The self-driven behavior of droplets on a functionalized surface,coupled with wetting gradient and wedge patterns,is systematically investigated using molecular dynamics(MD)simulations.The effects of key factors,inclu...The self-driven behavior of droplets on a functionalized surface,coupled with wetting gradient and wedge patterns,is systematically investigated using molecular dynamics(MD)simulations.The effects of key factors,including wedge angle,wettability,and wetting gradient,on the droplet self-driving effect is revealed from the nanoscale.Results indicate that the maximum velocity of droplets on hydrophobic wedge-shaped surfaces increases with the wedge angle,accompanied by a rapid attenuation of driving force;however,the average velocity decreases with the increased wedge angle.Conversely,droplet movement on hydrophilic wedge-shaped surfaces follows the opposite trend,particularly in terms of average velocity compared to the hydrophobic case.Both wedge-shaped and composite gradient wedge-shaped surfaces are found to induce droplet motion,with droplets exhibiting higher speeds and distances on hydrophobic surfaces compared to hydrophilic surfaces,regardless of surface type.Importantly,the inclusion of wettability gradients significantly influences droplet motion,with hydrophobic composite gradient wedge-shaped surfaces showing considerable improvements in droplet speed and distance compared to their hydrophilic counterparts.By combining suitable wettability gradients with wedge-shaped surfaces,the limitations inherent in the wettability gradient range and wedge-shaped configuration can be mitigated,thereby enhancing droplet speed and distance.The findings presented in this paper offer valuable insights for the design of advanced functional surfaces tailored for manipulating droplets in real-world applications.展开更多
Rechargeable magnesium batteries(RMBs)have been considered a promising“post lithium-ion battery”system to meet the rapidly increasing demand of the emerging electric vehicle and grid energy storage market.However,th...Rechargeable magnesium batteries(RMBs)have been considered a promising“post lithium-ion battery”system to meet the rapidly increasing demand of the emerging electric vehicle and grid energy storage market.However,the sluggish diffusion kinetics of bivalent Mg^(2+)in the host material,related to the strong Coulomb effect between Mg^(2+)and host anion lattices,hinders their further development toward practical applications.Defect engineering,regarded as an effective strategy to break through the slow migration puzzle,has been validated in various cathode materials for RMBs.In this review,we first thoroughly understand the intrinsic mechanism of Mg^(2+)diffusion in cathode materials,from which the key factors affecting ion diffusion are further presented.Then,the positive effects of purposely introduced defects,including vacancy and doping,and the corresponding strategies for introducing various defects are discussed.The applications of defect engineering in cathode materials for RMBs with advanced electrochemical properties are also summarized.Finally,the existing challenges and future perspectives of defect engineering in cathode materials for the overall high-performance RMBs are described.展开更多
Wedge-shaped copper casting experiment was conducted to study the engulfment behavior of TiB2 particle and the interaction between particle or cluster and the solid/liquid front in commercial pure aluminum matrix. The...Wedge-shaped copper casting experiment was conducted to study the engulfment behavior of TiB2 particle and the interaction between particle or cluster and the solid/liquid front in commercial pure aluminum matrix. The experimental results show that the particle size distribution obeys two separate systems in the whole wedge-cast sample. Furthermore, it is found that the big clusters are pushed to the center of the wedge shaped sample and the single particle or small clusters consisting of few particles are engulfed into the α-Al in the area of the sample edge. The cluster degree of particles varies in different areas, and its value is 0.2 and 0.6 for the cluster fraction in the edge and in the center of the wedge sample, respectively. The cluster diameter does not obey the normal distribution but approximately obeys lognormal distribution in the present work. More importantly, in the whole sample, the particle size obeys two separate log-normal distributions.展开更多
Based on the fundamental equations of piezoelasticity of quasicrystal material,we investigated the interaction between a screw dislocation and a wedge-shaped crack in the piezoelectricity of one-dimensional hexagonal ...Based on the fundamental equations of piezoelasticity of quasicrystal material,we investigated the interaction between a screw dislocation and a wedge-shaped crack in the piezoelectricity of one-dimensional hexagonal quasicrystals.Explicit analytical solutions are obtained for stress and electric displacement intensity factors of the crack,as well as the force on dislocation.The derivation is based on the conformal mapping method and the perturbation technique.The influences of the wedge angle and dislocation location on the image force are also discussed.The results obtained in this paper can be fully reduced to some special cases already available or deriving new ones.展开更多
Over the past decade, graphitic carbon nitride(g-C_(3)N_(4)) has emerged as a universal photocatalyst toward various sustainable carbo-neutral technologies. Despite solar applications discrepancy, g-C_(3)N_(4) is stil...Over the past decade, graphitic carbon nitride(g-C_(3)N_(4)) has emerged as a universal photocatalyst toward various sustainable carbo-neutral technologies. Despite solar applications discrepancy, g-C_(3)N_(4) is still confronted with a general fatal issue of insufficient supply of thermodynamically active photocarriers due to its inferior solar harvesting ability and sluggish charge transfer dynamics. Fortunately, this could be significantly alleviated by the “all-in-one” defect engineering strategy, which enables a simultaneous amelioration of both textural uniqueness and intrinsic electronic band structures. To this end, we have summarized an unprecedently comprehensive discussion on defect controls including the vacancy/non-metallic dopant creation with optimized electronic band structure and electronic density, metallic doping with ultraactive coordinated environment(M–N_(x), M–C_(2)N_(2), M–O bonding), functional group grafting with optimized band structure, and promoted crystallinity with extended conjugation π system with weakened interlayered van der Waals interaction. Among them, the defect states induced by various defect types such as N vacancy, P/S/halogen dopants, and cyano group in boosting solar harvesting and accelerating photocarrier transfer have also been emphasized. More importantly, the shallow defect traps identified by femtosecond transient absorption spectra(fs-TAS) have also been highlighted. It is believed that this review would pave the way for future readers with a unique insight into a more precise defective g-C_(3)N_(4) “customization”, motivating more profound thinking and flourishing research outputs on g-C_(3)N_(4)-based photocatalysis.展开更多
One wedge-shaped microchannel was established,and the hydrodynamic properties of the wedge-shaped gas film were comprehensively investigated.The Navier-Stokes equations coupled with the full energy equation were adopt...One wedge-shaped microchannel was established,and the hydrodynamic properties of the wedge-shaped gas film were comprehensively investigated.The Navier-Stokes equations coupled with the full energy equation were adopted to mainly analyze the lubrication hydrodynamics of the gas film,as the horizontal plate was viewed as the adiabatic wall or the horizontal plate temperature was equal to the tilt plate temperature.A higher gas film temperature strengthened the rarefaction effect,and the more rarefied gas weakened the squeeze.Meanwhile,the vertical flow across the gas film could indicate the relation between the velocity vector and the gas film squeeze and expansion.The adiabatic horizontal plate could resist the heat conduction and enhance the rarefaction effect,and thus the direction of motion of the gas molecules was easier to be changed.展开更多
We report some novel dynamical phenomena of dissipative solitons supported by introducing an asymmetric wedge-shaped potential(just as a sharp ‘razor') into the complex Ginzburg–Landau equation with the cubicqui...We report some novel dynamical phenomena of dissipative solitons supported by introducing an asymmetric wedge-shaped potential(just as a sharp ‘razor') into the complex Ginzburg–Landau equation with the cubicquintic nonlinearity. The potentials corresponding to a local refractive index modulation with breaking symmetry can be realized in an active optical medium with respective expanding antiwaveguiding structures. Using the razor potential acting on a central dissipative soliton, possible outcomes of asymmetric and single-side splitting of dissipative solitons are achieved with setting different strengths and steepness of the potentials. The results can potentially be used to design a multi-route splitter for light beams.展开更多
The KTX device is a reversed field pinch (RFP) device currently under construction. Its maximum plasma current is designed as 1 MA with a discharge time longer than 100 ms. Its major radius is 1.4 m and its minor ra...The KTX device is a reversed field pinch (RFP) device currently under construction. Its maximum plasma current is designed as 1 MA with a discharge time longer than 100 ms. Its major radius is 1.4 m and its minor radius is 0.55 m. One of the most important problems in the magnet system design is how to reduce the TF magnetic field ripple and error field. A new wedge- shaped TF coil is put forward for the KTX device and its electromagnetic properties are compared with those of rectangular-shaped TF coils. The error field B,I/Bt of wedge-shaped TF coils with 6.4 degrees is about 6% as compared with 8% in the case of a rectangular-shaped TF coil. Besides, the wedge-shaped TF coils have a lower magnetic field ripple at the edge of the plasma region, which is smaller than 7.5% at R=1.83 m and 2% at R=l.07 m. This means that the tokamak operation mode may be feasible for this device when the plasma area becomes smaller, because the maximum ripple in the plasma area of the tokamak model is always required to be smaller than 0.4%. Detailed analysis of the results shows that the structure of the wedged-shape TF coil is reliable. It can serve as a reference for TF coil design of small aspect ratio RFPs or similar torus devices.展开更多
Manganese-based material is a prospective cathode material for aqueous zinc ion batteries(ZIBs)by virtue of its high theoretical capacity,high operating voltage,and low price.However,the manganese dissolution during t...Manganese-based material is a prospective cathode material for aqueous zinc ion batteries(ZIBs)by virtue of its high theoretical capacity,high operating voltage,and low price.However,the manganese dissolution during the electrochemical reaction causes its electrochemical cycling stability to be undesirable.In this work,heterointerface engineering-induced oxygen defects are introduced into heterostructure MnO_(2)(δa-MnO_(2))by in situ electrochemical activation to inhibit manganese dissolution for aqueous zinc ion batteries.Meanwhile,the heterointerface between the disordered amorphous and the crystalline MnO_(2)ofδa-MnO_(2)is decisive for the formation of oxygen defects.And the experimental results indicate that the manganese dissolution ofδa-MnO_(2)is considerably inhibited during the charge/discharge cycle.Theoretical analysis indicates that the oxygen defect regulates the electronic and band structure and the Mn-O bonding state of the electrode material,thereby promoting electron transport kinetics as well as inhibiting Mn dissolution.Consequently,the capacity ofδa-MnO_(2)does not degrade after 100 cycles at a current density of 0.5 Ag^(-1)and also 91%capacity retention after 500cycles at 1 Ag^(-1).This study provides a promising insight into the development of high-performance manganese-based cathode materials through a facile and low-cost strategy.展开更多
Sintered silver nanoparticles(AgNPs)arewidely used in high-power electronics due to their exceptional properties.However,the material reliability is significantly affected by various microscopic defects.In this work,t...Sintered silver nanoparticles(AgNPs)arewidely used in high-power electronics due to their exceptional properties.However,the material reliability is significantly affected by various microscopic defects.In this work,the three primary micro-defect types at potential stress concentrations in sintered AgNPs are identified,categorized,and quantified.Molecular dynamics(MD)simulations are employed to observe the failure evolution of different microscopic defects.The dominant mechanisms responsible for this evolution are dislocation nucleation and dislocation motion.At the same time,this paper clarifies the quantitative relationship between the tensile strain amount and the failure mechanism transitions of the three defect types by defining key strain points.The impact of defect types on the failure process is also discussed.Furthermore,traction-separation curves extracted from microscopic defect evolutions serve as a bridge to connect the macro-scale model.The validity of the crack propagation model is confirmed through tensile tests.Finally,we thoroughly analyze how micro-defect types influence macro-crack propagation and attempt to find supporting evidence from the MD model.Our findings provide a multi-perspective reference for the reliability analysis of sintered AgNPs.展开更多
Owing to the intrinsically sluggish kinetics of urea oxidation reaction(UOR)involving a six-electron transfer process,developing efficient UOR electrocatalyst is a great challenge remained to be overwhelmed.Herein,by ...Owing to the intrinsically sluggish kinetics of urea oxidation reaction(UOR)involving a six-electron transfer process,developing efficient UOR electrocatalyst is a great challenge remained to be overwhelmed.Herein,by taking advantage of 2-Methylimidazole,of which is a kind of alkali in water and owns strong coordination ability to Co^(2+)in methanol,trace Co(1.0 mol%)addition was found to induce defect engineering onα-Ni(OH)_(2)in a dual-solvent system of water and methanol.Physical characterization results revealed that the synthesized electrocatalyst(WM-Ni_(0.99)Co_(0.01)(OH)_(2))was a kind of defective nanosheet with thickness around 5-6 nm,attributing to the synergistic effect of Co doping and defect engineering,its electron structure was finely altered,and its specific surface a rea was tremendously enlarged from 68 to 172.3 m^(2)g^(-1).With all these merits,its overpotential to drive 10 mA cm^(-2)was reduced by 110 mV.Besides,the interfacial behavior of UOR was also well deciphered by operando electrochemical impedance spectroscopy.展开更多
As computer technology continues to advance,factories have increasingly higher demands for detecting defects.However,detecting defects in a plant environment remains a challenging task due to the presence of complex b...As computer technology continues to advance,factories have increasingly higher demands for detecting defects.However,detecting defects in a plant environment remains a challenging task due to the presence of complex backgrounds and defects of varying shapes and sizes.To address this issue,this paper proposes YOLO-DD,a defect detectionmodel based on YOLOv5 that is effective and robust.To improve the feature extraction process and better capture global information,the vanilla YOLOv5 is augmented with a new module called Relative-Distance-Aware Transformer(RDAT).Additionally,an Information Gap Filling Strategy(IGFS)is proposed to improve the fusion of features at different scales.The classic lightweight attention mechanism Squeeze-and-Excitation(SE)module is also incorporated into the neck section to enhance feature expression and improve the model’s performance.Experimental results on the NEU-DET dataset demonstrate that YOLO-DDachieves competitive results compared to state-of-the-art methods,with a 2.0% increase in accuracy compared to the original YOLOv5,achieving 82.41% accuracy and38.25FPS(framesper second).Themodel is also testedon a self-constructed fabric defect dataset,and the results show that YOLO-DD is more stable and has higher accuracy than the original YOLOv5,demonstrating its stability and generalization ability.The high efficiency of YOLO-DD enables it to meet the requirements of industrial high accuracy and real-time detection.展开更多
Defect detection is vital in the nonwoven material industry,ensuring surface quality before producing finished products.Recently,deep learning and computer vision advancements have revolutionized defect detection,maki...Defect detection is vital in the nonwoven material industry,ensuring surface quality before producing finished products.Recently,deep learning and computer vision advancements have revolutionized defect detection,making it a widely adopted approach in various industrial fields.This paper mainly studied the defect detection method for nonwoven materials based on the improved Nano Det-Plus model.Using the constructed samples of defects in nonwoven materials as the research objects,transfer learning experiments were conducted based on the Nano DetPlus object detection framework.Within this framework,the Backbone,path aggregation feature pyramid network(PAFPN)and Head network models were compared and trained through a process of freezing,with the ultimate aim of bolstering the model's feature extraction abilities and elevating detection accuracy.The half-precision quantization method was used to optimize the model after transfer learning experiments,reducing model weights and computational complexity to improve the detection speed.Performance comparisons were conducted between the improved model and the original Nano Det-Plus model,YOLO,SSD and other common industrial defect detection algorithms,validating that the improved methods based on transfer learning and semi-precision quantization enabled the model to meet the practical requirements of industrial production.展开更多
Time-series data provide important information in many fields,and their processing and analysis have been the focus of much research.However,detecting anomalies is very difficult due to data imbalance,temporal depende...Time-series data provide important information in many fields,and their processing and analysis have been the focus of much research.However,detecting anomalies is very difficult due to data imbalance,temporal dependence,and noise.Therefore,methodologies for data augmentation and conversion of time series data into images for analysis have been studied.This paper proposes a fault detection model that uses time series data augmentation and transformation to address the problems of data imbalance,temporal dependence,and robustness to noise.The method of data augmentation is set as the addition of noise.It involves adding Gaussian noise,with the noise level set to 0.002,to maximize the generalization performance of the model.In addition,we use the Markov Transition Field(MTF)method to effectively visualize the dynamic transitions of the data while converting the time series data into images.It enables the identification of patterns in time series data and assists in capturing the sequential dependencies of the data.For anomaly detection,the PatchCore model is applied to show excellent performance,and the detected anomaly areas are represented as heat maps.It allows for the detection of anomalies,and by applying an anomaly map to the original image,it is possible to capture the areas where anomalies occur.The performance evaluation shows that both F1-score and Accuracy are high when time series data is converted to images.Additionally,when processed as images rather than as time series data,there was a significant reduction in both the size of the data and the training time.The proposed method can provide an important springboard for research in the field of anomaly detection using time series data.Besides,it helps solve problems such as analyzing complex patterns in data lightweight.展开更多
The purpose of software defect prediction is to identify defect-prone code modules to assist software quality assurance teams with the appropriate allocation of resources and labor.In previous software defect predicti...The purpose of software defect prediction is to identify defect-prone code modules to assist software quality assurance teams with the appropriate allocation of resources and labor.In previous software defect prediction studies,transfer learning was effective in solving the problem of inconsistent project data distribution.However,target projects often lack sufficient data,which affects the performance of the transfer learning model.In addition,the presence of uncorrelated features between projects can decrease the prediction accuracy of the transfer learning model.To address these problems,this article propose a software defect prediction method based on stable learning(SDP-SL)that combines code visualization techniques and residual networks.This method first transforms code files into code images using code visualization techniques and then constructs a defect prediction model based on these code images.During the model training process,target project data are not required as prior knowledge.Following the principles of stable learning,this paper dynamically adjusted the weights of source project samples to eliminate dependencies between features,thereby capturing the“invariance mechanism”within the data.This approach explores the genuine relationship between code defect features and labels,thereby enhancing defect prediction performance.To evaluate the performance of SDP-SL,this article conducted comparative experiments on 10 open-source projects in the PROMISE dataset.The experimental results demonstrated that in terms of the F-measure,the proposed SDP-SL method outperformed other within-project defect prediction methods by 2.11%-44.03%.In cross-project defect prediction,the SDP-SL method provided an improvement of 5.89%-25.46% in prediction performance compared to other cross-project defect prediction methods.Therefore,SDP-SL can effectively enhance within-and cross-project defect predictions.展开更多
How to use a few defect samples to complete the defect classification is a key challenge in the production of mobile phone screens.An attention-relation network for the mobile phone screen defect classification is pro...How to use a few defect samples to complete the defect classification is a key challenge in the production of mobile phone screens.An attention-relation network for the mobile phone screen defect classification is proposed in this paper.The architecture of the attention-relation network contains two modules:a feature extract module and a feature metric module.Different from other few-shot models,an attention mechanism is applied to metric learning in our model to measure the distance between features,so as to pay attention to the correlation between features and suppress unwanted information.Besides,we combine dilated convolution and skip connection to extract more feature information for follow-up processing.We validate attention-relation network on the mobile phone screen defect dataset.The experimental results show that the classification accuracy of the attentionrelation network is 0.9486 under the 5-way 1-shot training strategy and 0.9039 under the 5-way 5-shot setting.It achieves the excellent effect of classification for mobile phone screen defects and outperforms with dominant advantages.展开更多
To solve the problems of the low accuracy and poor real-time performance of traditional strip steel surface defect detection meth-ods,which are caused by the characteristics of many kinds,complex shapes,and different ...To solve the problems of the low accuracy and poor real-time performance of traditional strip steel surface defect detection meth-ods,which are caused by the characteristics of many kinds,complex shapes,and different scales of strip surface defects,a strip steel surface defect detection algorithm based on improved Faster R-CNN is proposed.Firstly,the residual convolution module is inserted into the Swin Transformer network module to form the RC-Swin Transformer network module,and the RC-Swin Transformer module is introduced into the backbone network of the traditional Faster R-CNN to enhance the ability of the network to extract the global feature information of the image and adapt to the complex shape of the strip steel surface defect.To improve the attention of the network to defects in the image,a CBAM-BiFPN network module is designed,and then the backbone network is combined with the CBAM-BiFPN network to realize the de-tection and fusion of multi-scale features.The RoI align layer is used instead of the RoI pooling layer to improve the accuracy of defect loca-tion.Finally,Soft NMS is used to achieve non-maximum suppression and remove redundant boxes.In the comparative experiment on the NEU-DET dataset,the improved algorithm improves the mean average precision by 4.2%compared with the Faster R-CNN algorithm,and also improves the average precision by 6.1%and 6.7%for crazing defect and rolled-in scale defect,which are difficult to detect with the Faster R-CNN algorithm.The experiments show that the improvements proposed in the paper effectively improve the detection accuracy of the algorithm and have certain practical value.展开更多
BACKGROUND Cartilage defects are some of the most common causes of arthritis.Cartilage lesions caused by inflammation,trauma or degenerative disease normally result in osteochondral defects.Previous studies have shown...BACKGROUND Cartilage defects are some of the most common causes of arthritis.Cartilage lesions caused by inflammation,trauma or degenerative disease normally result in osteochondral defects.Previous studies have shown that decellularized extracellular matrix(ECM)derived from autologous,allogenic,or xenogeneic mesenchymal stromal cells(MSCs)can effectively restore osteochondral integrity.AIM To determine whether the decellularized ECM of antler reserve mesenchymal cells(RMCs),a xenogeneic material from antler stem cells,is superior to the currently available treatments for osteochondral defects.METHODS We isolated the RMCs from a 60-d-old sika deer antler and cultured them in vitro to 70%confluence;50 mg/mL L-ascorbic acid was then added to the medium to stimulate ECM deposition.Decellularized sheets of adipocyte-derived MSCs(aMSCs)and antlerogenic periosteal cells(another type of antler stem cells)were used as the controls.Three weeks after ascorbic acid stimulation,the ECM sheets were harvested and applied to the osteochondral defects in rat knee joints.RESULTS The defects were successfully repaired by applying the ECM-sheets.The highest quality of repair was achieved in the RMC-ECM group both in vitro(including cell attachment and proliferation),and in vivo(including the simultaneous regeneration of well-vascularized subchondral bone and avascular articular hyaline cartilage integrated with surrounding native tissues).Notably,the antler-stem-cell-derived ECM(xenogeneic)performed better than the aMSC-ECM(allogenic),while the ECM of the active antler stem cells was superior to that of the quiescent antler stem cells.CONCLUSION Decellularized xenogeneic ECM derived from the antler stem cell,particularly the active form(RMC-ECM),can achieve high quality repair/reconstruction of osteochondral defects,suggesting that selection of decellularized ECM for such repair should be focused more on bioactivity rather than kinship.展开更多
Background:Atrial septal defect(ASD)is a common form of adult congenital heart disease that can lead to long-term adverse outcomes if left untreated.Early closure of ASD has been associated with excellent outcomes and...Background:Atrial septal defect(ASD)is a common form of adult congenital heart disease that can lead to long-term adverse outcomes if left untreated.Early closure of ASD has been associated with excellent outcomes and lower complication rates.However,there is limited evidence regarding the prognosis of ASD closure in older adults.This study aims to evaluate the mortality rates in older ASD patients with and without closure.Methods:A retrospective cohort study was conducted on patients aged 40 years or older with ASD between 2001 and 2017.Patients were followed up to assess all-cause mortality.Univariable and multivariable analyses were performed to identify the predictors of mortality.A p-value of<0.05 was considered statistically significant.Results:The cohort consisted of 450 patients(mean age 56.6±10.4 years,77.3%female),with 66%aged between 40 and 60 years,and 34%over 60 years.Within the cohort,299 underwent ASD closure(201 with transcatheter and 98 with surgical closure).During the median follow-up duration of 7.9 years,51 patients died.The unadjusted cumulative 10-year rate of mortality was 3%in patients with ASD closure,and 28%in patients without ASD closure(log-rank p<0.001).Multivariable analysis revealed that age(hazard ratio[HR]1.04,95%confidence interval[CI]1.006–1.06,p=0.01),NYHA class(HR 2.75,95%CI 1.63–4.62,p<0.001),blood urea nitrogen(BUN)(HR 1.07,95%CI 1.03–1.12,p<0.001),right ventricular systolic pressure(RVSP)(HR 1.07,95%CI 1.003–1.04,p=0.01),and lack of ASD closure(HR 15.12,95%CI 5.63–40.59,p<0.001)were independently associated with mortality.Conclusion:ASD closure demonstrated favorable outcomes in older patients.Age,NYHA class,BUN,RVSP,and lack of ASD closure were identified as independent factors linked to mortality in this population.展开更多
The rapid advancement of halide-based hybrid perovskite materials has garnered significant research attention,particularly in the domain of photovoltaic technology.Owing to their exceptional optoelec-tronic properties...The rapid advancement of halide-based hybrid perovskite materials has garnered significant research attention,particularly in the domain of photovoltaic technology.Owing to their exceptional optoelec-tronic properties,they demonstrated power conversion efficiency(PcE)of over 25%in single junction solar cells.Despite the notable progress in PCE over the past decade,the inherent high defect density pre-senting in perovskite materials gives rise to several loss mechanisms and associated ion migration in per-ovskite solar cells(PsCs)during operational conditions.These factors collectively contribute to a significant stability challenge in PsCs,placing their longevity far behind for commercialization.While numerous reports have explored defects,ion migration,and their impacts on device performance,a com-prehensive correlation between the types of defects and the degradation kinetics of perovskite materials and PsCs has been lacking.In this context,this review aims to provide a comprehensive overview of the origins of defects and ion migration,emphasizing their correlation with the degradation kinetics of per-ovskite materials and PsCs,leveraging reliable characterization techniques.Furthermore,these charac-terization techniques are intended to comprehend loss mechanisms by different passivation approaches to enhance the durability and PCE of PSCs.展开更多
基金supported by the National Natural Science Foundation of China(No.52206073)the University Outstanding Youth Fund Project of Anhui Province(Nos.2022AH020028 and 2022AH030037)+2 种基金the Natural Science Foundation of Anhui Province(Nos.1908085QF292 and 2308085ME173)Anhui Province Outstanding Young Talents Support Program(No.gxyqZD2022058)Guangdong Basic and Applied Basic Research Foundation(Nos.2024A1515011379 and 2023A1515110613).
文摘The self-driven behavior of droplets on a functionalized surface,coupled with wetting gradient and wedge patterns,is systematically investigated using molecular dynamics(MD)simulations.The effects of key factors,including wedge angle,wettability,and wetting gradient,on the droplet self-driving effect is revealed from the nanoscale.Results indicate that the maximum velocity of droplets on hydrophobic wedge-shaped surfaces increases with the wedge angle,accompanied by a rapid attenuation of driving force;however,the average velocity decreases with the increased wedge angle.Conversely,droplet movement on hydrophilic wedge-shaped surfaces follows the opposite trend,particularly in terms of average velocity compared to the hydrophobic case.Both wedge-shaped and composite gradient wedge-shaped surfaces are found to induce droplet motion,with droplets exhibiting higher speeds and distances on hydrophobic surfaces compared to hydrophilic surfaces,regardless of surface type.Importantly,the inclusion of wettability gradients significantly influences droplet motion,with hydrophobic composite gradient wedge-shaped surfaces showing considerable improvements in droplet speed and distance compared to their hydrophilic counterparts.By combining suitable wettability gradients with wedge-shaped surfaces,the limitations inherent in the wettability gradient range and wedge-shaped configuration can be mitigated,thereby enhancing droplet speed and distance.The findings presented in this paper offer valuable insights for the design of advanced functional surfaces tailored for manipulating droplets in real-world applications.
基金support of the National Natural Science Foundation of China(Grant No.22225801,22178217 and 22308216)supported by the Fundamental Research Funds for the Central Universities,conducted at Tongji University.
文摘Rechargeable magnesium batteries(RMBs)have been considered a promising“post lithium-ion battery”system to meet the rapidly increasing demand of the emerging electric vehicle and grid energy storage market.However,the sluggish diffusion kinetics of bivalent Mg^(2+)in the host material,related to the strong Coulomb effect between Mg^(2+)and host anion lattices,hinders their further development toward practical applications.Defect engineering,regarded as an effective strategy to break through the slow migration puzzle,has been validated in various cathode materials for RMBs.In this review,we first thoroughly understand the intrinsic mechanism of Mg^(2+)diffusion in cathode materials,from which the key factors affecting ion diffusion are further presented.Then,the positive effects of purposely introduced defects,including vacancy and doping,and the corresponding strategies for introducing various defects are discussed.The applications of defect engineering in cathode materials for RMBs with advanced electrochemical properties are also summarized.Finally,the existing challenges and future perspectives of defect engineering in cathode materials for the overall high-performance RMBs are described.
文摘Wedge-shaped copper casting experiment was conducted to study the engulfment behavior of TiB2 particle and the interaction between particle or cluster and the solid/liquid front in commercial pure aluminum matrix. The experimental results show that the particle size distribution obeys two separate systems in the whole wedge-cast sample. Furthermore, it is found that the big clusters are pushed to the center of the wedge shaped sample and the single particle or small clusters consisting of few particles are engulfed into the α-Al in the area of the sample edge. The cluster degree of particles varies in different areas, and its value is 0.2 and 0.6 for the cluster fraction in the edge and in the center of the wedge sample, respectively. The cluster diameter does not obey the normal distribution but approximately obeys lognormal distribution in the present work. More importantly, in the whole sample, the particle size obeys two separate log-normal distributions.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11262017,11262012,and 11462020)the Natural Science Foundation of Inner Mongolia Autonomous Region,China(Grant No.2015MS0129)+1 种基金the Programme of Higher-level Talents of Inner Mongolia Normal University(Grant No.RCPY-2-2012-K-035)the Key Project of Inner Mongolia Normal University(Grant No.2014ZD03)
文摘Based on the fundamental equations of piezoelasticity of quasicrystal material,we investigated the interaction between a screw dislocation and a wedge-shaped crack in the piezoelectricity of one-dimensional hexagonal quasicrystals.Explicit analytical solutions are obtained for stress and electric displacement intensity factors of the crack,as well as the force on dislocation.The derivation is based on the conformal mapping method and the perturbation technique.The influences of the wedge angle and dislocation location on the image force are also discussed.The results obtained in this paper can be fully reduced to some special cases already available or deriving new ones.
基金the support of the Australia Research Council (ARC) through the Discovery Project (DP230101040)the Natural Science Foundation of Shandong Province (ZR2022QB139, No. ZR2020KF025)+3 种基金the Starting Research Fund (Grant No. 20210122) from the Ludong Universitythe Natural Science Foundation of China (12274190) from the Ludong Universitythe support of the Shandong Youth Innovation Team Introduction and Education Programthe Special Fund for Taishan Scholars Project (No. tsqn202211186) in Shandong Province。
文摘Over the past decade, graphitic carbon nitride(g-C_(3)N_(4)) has emerged as a universal photocatalyst toward various sustainable carbo-neutral technologies. Despite solar applications discrepancy, g-C_(3)N_(4) is still confronted with a general fatal issue of insufficient supply of thermodynamically active photocarriers due to its inferior solar harvesting ability and sluggish charge transfer dynamics. Fortunately, this could be significantly alleviated by the “all-in-one” defect engineering strategy, which enables a simultaneous amelioration of both textural uniqueness and intrinsic electronic band structures. To this end, we have summarized an unprecedently comprehensive discussion on defect controls including the vacancy/non-metallic dopant creation with optimized electronic band structure and electronic density, metallic doping with ultraactive coordinated environment(M–N_(x), M–C_(2)N_(2), M–O bonding), functional group grafting with optimized band structure, and promoted crystallinity with extended conjugation π system with weakened interlayered van der Waals interaction. Among them, the defect states induced by various defect types such as N vacancy, P/S/halogen dopants, and cyano group in boosting solar harvesting and accelerating photocarrier transfer have also been emphasized. More importantly, the shallow defect traps identified by femtosecond transient absorption spectra(fs-TAS) have also been highlighted. It is believed that this review would pave the way for future readers with a unique insight into a more precise defective g-C_(3)N_(4) “customization”, motivating more profound thinking and flourishing research outputs on g-C_(3)N_(4)-based photocatalysis.
基金National Science Foundation of China(51605447)Applied Basic Research Programs of Shanxi Province in China(201801D221370)
文摘One wedge-shaped microchannel was established,and the hydrodynamic properties of the wedge-shaped gas film were comprehensively investigated.The Navier-Stokes equations coupled with the full energy equation were adopted to mainly analyze the lubrication hydrodynamics of the gas film,as the horizontal plate was viewed as the adiabatic wall or the horizontal plate temperature was equal to the tilt plate temperature.A higher gas film temperature strengthened the rarefaction effect,and the more rarefied gas weakened the squeeze.Meanwhile,the vertical flow across the gas film could indicate the relation between the velocity vector and the gas film squeeze and expansion.The adiabatic horizontal plate could resist the heat conduction and enhance the rarefaction effect,and thus the direction of motion of the gas molecules was easier to be changed.
基金Supported by the National Natural Science Foundation of China under Grant No 61665007the Natural Science Foundation of Jiangxi Province under Grant No 20161BAB202039
文摘We report some novel dynamical phenomena of dissipative solitons supported by introducing an asymmetric wedge-shaped potential(just as a sharp ‘razor') into the complex Ginzburg–Landau equation with the cubicquintic nonlinearity. The potentials corresponding to a local refractive index modulation with breaking symmetry can be realized in an active optical medium with respective expanding antiwaveguiding structures. Using the razor potential acting on a central dissipative soliton, possible outcomes of asymmetric and single-side splitting of dissipative solitons are achieved with setting different strengths and steepness of the potentials. The results can potentially be used to design a multi-route splitter for light beams.
基金supported by the National ITER Special Support for R&D on Science and Technology for ITER,"Research on Reversed Field Pinch Magnetic Confinement Configuration",CN Schedule Task(No.2011GB106000)
文摘The KTX device is a reversed field pinch (RFP) device currently under construction. Its maximum plasma current is designed as 1 MA with a discharge time longer than 100 ms. Its major radius is 1.4 m and its minor radius is 0.55 m. One of the most important problems in the magnet system design is how to reduce the TF magnetic field ripple and error field. A new wedge- shaped TF coil is put forward for the KTX device and its electromagnetic properties are compared with those of rectangular-shaped TF coils. The error field B,I/Bt of wedge-shaped TF coils with 6.4 degrees is about 6% as compared with 8% in the case of a rectangular-shaped TF coil. Besides, the wedge-shaped TF coils have a lower magnetic field ripple at the edge of the plasma region, which is smaller than 7.5% at R=1.83 m and 2% at R=l.07 m. This means that the tokamak operation mode may be feasible for this device when the plasma area becomes smaller, because the maximum ripple in the plasma area of the tokamak model is always required to be smaller than 0.4%. Detailed analysis of the results shows that the structure of the wedged-shape TF coil is reliable. It can serve as a reference for TF coil design of small aspect ratio RFPs or similar torus devices.
基金funds from the National Natural Science Foundation of China(51772082 and 51804106)the Natural Science Foundation of Hunan Province(2023JJ10005)
文摘Manganese-based material is a prospective cathode material for aqueous zinc ion batteries(ZIBs)by virtue of its high theoretical capacity,high operating voltage,and low price.However,the manganese dissolution during the electrochemical reaction causes its electrochemical cycling stability to be undesirable.In this work,heterointerface engineering-induced oxygen defects are introduced into heterostructure MnO_(2)(δa-MnO_(2))by in situ electrochemical activation to inhibit manganese dissolution for aqueous zinc ion batteries.Meanwhile,the heterointerface between the disordered amorphous and the crystalline MnO_(2)ofδa-MnO_(2)is decisive for the formation of oxygen defects.And the experimental results indicate that the manganese dissolution ofδa-MnO_(2)is considerably inhibited during the charge/discharge cycle.Theoretical analysis indicates that the oxygen defect regulates the electronic and band structure and the Mn-O bonding state of the electrode material,thereby promoting electron transport kinetics as well as inhibiting Mn dissolution.Consequently,the capacity ofδa-MnO_(2)does not degrade after 100 cycles at a current density of 0.5 Ag^(-1)and also 91%capacity retention after 500cycles at 1 Ag^(-1).This study provides a promising insight into the development of high-performance manganese-based cathode materials through a facile and low-cost strategy.
基金supported by the China Scholarship Council (CSC) (No.202206020149)the Academic Excellence Foundation of BUAA for PhD Students,the Funding Project of Science and Technology on Reliability and Environmental Engineering Laboratory (No.6142004210106).
文摘Sintered silver nanoparticles(AgNPs)arewidely used in high-power electronics due to their exceptional properties.However,the material reliability is significantly affected by various microscopic defects.In this work,the three primary micro-defect types at potential stress concentrations in sintered AgNPs are identified,categorized,and quantified.Molecular dynamics(MD)simulations are employed to observe the failure evolution of different microscopic defects.The dominant mechanisms responsible for this evolution are dislocation nucleation and dislocation motion.At the same time,this paper clarifies the quantitative relationship between the tensile strain amount and the failure mechanism transitions of the three defect types by defining key strain points.The impact of defect types on the failure process is also discussed.Furthermore,traction-separation curves extracted from microscopic defect evolutions serve as a bridge to connect the macro-scale model.The validity of the crack propagation model is confirmed through tensile tests.Finally,we thoroughly analyze how micro-defect types influence macro-crack propagation and attempt to find supporting evidence from the MD model.Our findings provide a multi-perspective reference for the reliability analysis of sintered AgNPs.
基金supported by the Central South University Scientific Research Foundation for Post-doctor(Grant No.:140050052)the National Natural Science Foundation of China(Grant No.:52204325)
文摘Owing to the intrinsically sluggish kinetics of urea oxidation reaction(UOR)involving a six-electron transfer process,developing efficient UOR electrocatalyst is a great challenge remained to be overwhelmed.Herein,by taking advantage of 2-Methylimidazole,of which is a kind of alkali in water and owns strong coordination ability to Co^(2+)in methanol,trace Co(1.0 mol%)addition was found to induce defect engineering onα-Ni(OH)_(2)in a dual-solvent system of water and methanol.Physical characterization results revealed that the synthesized electrocatalyst(WM-Ni_(0.99)Co_(0.01)(OH)_(2))was a kind of defective nanosheet with thickness around 5-6 nm,attributing to the synergistic effect of Co doping and defect engineering,its electron structure was finely altered,and its specific surface a rea was tremendously enlarged from 68 to 172.3 m^(2)g^(-1).With all these merits,its overpotential to drive 10 mA cm^(-2)was reduced by 110 mV.Besides,the interfacial behavior of UOR was also well deciphered by operando electrochemical impedance spectroscopy.
基金supported in part by the National Natural Science Foundation of China under Grants 32171909,51705365,52205254The Guangdong Basic and Applied Basic Research Foundation under Grants 2020B1515120050,2023A1515011255+2 种基金The Guangdong Key R&D projects under Grant 2020B0404030001the Scientific Research Projects of Universities in Guangdong Province under Grant 2020KCXTD015The Ji Hua Laboratory Open Project under Grant X220931UZ230.
文摘As computer technology continues to advance,factories have increasingly higher demands for detecting defects.However,detecting defects in a plant environment remains a challenging task due to the presence of complex backgrounds and defects of varying shapes and sizes.To address this issue,this paper proposes YOLO-DD,a defect detectionmodel based on YOLOv5 that is effective and robust.To improve the feature extraction process and better capture global information,the vanilla YOLOv5 is augmented with a new module called Relative-Distance-Aware Transformer(RDAT).Additionally,an Information Gap Filling Strategy(IGFS)is proposed to improve the fusion of features at different scales.The classic lightweight attention mechanism Squeeze-and-Excitation(SE)module is also incorporated into the neck section to enhance feature expression and improve the model’s performance.Experimental results on the NEU-DET dataset demonstrate that YOLO-DDachieves competitive results compared to state-of-the-art methods,with a 2.0% increase in accuracy compared to the original YOLOv5,achieving 82.41% accuracy and38.25FPS(framesper second).Themodel is also testedon a self-constructed fabric defect dataset,and the results show that YOLO-DD is more stable and has higher accuracy than the original YOLOv5,demonstrating its stability and generalization ability.The high efficiency of YOLO-DD enables it to meet the requirements of industrial high accuracy and real-time detection.
基金National Key Research and Development Program of China(Nos.2022YFB4700600 and 2022YFB4700605)National Natural Science Foundation of China(Nos.61771123 and 62171116)+1 种基金Fundamental Research Funds for the Central UniversitiesGraduate Student Innovation Fund of Donghua University,China(No.CUSF-DH-D-2022044)。
文摘Defect detection is vital in the nonwoven material industry,ensuring surface quality before producing finished products.Recently,deep learning and computer vision advancements have revolutionized defect detection,making it a widely adopted approach in various industrial fields.This paper mainly studied the defect detection method for nonwoven materials based on the improved Nano Det-Plus model.Using the constructed samples of defects in nonwoven materials as the research objects,transfer learning experiments were conducted based on the Nano DetPlus object detection framework.Within this framework,the Backbone,path aggregation feature pyramid network(PAFPN)and Head network models were compared and trained through a process of freezing,with the ultimate aim of bolstering the model's feature extraction abilities and elevating detection accuracy.The half-precision quantization method was used to optimize the model after transfer learning experiments,reducing model weights and computational complexity to improve the detection speed.Performance comparisons were conducted between the improved model and the original Nano Det-Plus model,YOLO,SSD and other common industrial defect detection algorithms,validating that the improved methods based on transfer learning and semi-precision quantization enabled the model to meet the practical requirements of industrial production.
基金This research was financially supported by the Ministry of Trade,Industry,and Energy(MOTIE),Korea,under the“Project for Research and Development with Middle Markets Enterprises and DNA(Data,Network,AI)Universities”(AI-based Safety Assessment and Management System for Concrete Structures)(ReferenceNumber P0024559)supervised by theKorea Institute for Advancement of Technology(KIAT).
文摘Time-series data provide important information in many fields,and their processing and analysis have been the focus of much research.However,detecting anomalies is very difficult due to data imbalance,temporal dependence,and noise.Therefore,methodologies for data augmentation and conversion of time series data into images for analysis have been studied.This paper proposes a fault detection model that uses time series data augmentation and transformation to address the problems of data imbalance,temporal dependence,and robustness to noise.The method of data augmentation is set as the addition of noise.It involves adding Gaussian noise,with the noise level set to 0.002,to maximize the generalization performance of the model.In addition,we use the Markov Transition Field(MTF)method to effectively visualize the dynamic transitions of the data while converting the time series data into images.It enables the identification of patterns in time series data and assists in capturing the sequential dependencies of the data.For anomaly detection,the PatchCore model is applied to show excellent performance,and the detected anomaly areas are represented as heat maps.It allows for the detection of anomalies,and by applying an anomaly map to the original image,it is possible to capture the areas where anomalies occur.The performance evaluation shows that both F1-score and Accuracy are high when time series data is converted to images.Additionally,when processed as images rather than as time series data,there was a significant reduction in both the size of the data and the training time.The proposed method can provide an important springboard for research in the field of anomaly detection using time series data.Besides,it helps solve problems such as analyzing complex patterns in data lightweight.
基金supported by the NationalNatural Science Foundation of China(Grant No.61867004)the Youth Fund of the National Natural Science Foundation of China(Grant No.41801288).
文摘The purpose of software defect prediction is to identify defect-prone code modules to assist software quality assurance teams with the appropriate allocation of resources and labor.In previous software defect prediction studies,transfer learning was effective in solving the problem of inconsistent project data distribution.However,target projects often lack sufficient data,which affects the performance of the transfer learning model.In addition,the presence of uncorrelated features between projects can decrease the prediction accuracy of the transfer learning model.To address these problems,this article propose a software defect prediction method based on stable learning(SDP-SL)that combines code visualization techniques and residual networks.This method first transforms code files into code images using code visualization techniques and then constructs a defect prediction model based on these code images.During the model training process,target project data are not required as prior knowledge.Following the principles of stable learning,this paper dynamically adjusted the weights of source project samples to eliminate dependencies between features,thereby capturing the“invariance mechanism”within the data.This approach explores the genuine relationship between code defect features and labels,thereby enhancing defect prediction performance.To evaluate the performance of SDP-SL,this article conducted comparative experiments on 10 open-source projects in the PROMISE dataset.The experimental results demonstrated that in terms of the F-measure,the proposed SDP-SL method outperformed other within-project defect prediction methods by 2.11%-44.03%.In cross-project defect prediction,the SDP-SL method provided an improvement of 5.89%-25.46% in prediction performance compared to other cross-project defect prediction methods.Therefore,SDP-SL can effectively enhance within-and cross-project defect predictions.
文摘How to use a few defect samples to complete the defect classification is a key challenge in the production of mobile phone screens.An attention-relation network for the mobile phone screen defect classification is proposed in this paper.The architecture of the attention-relation network contains two modules:a feature extract module and a feature metric module.Different from other few-shot models,an attention mechanism is applied to metric learning in our model to measure the distance between features,so as to pay attention to the correlation between features and suppress unwanted information.Besides,we combine dilated convolution and skip connection to extract more feature information for follow-up processing.We validate attention-relation network on the mobile phone screen defect dataset.The experimental results show that the classification accuracy of the attentionrelation network is 0.9486 under the 5-way 1-shot training strategy and 0.9039 under the 5-way 5-shot setting.It achieves the excellent effect of classification for mobile phone screen defects and outperforms with dominant advantages.
基金supported by the National Natural Science Foundation of China(12002138).
文摘To solve the problems of the low accuracy and poor real-time performance of traditional strip steel surface defect detection meth-ods,which are caused by the characteristics of many kinds,complex shapes,and different scales of strip surface defects,a strip steel surface defect detection algorithm based on improved Faster R-CNN is proposed.Firstly,the residual convolution module is inserted into the Swin Transformer network module to form the RC-Swin Transformer network module,and the RC-Swin Transformer module is introduced into the backbone network of the traditional Faster R-CNN to enhance the ability of the network to extract the global feature information of the image and adapt to the complex shape of the strip steel surface defect.To improve the attention of the network to defects in the image,a CBAM-BiFPN network module is designed,and then the backbone network is combined with the CBAM-BiFPN network to realize the de-tection and fusion of multi-scale features.The RoI align layer is used instead of the RoI pooling layer to improve the accuracy of defect loca-tion.Finally,Soft NMS is used to achieve non-maximum suppression and remove redundant boxes.In the comparative experiment on the NEU-DET dataset,the improved algorithm improves the mean average precision by 4.2%compared with the Faster R-CNN algorithm,and also improves the average precision by 6.1%and 6.7%for crazing defect and rolled-in scale defect,which are difficult to detect with the Faster R-CNN algorithm.The experiments show that the improvements proposed in the paper effectively improve the detection accuracy of the algorithm and have certain practical value.
基金National Natural Science Foundation of China,No.U20A20403This study was conducted in accordance with the Animal Ethics Committee of the Institute of Antler Science and Product Technology,Changchun Sci-Tech University(AEC No:CKARI202309).
文摘BACKGROUND Cartilage defects are some of the most common causes of arthritis.Cartilage lesions caused by inflammation,trauma or degenerative disease normally result in osteochondral defects.Previous studies have shown that decellularized extracellular matrix(ECM)derived from autologous,allogenic,or xenogeneic mesenchymal stromal cells(MSCs)can effectively restore osteochondral integrity.AIM To determine whether the decellularized ECM of antler reserve mesenchymal cells(RMCs),a xenogeneic material from antler stem cells,is superior to the currently available treatments for osteochondral defects.METHODS We isolated the RMCs from a 60-d-old sika deer antler and cultured them in vitro to 70%confluence;50 mg/mL L-ascorbic acid was then added to the medium to stimulate ECM deposition.Decellularized sheets of adipocyte-derived MSCs(aMSCs)and antlerogenic periosteal cells(another type of antler stem cells)were used as the controls.Three weeks after ascorbic acid stimulation,the ECM sheets were harvested and applied to the osteochondral defects in rat knee joints.RESULTS The defects were successfully repaired by applying the ECM-sheets.The highest quality of repair was achieved in the RMC-ECM group both in vitro(including cell attachment and proliferation),and in vivo(including the simultaneous regeneration of well-vascularized subchondral bone and avascular articular hyaline cartilage integrated with surrounding native tissues).Notably,the antler-stem-cell-derived ECM(xenogeneic)performed better than the aMSC-ECM(allogenic),while the ECM of the active antler stem cells was superior to that of the quiescent antler stem cells.CONCLUSION Decellularized xenogeneic ECM derived from the antler stem cell,particularly the active form(RMC-ECM),can achieve high quality repair/reconstruction of osteochondral defects,suggesting that selection of decellularized ECM for such repair should be focused more on bioactivity rather than kinship.
基金This study was approved by the Siriraj Institutional Review Board(SIRB),Faculty of Medicine Siriraj Hospital,Mahidol University(COA no.Si 760/2021).The need for consent was waived by the board due to its retrospective nature and as all personal identifying information was obliterated.The study protocol conforms to the ethical guidelines of the 1975 Declaration of Helsinki.
文摘Background:Atrial septal defect(ASD)is a common form of adult congenital heart disease that can lead to long-term adverse outcomes if left untreated.Early closure of ASD has been associated with excellent outcomes and lower complication rates.However,there is limited evidence regarding the prognosis of ASD closure in older adults.This study aims to evaluate the mortality rates in older ASD patients with and without closure.Methods:A retrospective cohort study was conducted on patients aged 40 years or older with ASD between 2001 and 2017.Patients were followed up to assess all-cause mortality.Univariable and multivariable analyses were performed to identify the predictors of mortality.A p-value of<0.05 was considered statistically significant.Results:The cohort consisted of 450 patients(mean age 56.6±10.4 years,77.3%female),with 66%aged between 40 and 60 years,and 34%over 60 years.Within the cohort,299 underwent ASD closure(201 with transcatheter and 98 with surgical closure).During the median follow-up duration of 7.9 years,51 patients died.The unadjusted cumulative 10-year rate of mortality was 3%in patients with ASD closure,and 28%in patients without ASD closure(log-rank p<0.001).Multivariable analysis revealed that age(hazard ratio[HR]1.04,95%confidence interval[CI]1.006–1.06,p=0.01),NYHA class(HR 2.75,95%CI 1.63–4.62,p<0.001),blood urea nitrogen(BUN)(HR 1.07,95%CI 1.03–1.12,p<0.001),right ventricular systolic pressure(RVSP)(HR 1.07,95%CI 1.003–1.04,p=0.01),and lack of ASD closure(HR 15.12,95%CI 5.63–40.59,p<0.001)were independently associated with mortality.Conclusion:ASD closure demonstrated favorable outcomes in older patients.Age,NYHA class,BUN,RVSP,and lack of ASD closure were identified as independent factors linked to mortality in this population.
基金financial grants from DST,India,through the projects DST/TSG/PT/2009/23,DST/TMD/ICMAP/2K20/03,and DST/CRG/2019/002164,Deity,India,no.5(9)/2012-NANO(Vol.II)the Max-Planck-Gesellschaft IGSTC/MPG/PG(PKI)/2011A/48 and MHRD,India,through the SPARC project SPARC/2018-2019/P1097/SLPMRF(Prime Minister's Research Fellowship),Ministry of Education,Government of India for providing funds to carry out this research.
文摘The rapid advancement of halide-based hybrid perovskite materials has garnered significant research attention,particularly in the domain of photovoltaic technology.Owing to their exceptional optoelec-tronic properties,they demonstrated power conversion efficiency(PcE)of over 25%in single junction solar cells.Despite the notable progress in PCE over the past decade,the inherent high defect density pre-senting in perovskite materials gives rise to several loss mechanisms and associated ion migration in per-ovskite solar cells(PsCs)during operational conditions.These factors collectively contribute to a significant stability challenge in PsCs,placing their longevity far behind for commercialization.While numerous reports have explored defects,ion migration,and their impacts on device performance,a com-prehensive correlation between the types of defects and the degradation kinetics of perovskite materials and PsCs has been lacking.In this context,this review aims to provide a comprehensive overview of the origins of defects and ion migration,emphasizing their correlation with the degradation kinetics of per-ovskite materials and PsCs,leveraging reliable characterization techniques.Furthermore,these charac-terization techniques are intended to comprehend loss mechanisms by different passivation approaches to enhance the durability and PCE of PSCs.