期刊文献+
共找到66篇文章
< 1 2 4 >
每页显示 20 50 100
Discussion on Influencing Factors of Water Resources Environment and Strategies for Protecting Water Ecology
1
作者 Wangzi Zhou Jing Dong +1 位作者 Qianyi Zhao Qianxun Li 《Journal of World Architecture》 2024年第5期36-41,共6页
At present,the major problems facing the water resource environment worldwide include water pollution,water resource shortage,and water ecosystem degradation.The discharge of industrial wastewater,agricultural non-poi... At present,the major problems facing the water resource environment worldwide include water pollution,water resource shortage,and water ecosystem degradation.The discharge of industrial wastewater,agricultural non-point source pollution,and the discharge of urban sewage lead to a serious decline in water quality,which directly affects the safety of human drinking water and the living environment of aquatic organisms.Additionally,the unbalanced distribution and excessive exploitation of water resources lead to the problem of water shortage in many areas,which then leads to social and economic contradictions and ecological crises.In terms of ecosystems,the phenomena of water ecological degradation and reduction of biodiversity are increasingly obvious,and the carrying capacity of aquatic ecosystems are gradually declining.This paper aims to analyze the natural,social,and economic factors affecting the water resource environment,and propose effective strategies to protect the water ecology.To provide a theoretical basis and practical guidance for the sustainable utilization of water resources and the long-term development of the water ecosystem. 展开更多
关键词 water resources Environmental impact water ecology Protection strategy
下载PDF
The Theory of Soil and Water Ecology is a Major Scientific Issue 被引量:2
2
作者 SUN Fazheng 《Journal of Landscape Research》 2021年第4期69-72,共4页
The theory of soil and water ecology is an important scientific issue related to the fundamental and overall situation of ecological environment and has important strategic significance for the protection of the earth... The theory of soil and water ecology is an important scientific issue related to the fundamental and overall situation of ecological environment and has important strategic significance for the protection of the earth’s ecological environment.Applying the theory of soil and water ecology to soil and water conservation can upgrade soil and water conservation from version 1.0 to version 2.0 of soil and water ecological conservation and further expand the space of soil and water conservation.The paper suggests that while giving full play to the existing strength of soil and water conservation departments,it should establish national soil and water conservation commission for coordinating multi sector forces and vigorously promoting the realization of beautiful and rich China. 展开更多
关键词 Soil and water ecology The theory of soil and water ecology Soil and water conservation Ecological environment
下载PDF
The Theory of Soil and Water Ecology is the Common Theoretical Basis in the Field of Ecological Environment
3
作者 SUN Fazheng 《Journal of Landscape Research》 2022年第2期95-98,共4页
From the perspective of system concept and practical needs,the field of ecological environment needs new theories that can grasp the whole and command the overall situation.Soil and water ecology is the holistic view ... From the perspective of system concept and practical needs,the field of ecological environment needs new theories that can grasp the whole and command the overall situation.Soil and water ecology is the holistic view of nature of seeing both macrocosm and microcosm,is the largest common divisor of various types of ecosystems on the earth and will effectively integrate all ecological processes related to human beings,animals and plants.Starting from the principle of soil and water ecology,the paper resolved that:①the essence of landscape,forest,field,lake,grass,sand and ice is soil and water ecology and;②the fundamental reason of the ecological and environmental crises of climate change,global warming and loss of biodiversity lies in the change and destruction of the earth’s soil and water ecology.The theory of soil and water ecology is a major scientific issue related to the fundamental and overall situation of the ecological environment,is the golden key to understand and solve contemporary ecological and environmental issues and is the common theoretical basis in the field of ecological environment. 展开更多
关键词 Soil and water ecology Theory of soil and water ecology Ecological environment Theoretical basis
下载PDF
Theory and Practice of Soil and Water Ecology 被引量:4
4
作者 SUN Fazheng 《Journal of Landscape Research》 2018年第2期71-74,共4页
Author of this paper introduced the formation and development, main viewpoints, and framework of the theory of soil and water ecology, as well as the role and value of realizing the sustainable utilization of soil and... Author of this paper introduced the formation and development, main viewpoints, and framework of the theory of soil and water ecology, as well as the role and value of realizing the sustainable utilization of soil and water ecological resources, the sustainable maintenance of ecological environment, and the sustainable development of economy and society. The paper argued that in the current era, it is imperative to maintain the integrity and continuity of soil and water ecology and culture, emphasize the planning and construction of soil and water ecological infrastructure, and ensure the service functions of urban ecosystem, so as to realize the sustainable utilization of soil and water ecological resources, and the sustainable maintenance of ecological environment, and the sustainable development of economy and society. 展开更多
关键词 Soil and water ecology THEORY PRACTICE Role Far-reaching significance
下载PDF
Soil and Water Ecology as the Core Issue of Contemporary Biodiversity Conservation:A Case Study of the Population of Elk,an Endemic Species in China 被引量:1
5
作者 Fazheng SUN 《Meteorological and Environmental Research》 CAS 2022年第5期25-27,32,共4页
From a new vision of the theory of soil and water ecology,it is discussed that soil and water ecology is the core issue of contemporary biodiversity protection.First,soil and water ecology constitutes the habitat for ... From a new vision of the theory of soil and water ecology,it is discussed that soil and water ecology is the core issue of contemporary biodiversity protection.First,soil and water ecology constitutes the habitat for biological survival,and is the premise and foundation of biodiversity.Second,soil and water ecology is the material and energy source of biological survival and the prerequisite of biodiversity.Human beings are the beneficiaries and operators of soil and water ecology,which is related to the future and destiny of biodiversity on the earth.It should protect and restore the original,diverse,complete and clean soil and water ecology on the earth from three aspects of protecting pure natural soil and water ecology,protecting and restoring natural soil and water ecology,and building and regenerating artificial soil and water ecology,so as to fundamentally achieve biodiversity protection. 展开更多
关键词 Soil and water ecology Biological diversity Protection Core issue
下载PDF
Protection and Restoration of Soil and Water Ecology to Achieve Harmonious Coexistence between Human and Nature
6
作者 SUN Fazheng 《Journal of Landscape Research》 2023年第1期60-62,共3页
At present,the ecological environment crisis of global concern,such as climate warming and biodiversity loss,the fundamental reason is the change and destruction of the earth's soil and water ecology.Therefore,pro... At present,the ecological environment crisis of global concern,such as climate warming and biodiversity loss,the fundamental reason is the change and destruction of the earth's soil and water ecology.Therefore,protecting and restoring the authenticity,diversity,cleanliness and integrity of soil and water ecology,we should coordinate and deal with the relationship between human beings and soil and water ecology,and realize the harmonious coexistence between human beings and nature from the three aspects of protecting natural soil and water ecology,protecting and restoring natural soil and water ecology,building and regenerating artificial soil and water ecology. 展开更多
关键词 Soil and water ecology PROTECTION RESTORATION Harmonious coexistence
下载PDF
Development of Prataculture and Construction of Landscape City Based on the Rule of Water and Soil Ecology 被引量:7
7
作者 SUN Fazheng 《Journal of Landscape Research》 2015年第5期38-40,共3页
This paper explored the necessity of protecting and using grasslands, grass mountains, grass slopes and grass shallows, the significance of prataculture for the economic transformation and upgrading and urbanization, ... This paper explored the necessity of protecting and using grasslands, grass mountains, grass slopes and grass shallows, the significance of prataculture for the economic transformation and upgrading and urbanization, feasibility, scientificity and naturalness of landscape city construction. It was proposed that pratacultural development, construction of landscape city, agricultural, water conservancy and planning should all follow the laws of water and soil ecology, the relationship between man, water, soil, vegetation and natural environment should be handled properly, ecological balance should be kept, so as to achieve the harmony between man and nature in addition to economic development. 展开更多
关键词 Qian Xuesen PRATACULTURE Landscape city water and soil ecology
下载PDF
Water and Soil Conservation in Taiwan Based on Theoretical Research of Water and Soil Ecology 被引量:8
8
作者 SUN Fazheng 《Journal of Landscape Research》 2016年第5期90-92,96,共4页
Taiwan has always attached great importance to management of mountain slopes, and its steepslope water and soil conservation system has been a reference for the water and soil conservation in hot and rainy regions. Fr... Taiwan has always attached great importance to management of mountain slopes, and its steepslope water and soil conservation system has been a reference for the water and soil conservation in hot and rainy regions. From the perspective of water and soil ecology theory, new forms of water and soil loss emerged since the industrialization and urbanization of Taiwan, also known as hidden water and soil loss, such as soil hardening, change of original landform, destruction of ecological landscape etc.. These losses should be controlled through water and soil conservation measures such as initial involvement, dynamic analysis, systematic treatment and disaster avoidance, all production and construction activities should follow three elements(water, soil and vegetation) and their correlation laws, in order to maintain water and soil ecological balance. By integrating water and soil ecological concepts, water and soil conservation in Taiwan will make more progress. 展开更多
关键词 TAIWAN water and soil conservation water and soil ecological theory
下载PDF
Phytoplankton ecology in the adjacent waters of the Daya Bay Nuclear Power Station in Guangdong in spring
9
《Acta Oceanologica Sinica》 SCIE CAS CSCD 1992年第4期617-624,共8页
The purpose of this study is to detail the ecological characteristics of phytoplankton in waters around the Daya Bay Nuclear Power Station in Guangdong (GNPS) (Fig. 1) in spring, the bloom period of algae. The collect... The purpose of this study is to detail the ecological characteristics of phytoplankton in waters around the Daya Bay Nuclear Power Station in Guangdong (GNPS) (Fig. 1) in spring, the bloom period of algae. The collections with a small temporal scale of every three days were made during 30 cruises from March to May in 1987. Such an investigation has never been carried out before in China except that the seasonal distribution and composition of phytoplankton in these regions were reported in 展开更多
关键词 St Phytoplankton ecology in the adjacent waters of the Daya Bay Nuclear Power Station in Guangdong in spring BAY
下载PDF
Development,hotspots and trend directions of groundwater numerical simulation:A bibliometric and visualization analysis
10
作者 Liu Yang Yan-pei Cheng +1 位作者 Xue-ru Wen Jun Liu 《Journal of Groundwater Science and Engineering》 2024年第4期411-427,共17页
Groundwater is a vital component of the hydrological cycle and essential for the sustainable development of ecosystems.Numerical simulation methods are key tools for addressing scientific challenges in groundwater res... Groundwater is a vital component of the hydrological cycle and essential for the sustainable development of ecosystems.Numerical simulation methods are key tools for addressing scientific challenges in groundwater research.This study uses bibliometric visualization analysis to examine the progress and trends in groundwater numerical simulation methods.By analyzing literature indexed in the Web of Science database from January 1990 to February 2023,and employing tools such as Citespace and VOSviewer,we assessed publication volume,research institutions and their collaborations,prolific scholars,keyword clustering,and emerging trends.The findings indicate an overall upward trend in both the number of publications and citations concerning groundwater numerical simulations.Since 2010,the number of publications has tripled compared to the total before 2010,underscoring the increasing significance and potential of numerical simulation methods in groundwater science.China,in particular,has shown remarkable growth in this field over the past decade,surpassing the United States,Canada,and Germany.This progress is closely linked to strong national support and active participation from research institutions,especially the contributions from teams at Hohai University,China University of Geosciences,and the University of Science and Technology of China.Collaboration between research teams is primarily seen between China and the United States,with less noticeable cooperation among other countries,resulting in a diverse and dispersed development pattern.Keyword analysis highlights that international research hotspots include groundwater recharge,karst water,geothermal water migration,seawater intrusion,variable density flow,contaminant and solute transport,pollution remediation,and land subsidence.Looking ahead,groundwater numerical simulations are expected to play a more prominent role in areas such as climate change,surface water-groundwater interactions,the impact of groundwater nitrates on the environment and health,submarine groundwater discharge,ecological water use,groundwater management,and risk prevention. 展开更多
关键词 CLUSTERING Visualization analysis Groundwater numerical simulation Ecological water use Groundwater management
下载PDF
Variations in Composition and Water Use Efficiency of Plant Functional Groups Based on Their Water Ecological Groups in the Xilin River Basin 被引量:15
11
作者 陈世苹 白永飞 韩兴国 《Acta Botanica Sinica》 CSCD 2003年第10期1251-1260,共10页
Major plant species in the Xilin River Basin were grouped into six plant functional groups (PFGs) based on their water ecological groups: xerophytes, mesoxerophytes, xeromesophytes, mesophytes, hygromesophytes and hyg... Major plant species in the Xilin River Basin were grouped into six plant functional groups (PFGs) based on their water ecological groups: xerophytes, mesoxerophytes, xeromesophytes, mesophytes, hygromesophytes and hygrophytes. We surveyed the composition, delta(13)C values and proline concentration of PFGs in eight different plant communities along a soil moisture gradient. Results show that: (1) PFGs occurred variously in eight steppe communities with different soil moisture status. In wetter habitats, hygromesophytes and hygrophytes were more abundant and accounted for the majority of aboveground biomass, whereas xerophytes and mesoxerophytes became more conspicuous in dryer habitats; (2) the numerical order of the mean delta(13)C values of PFGs is as follows: xerophytes (-26.38parts per thousand) = mesoxerophytes (-26.51parts per thousand) > xeromesophytes (-27.02parts per thousand) > mesophytes (-27.56parts per thousand) = hygromesophytes and hygrophytes (-27.80parts per thousand); (3) xerophytes maintained relative higher delta(13)C values and water use efficiency (WUE) in habitats of different water availability, whereas delta(13)C values of xeromesophytes were more sensitive to change in soil water availability; (4) From xerophytes to hygrophytes, their proline content markedly increased. Significantly positive correlations existed between proline and biomass or delta(13)C values of different water ecological groups. 展开更多
关键词 delta C-13 value water ecological groups soil moisture gradient water use efficiency PROLINE leaf water content (LWC)
下载PDF
Climate Change from the Perspective of Soil and Water Ecological Theory 被引量:2
12
作者 Fazheng SUN 《Meteorological and Environmental Research》 CAS 2021年第4期9-12,共4页
The earth s ecological environment is declining at an unprecedented rate,and human survival is facing great risks.Among the global changes,the most serious ones are climate change and global warming.Analyzed from the ... The earth s ecological environment is declining at an unprecedented rate,and human survival is facing great risks.Among the global changes,the most serious ones are climate change and global warming.Analyzed from the theory of soil and water ecology,the root cause of this problem lies in the disordered and uncontrolled human activities,which only pay attention to the interests of development and ignore the purpose of development.From the source,it is the consequence of human excessive interference and damage to the earth s water and soil ecology.It is urgent to protect and repair the earth s water and soil ecology,realize carbon neutralization as soon as possible,and prevent the irreversible disaster caused by global warming from the source. 展开更多
关键词 Climate change Global warming Carbon neutralization Soil and water ecology Soil and water ecological theory
下载PDF
Study on the Characteristics of Ecological Water Requirement in Maijishan Scenic Spot
13
作者 蒲金涌 李晓薇 《Agricultural Science & Technology》 CAS 2012年第9期1971-1976,1996,共7页
[Objective] This study aimed to explore the characteristics of ecological water requirement in Maijishan Scenic Spot. [Methed] The characteristics of ecologi- cal water requirement in Maijishan Scenic Spot were analyz... [Objective] This study aimed to explore the characteristics of ecological water requirement in Maijishan Scenic Spot. [Methed] The characteristics of ecologi- cal water requirement in Maijishan Scenic Spot were analyzed based on,the data of soil humidity and meteorology of the spot. [Result] The result showed that the actual annual ecological water requirement in the spot was 678×10^6 m^3, and the proportion of soil water and evapotranspiration were 21% and 79%, respectively; the minimum annual ecological water requirement quota in the spot was 480.27×10^6 m^3, and the proportion of soil water and evapotranspiration were 16% and 84%, respectively; the minimum annual suitable ecological water requirement quota in the spot was 624.22×10^6 m^3, and the proportion of soil water and evapotranspiration were 18% and 82%, respectively. The precipitation was 614×10^6 m^3, and consumptive water surplus reached up to 78×10^6 m^3. The years when the precipitation was higher than the evapotranspiration accounted for 76%. Since 1980s, the evapotranspiration showed a linearly increasing trend. The precipitation was higher than the evapotranspiration from Jun. to Oct. and less than the evapotranspiration from Nov. to Dec. and Jan. to May. Evapotranspiration water requirement was regulated by soil water. The dis- parity between precipitation and evapotranspiration was huge in spring, thus having certain influence on waterfalls and streams in the spot. [Conclusion] The results of this study provided a basis for the rational use and long-term planning of the water sources in Maijishan Scenic Spot. 展开更多
关键词 Maijishan Scenic Spot Ecological water Requirement CHARACTERISTICS
下载PDF
Contribution of Herbaceous Plants and Their Status and Role in Soil and Water Ecosystem
14
作者 Fazheng SUN Chengyan HUANG Rong HU 《Meteorological and Environmental Research》 CAS 2023年第5期7-10,13,共5页
In this paper,the contemporary understanding process of herbaceous plants and their contributions are elaborated.The systematic idea of"mountain,river,forest,field,lake,and grass are a community of life"has ... In this paper,the contemporary understanding process of herbaceous plants and their contributions are elaborated.The systematic idea of"mountain,river,forest,field,lake,and grass are a community of life"has led the grass to enter a new era of development.Broadly speaking,vegetation includes grassland,forest,crop,garden,etc.,while herbaceous vegetation is the most widely distributed on earth.From the macro and micro perspectives of soil and water ecology,this paper discusses the position and role of herbaceous vegetation in the earth's soil and water ecosystem,especially the fundamental position in mountain,river,forest,field,lake,grass and sand.Starting from the concept of soil and water ecology,the integrated protection and systematic management of mountain,river,forest,field,lake,grassland,and sand is proposed.Essentially,it is the protection and management of soil and water ecology,which summarizes various ecological systems on earth.The successful application of herbaceous plants in ecological restoration projects of mine has further enriched and developed the theory of soil and water ecology. 展开更多
关键词 Herbaceous plant Soil and water ecosystem Theory of soil and water ecology Application
下载PDF
Ecological water demand of natural vegetation in the lower Tarim River 被引量:24
15
作者 YE Zhaoxia CHEN Yaning LI Weihong 《Journal of Geographical Sciences》 SCIE CSCD 2010年第2期261-272,共12页
We have appraised the relationships between soil moisture, groundwater depth, and plant species diversity in the lower reaches of the Tarim River in western China, by analyzing field data from 25 monitoring wells acro... We have appraised the relationships between soil moisture, groundwater depth, and plant species diversity in the lower reaches of the Tarim River in western China, by analyzing field data from 25 monitoring wells across eight study sites and 25 permanent vegetation survey plots. It is noted that groundwater depth, soil moisture and plant species diversity are closely related. It has been proven that the critical phreatic water depth is five meters in the lower reaches of the Tarim River. We acquired the mean phreatic evaporation of different groundwater levels every month by averaging the two results of phreatic evaporation using the Qunk and Averyanov formulas. Based on different vegetation types and acreage with different groundwater depth, the total ecological water demand (EWD) of natural vegetation in 2005 was 2.4×10^8 m^3 in the lower reaches of the Tarim River. Analyzing the monthly EWD, we found that the EWD in the growth season (from April to September) is 81% of the year's total EWD. The EWD in May, June and July was 47% of the year's total EWD, which indicates the best time for dispensing artificial water. This research aims at realizing the sustainable development of water resources and provides a scientific basis for water resource management and sound collocation of the Tarim River Basin. 展开更多
关键词 ecological water demand natural vegetation eco-hydrological processes Tarim River
下载PDF
Coordination of Urbanization and Water Ecological Environment in Shayinghe River Basin,China 被引量:7
16
作者 ZHANG Xiang HU Hong +1 位作者 XU Jiangang YIN Haiwei 《Chinese Geographical Science》 SCIE CSCD 2011年第4期476-495,共20页
During the rapid industrialization and urbanization of China,urban agglomeration in river basin areas raises the problems of over-use of water resources and pollution of the water environment.Related research in China... During the rapid industrialization and urbanization of China,urban agglomeration in river basin areas raises the problems of over-use of water resources and pollution of the water environment.Related research in China has mainly focused on the conflicts among economic growth,urban expansion and water resource shortages within admin-istrative boundaries.However,water environments are much more dependent on their physical boundaries than their administrative boundaries.Consistent with the nature of water environment,this study aims at analyzing coordination relationships between urban development and water environment changes within physical river basin boundaries.We chose the Shayinghe River Basin,China,as our case study area which is facing serious challenges related to water en-vironment protection.Then we classified 35 county-level administrative units into upstream,midstream and down-stream regions based on their physical characteristics;analyzed the coordination degree of urban agglomeration using the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method;and constructed cooperative models using the Linear Programming (LP function) to simulate four scenarios of the coordination relationship be-tween urban population increase and water environment protection based on existing water resources and water pollu-tion data.The results show that the present coordinative situation in Shayinghe River Basin is not sustainable.In gen-eral,more than 50% administrative units are in the bad coordinative situation.In particular,the downstream region is under worse condition than the upstream and midstream regions.Cooperative models in scenario analyses indicate that the population scale set in existing urban master plannings is not coordinated with the water environment protection.To reach the goal of regional sustainable development,the total population needs to be controlled such that it will re-main at 4.5×10 7 or below by 2020 given the capacity of water environment. 展开更多
关键词 water ecological environment coordination analysis cooperative model urban agglomeration Shayinghe River Basin
下载PDF
Changes in groundwater levels and the response of natural vegetation to transfer of water to the lower reaches of the Tarim River 被引量:23
17
作者 XU Hai-liang YE Mao LI Ji-mei 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2007年第10期1199-1207,共9页
Restoration and reconstruction of the degraded Tarim River ecosystem is an important challenge. A goal of an ecological water conveyance project is to protect and restore the natural vegetation in the lower reaches of... Restoration and reconstruction of the degraded Tarim River ecosystem is an important challenge. A goal of an ecological water conveyance project is to protect and restore the natural vegetation in the lower reaches of Tadm River by transferring water from Bosten Lake, through the river channel, to the lower reaches. This study describes the changes in groundwater depth during the water transfer and the respondence of riparian vegetation to alterations in groundwater levels. The results indicate that groundwater depth along the Tarim River channel has a significant spatial-temporal component. Groundwater levels closest to the river channel show the most immediate and pronounced changes as a response to water transfer while those further away respond more slowly, although the observed change appears to be longer in duration. With a rise in the groundwater level, natural vegetation responded with higher growth rates, biomass and biodiversity. These favorable changes show that it is feasible to protect and restore the degraded natural vegetation by raising the groundwater depth. Plant communities are likely to reflect the hysteresis phenomenon, requiting higher water levels to initiate and stimulate desired growth than what may be needed to maintain the plant community. Because different species have different ecologies, including different root depths and densities and water needs, their response to increasing water availability will be spatially and temporally heterogenous. The response of vegetation is also influenced by microtopography and watering style. This paper discusses strategies for the protection and restoration of the degraded vegetation in the lower reaches of the Tarim River and provides information to complement ongoing theoretical research into ecological restoration in add or semi-arid ecosystems. 展开更多
关键词 the lower reaches of Tarim River ecological watering conveyance groundwater depth ecological response natural vegetation
下载PDF
Carry forw ard Soil and Water Ecological Culture and Build Rich and Beautiful Home 被引量:12
18
作者 Sun Yuan Sun Fazheng 《Meteorological and Environmental Research》 CAS 2014年第10期11-14,共4页
The most directly expressions of the relationships between human and nature lie in the relationships between human and water,human and soil( stone),human and vegetation( plant). Water,soil and vegetation are inter... The most directly expressions of the relationships between human and nature lie in the relationships between human and water,human and soil( stone),human and vegetation( plant). Water,soil and vegetation are interdependent,restricted coexisted and developed from one another,which are integrated and correlated. The history of human's survival and development on the earth is one related continuously with water,soil( stone),vegetation( plant),which involves with the protection and reasonable utilization of water,soil and vegetation resources( also known as soil and water ecological resources),and it has summarized and accumulated abundant culture concerned with the harmonious coexistence of human with water,soil and vegetation,which is the soil and water ecological culture. All peoples of China have accumulated rich soil and water ecological culture in the long term,such as integrated view of nature,nature admiring,nature praising,nature protection and reasonable utilization of nature. It is especially important and urgent in the current times to carry forward soil and water ecological culture. 展开更多
关键词 Soil and water ecological culture Ecological civilization Beautiful home China
下载PDF
Method for calculating ecological water storage and ecological water requirement of marsh 被引量:5
19
作者 李丽娟 李九一 +1 位作者 梁丽乔 柳玉梅 《Journal of Geographical Sciences》 SCIE CSCD 2009年第4期427-436,共10页
As one of the most typical wetlands,marsh plays an important role in hydrological and economic aspects,especially in keeping biological diversity.In this study,the definition and connotation of the ecological water st... As one of the most typical wetlands,marsh plays an important role in hydrological and economic aspects,especially in keeping biological diversity.In this study,the definition and connotation of the ecological water storage of marsh is discussed for the first time,and its distinction and relationship with ecological water requirement are also analyzed.Furthermore,the gist and method of calculating ecological water storage and ecological water requirement have been provided,and Momoge wetland has been given as an example of calculation of the two variables.Ecological water use of marsh can be ascertained according to ecological water storage and ecological water requirement.For reasonably spatial and temporal variation of water storage and rational water resources planning,the suitable quantity of water supply to marsh can be calculated according to the hydrological conditions,ecological demand and actual water resources. 展开更多
关键词 MARSH ecological water storage ecological water requirement Momoge wetland
下载PDF
Estimation of Ecological Water Requirements Based on Habitat Response to Water Level in Huanghe River Delta,China 被引量:7
20
作者 CUI Baoshan HUA Yanyan +3 位作者 WANG Chongfang LIAO Xiaolin TAN Xuejie TAO Wendong 《Chinese Geographical Science》 SCIE CSCD 2010年第4期318-329,共12页
In recent years,wetland ecological water requirements (EWRs) have been estimated by using hydrological and functional approaches,but those approaches have not yet been integrated for a whole ecosystem.This paper prese... In recent years,wetland ecological water requirements (EWRs) have been estimated by using hydrological and functional approaches,but those approaches have not yet been integrated for a whole ecosystem.This paper presents a new method for calculating wetland EWRs,which is based on the response of habitats to water level,and determines water level threshold through the functional integrity of habitats.Results show that in the Huanghe (Yellow) River Delta water levels between 5.0 m and 5.5 m are required to maintain the functional integrity of the wetland at a value higher than 0.7.One of the dominant plants in the delta,Phragmites australis,tolerates water level fluctuation of about ± 0.25 m without the change in wetland functional integrity.The minimum,optimum and maximum EWRs for the Huanghe River Delta are 9.42×106 m3,15.56×106 m3 and 24.12×106 m3 with water levels of 5.0 m,5.2 m and 5.5 m,corresponding to functional integrity indices of 0.70,0.84 and 0.72,respectively.A wetland restoration program has been performed,which aims to meet these EWRs in attempt to recover from losses of up to 98% in the delta's former wetland area. 展开更多
关键词 water level-habitat response functional integrity ecological water requirements WETLAND Huanghe River Delta
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部