isothermal. The modulus of elasticity is taken as a linear function of reference temperature. The basic governing equations are applied under four theories of the generalized thermoelasticity: Lord-Shulman (L-S) theory with one relaxation time, Green-Naghdi (G-N) theory without energy dissipation and Tzou theory with dual-phase-lag (DPL), as well as the coupled thermoelasticity (CTE) theory. It is shown that there exist three plane waves, namely, a thermal wave, a P-wave and an SV-wave. The reflection from an isothermal stress-free surface is studied to obtain the reflection amplitude ratios of the reflected waves for the incidence of P- and SV-waves. The amplitude ratios variations with the angle of incident are shown graphically. Also the effects of reference temperature of the modulus of elasticity and dual-phase lags on the reflection amplitude ratios are discussed numerically.展开更多
This paper is concerned with the thermoelastic behaviors of an elastic medium with variable thermal material properties. The problem is in the context of fractional order heat conduction. The governing equations with ...This paper is concerned with the thermoelastic behaviors of an elastic medium with variable thermal material properties. The problem is in the context of fractional order heat conduction. The governing equations with variable thermal properties were established by means of the fractional order calculus. The problem of a half-space formed of an elastic medium with variable thermal material properties was solved, and asymptotic solutions induced by a sudden temperature rise on the boundary were obtained by applying an asymptotic approach. The propagations of thermoelastic wave and thermal wave, as well as the distributions of displacement, temperature and stresses were obtained and plotted. Variations in the distributions with different values of fractional order parameter were discussed. The results were compared with those obtained from the case of constant material properties to evaluate the effects of variable material properties on thermoelastic behaviors.展开更多
基金funded by the Deanship of Scientific Research(DSR),King Abdulaziz University,Jeddah,under grant No.(363/130/1431)
文摘The present article represents an analysis of reflection of P-wave and SV-wave on the boundary of an isotropic and homogeneous generalized thermoelastic half-space when the boundary is stress-free as well as isothermal. The modulus of elasticity is taken as a linear function of reference temperature. The basic governing equations are applied under four theories of the generalized thermoelasticity: Lord-Shulman (L-S) theory with one relaxation time, Green-Naghdi (G-N) theory without energy dissipation and Tzou theory with dual-phase-lag (DPL), as well as the coupled thermoelasticity (CTE) theory. It is shown that there exist three plane waves, namely, a thermal wave, a P-wave and an SV-wave. The reflection from an isothermal stress-free surface is studied to obtain the reflection amplitude ratios of the reflected waves for the incidence of P- and SV-waves. The amplitude ratios variations with the angle of incident are shown graphically. Also the effects of reference temperature of the modulus of elasticity and dual-phase lags on the reflection amplitude ratios are discussed numerically.
基金Project supported by the National Natural Science Foundation of China(Nos.51206062 and 11102073)the Six Talent Peaks Project of Jiangsu Province(No.2014-ZBZZ-016)+1 种基金the China Postdoctoral Science Foundation(No.2013M540420)the Jiangsu Planned Projects for Postdoctoral Research Funds(No.1501126B)
文摘This paper is concerned with the thermoelastic behaviors of an elastic medium with variable thermal material properties. The problem is in the context of fractional order heat conduction. The governing equations with variable thermal properties were established by means of the fractional order calculus. The problem of a half-space formed of an elastic medium with variable thermal material properties was solved, and asymptotic solutions induced by a sudden temperature rise on the boundary were obtained by applying an asymptotic approach. The propagations of thermoelastic wave and thermal wave, as well as the distributions of displacement, temperature and stresses were obtained and plotted. Variations in the distributions with different values of fractional order parameter were discussed. The results were compared with those obtained from the case of constant material properties to evaluate the effects of variable material properties on thermoelastic behaviors.