A 15-year field experiment was carried out in Henan Province, China, to study the effects of different fertilization practices on yield of a wheat-maize rotation. Fertilizers tested contained N alone (N), N plus P (NP...A 15-year field experiment was carried out in Henan Province, China, to study the effects of different fertilization practices on yield of a wheat-maize rotation. Fertilizers tested contained N alone (N), N plus P (NP) or plus P and K (NPK), all with or without manure (M). Different long-term fertilization practices affected the yields under the rotation system of wheat and maize differently and the effects on yields was in a general trend of MNPK>MNP>MN>NPK>NP>M>N>the control. The average contribution rate of soil fertility to the highest yield was 37.9%, and the rest 62.1% came from fertilizer applications. The yield effects of the chemical fertilizers were in the order of N>P>K and were increased by application of manure.Balanced fertilization with multielement chemical fertilizers and manure can be effective in maintaining growth in agricultural production. Combined application of chemical fertilizer and organic manure also increased the content of soil organic matter.展开更多
[Objective] This study aimed to achieve high yield and stable yield of win- ter wheat-summer maize rotation system and provide basis for rational application of nitrogen fertilizer. [Method] Effects of continuous nitr...[Objective] This study aimed to achieve high yield and stable yield of win- ter wheat-summer maize rotation system and provide basis for rational application of nitrogen fertilizer. [Method] Effects of continuous nitrogen application on grain yield, economic profit, nitrogen uptake and utilization efficiency, and soil inorganic nitrogen accumulation in winter wheat-summer maize rotation system were investigated. [Re- sult] Nitrogen application could significantly increase the y(eld of the winter wheat- summer maize rotation system, which increased by 17.76%-30.32% and 22.24%- 46.63% in two rotation cycles, respectively. The yield of the winter wheat-summer maize rotation system was the maximum in two rotation cycles with nitrogen appli- cation amount of 660.0 kg/hm2, which reached respectively 23 391.19 and 23 444.35 kg/hm2, the yield and economic benefit were the highest, the nitrogen fertilizer use efficiency was 22.2% and 30.7%, the agronomic efficiency was 8.3 and 11.3 kg/kg. However, the nitrogen fertilizer use efficiency and agronomic efficiency between ni- trogen application amount of 540.0 and 660.0 kg/hm2 showed no significant differ- ence. After two rotation cycles, inorganic nitrogen accumulation in 0-40 cm soil with nitrogen application amount of 540.0 kg/hm2 was almost equal to that before experi- ment. [Conclusion] Under the experimental conditions, comprehensively considering the grain yield, economic profit, nitrogen fertilizer efficiency and soil inorganic nitro- gen balance, the optimal nitrogen application amount was 625.3-660.0 kg/hm2 in high-yield winter wheat-summer maize rotation system.展开更多
A field experiment was conducted to investigate the fate of ^15N-labeled urea and its residual effect under the winter wheat (Triticum aestivum L.) and summer maize (Zea mays L.) rotation system on the North China...A field experiment was conducted to investigate the fate of ^15N-labeled urea and its residual effect under the winter wheat (Triticum aestivum L.) and summer maize (Zea mays L.) rotation system on the North China Plain. Compared to a conventional application rate of 360 kg N ha^-1 (N360), a reduced rate of 120 kg N ha^-1 (N120) led to a significant increase (P 〈 0.05) in wheat yield and no significant differences were found for maize. However, in the 0-100 cm soil profile at harvest, compared with N360, N120 led to significant decreases (P 〈 0.05) of percent residual N and percent unaccounted-for N, which possibly reflected losses from the managed system. Of the residual fertilizer N in the soil profile, 25.6%-44.7% and 20.7%-38.2% for N120 and N360, respectively, were in the organic N pool, whereas 0.3%-3.0% and 11.2%-24.4%, correspondingly, were in the nitrate pool, indicating a higher potential for leaching loss associated with application at the conventional rate. Recovery of residual N in the soil profile by succeeding crops was less than 7.5% of the applied N. For N120, total soil N balance was negative; however, there was still considerable mineral N (NH4^+-N and NO3^--N) in the soil profile after harvest. Therefore, N120 could be considered ngronomically acceptable in the short run, but for long-term sustainability, the N rate should be recommended based on a soil mineral N test and a plant tissue nitrate test to maintain the soil fertility.展开更多
Limited water resources often result in reduced crop yield and low water productivity(WP). In northwestern China, crop production is generally dependent on precipitation. Therefore, a variety of agricultural rainwat...Limited water resources often result in reduced crop yield and low water productivity(WP). In northwestern China, crop production is generally dependent on precipitation. Therefore, a variety of agricultural rainwater harvesting(ARH) techniques have been used for conserving soil moisture, ameliorating soil environment, increasing crop yield, and improving water use efficiency. A two-year(2013–2015) field experiment was conducted under a typical sub-humid drought-prone climate in Yangling(108°24′E, 34°20′N; 521 m a.s.l.), Shaanxi Province, China, to explore the effects of mulching(same for summer maize and winter wheat) on soil moisture, soil temperature, crop water consumption, and crop yield with a winter wheat/summer maize rotation. Crops were planted in a ridge-furrow pattern and the treatments consisted of a transparent film mulch over the ridges(M1), a crop straw mulch in the furrows(M2), a transparent film mulch over the ridges and a crop straw mulch in the furrows(M3), a black film mulch over the ridges and a crop straw mulch in the furrows(M4), and a control with no mulch(CK). Results showed that M4 was the best treatment for improving soil water storage and content, and decreasing crop water consumption during the summer maize and winter wheat rotation. In both maize and wheat seasons, M1 had a higher soil temperature than M2 and CK, and M3 had a higher soil temperature than M4. In the maize seasons, M4 had the highest yield, WP, and precipitation productivity(PP), with the average values for these parameters increasing by 30.9%, 39.0%, and 31.0%, respectively, compared to those in CK. In the wheat seasons, however, M3 had the highest yield, WP, and PP, with the average values for these parameters being 23.7%, 26.7%, and 23.8% higher, respectively, than those in CK. Annual yield(maize and wheat yields combined) and WP did not differ significantly between M3 and M4. These results suggested that M3 and M4 may thus be the optimal ARH practices for the production of winter wheat and summer maize, respectively, in arid and semi-arid areas.展开更多
To evaluate the effects of various rotation systems on rice grain yield and N use efficiency, a paddy–upland cropping experiment(2013–2016) was conducted in southeastern China. The experiment was designed using six ...To evaluate the effects of various rotation systems on rice grain yield and N use efficiency, a paddy–upland cropping experiment(2013–2016) was conducted in southeastern China. The experiment was designed using six different rice––winter crop rotations: rice–fallow(RF),rice–wheat(RW), rice–potato with rice straw mulch(RP), rice–green manure(Chinese milk vetch; RC–G), rice–oilseed rape(RO), and rice–green manure crop(oilseed rape with fresh straw incorporated into soil at flowering; RO–G) and three N rates, N0(0 kg N ha-1), N1(142.5 kg N ha-1), and N2(202.5 kg N ha-1). Average rice yields in the RF(5.93 t ha-1) rotation were significantly lower than those in the rotations with winter crops(7.20–7.48 t ha-1)under the N0 treatment, suggesting that incorporation of straw might be more effective for increasing soil N than winter fallow. The rice yield differences among the rotations varied by year with the N input. In general, the grain yields in the RP and RO–G rotations –were respectively 11.6–28.5% and 14.80–37.19% higher than those in the RF in plots with N applied. Increasing the N rate may have tended to minimize the average yield gap between the RF and the other rotations; the yield gaps were 18.55%, 4.14%, and 0.23% in N0, N1, and N2, respectively. However, the N recovery efficiency in the RF was significantly lower than that in other rotations, except for 2015 under both N1 and N2 rates, a finding that implies a large amount of chemical N loss. No significant differences in nitrogen agronomic efficiency(NAE) and physiological efficiency(NPE) were found between the rotations with legume(RC–G) and non–legume(RO and RW) winter crops, a result that may be due partly to straw incorporation. For this reason, we concluded that the return of straw could reduce differences in N use efficiency between rotations with and without legume crops. The degree of synchrony between the crop N demand and the N supply was evaluated by comparison of nitrogen balance degree(NBD) values. The NBD values in the RP and RW were significantly lower than those in the other rotations under both N1 and N2 rates. Thus,in view of the higher grain yield in the RP compared to the RW under the N1 rate, the RP rotation might be a promising practice with comparable grain yield and greater N use efficiency under reduced N input relative to the other rotations. The primary yield components of the RF and RP were identified as number of panicles m-2 and numbers of kernels panicle-1, respectively. The NAE and NPE were positively correlated with harvest index, possibly providing a useful indicator for evaluating N use efficiency.展开更多
Crop modelling can facilitate researchers' ability to understand and interpret experimental results, and to diagnose yield gaps. In this paper, the Decision Support Systems for Agrotechnology Transfer 4.6 (DSSAT) m...Crop modelling can facilitate researchers' ability to understand and interpret experimental results, and to diagnose yield gaps. In this paper, the Decision Support Systems for Agrotechnology Transfer 4.6 (DSSAT) model together with the CENTURT soil model were employed to investigate the effect of low nitrogen (N) input on wheat (Triticum aestivum L.) yield, grain N concentration and soil organic carbon (SOC) in a long-term experiment (19 years) under a wheat-maize (Zea mays L.) rotation at Changping, Beijing, China. There were two treatments including NO (no N application) and N150 (150 kg N ha-1) before wheat and maize planting, with phosphorus (P) and potassium (K) basal fertilizers applied as 75 kg P205 ha-1 and 37.5 kg K^O ha-~, respectively. The DSSAT-CENTURY model was able to satisfactorily simulate measured wheat grain yield and grain N concentration at NO, but could not simulate these parameters at N150, or SOC in either N treatment, Model simulation and field measurement showed that N application (N150) increased wheat yield compared to no N application (NO). The results indicated that inorganic fertilizer application at the rates used did not maintain crop yield and SOC levels. It is suggested that if the DSSAT is calibrated carefully, it can be a useful tool for assessing and predicting wheat yield, grain N concentration, and SOC trends under wheat-maize cropping systems.展开更多
Five-year trials (2011-2015) were accomplished in a continuous field experiment conducted at the Production and Research Station in Balcyny. The experiment was set up on a luvisol medium soil, derived from light loa...Five-year trials (2011-2015) were accomplished in a continuous field experiment conducted at the Production and Research Station in Balcyny. The experiment was set up on a luvisol medium soil, derived from light loam with the objective of evaluating the response of two winter triticale varieties (Pigmej and Cyrkon) to cultivation without protection (O), chemical weed control (H) and combined protection against weeds and fungi (HF). Comparisons were made in two crop sequence systems: cultivation of winter triticale varieties in a 6-field crop rotation and cultivation in a 19-23-year-long monoculture. The results showed that the plant sequence system significantly differentiated the response of winter triticale varieties to the applied levels of field protection. Significantly higher grain yield gains of the winter triticale varieties in response to the application of herbicides or herbicides with fungicides were obtained in the monoculture than in the crop rotation. In the crop rotation, a higher increase in yields induced by the applied plant protection treatments was achieved by the variety Cyrkon. In the monoculture, the response of both varieties to the herbicides applied was nearly identical, while the combined application of herbicides and fungicides raised the yields of var. Pigmej higher than those of var. Cyrkon. Overall for the plant protection levels, var. Cyrkon yielded higher than var. Pigmej by 18.1% more in the crop rotation and by 26.9% in the monoculture. At the same time, var. Cyrkon demonstrated a weaker response to being grown in the monoculture than var. Pigmej did. The average yield of the former was reduced by 21.1%, whereas the latter yielded 26.6% less grain.展开更多
Winter wheat and summer maize were planted from 2015-2017 to study the effects of different rotational tillage patterns on soil physicochemical properties,crop yield,water content,and fertilizer utilization.The tillag...Winter wheat and summer maize were planted from 2015-2017 to study the effects of different rotational tillage patterns on soil physicochemical properties,crop yield,water content,and fertilizer utilization.The tillage treatments were designed as wheat subsoiling-maize no tillage(WS-MN),wheat rotary tillage-maize subsoiling(WR-MS),wheat subsoiling-maize subsoiling(WS-MS),and conventional wheat rotary tillage-maize no tillage(WR-MN)as a control.Among the four treatments,WS-MN and WR-MS were single-season subsoiling treatments,and WS-MS was a two-season subsoiling treatment.The average soil bulk density decreased by 7.6%in the single-and double-season subsoiling groups compared to the WR-MN group,and the total porosity and noncapillary porosity increased by 10.7%and 12.2%,respectively.Single-or double-season subsoiling treatment was not conducive to water storage in the 0-20 cm soil layer but increased the water content of the 20-140 cm soil layer,and the average soil water content of the 0-140 cm layer was increased by 11.6%in the two-growing season treatment groups compared with the WR-MN group.In WS-MS and WS-MN groups compared with the WR-MN group,the soil ammonium nitrogen content was increased by an average of 18.6%in 0-20 cm soil and 16.8%in 20-100 cm soil;soil nitrate-nitrogen content was decreased by 13.5%in 0-100 cm soil;total organic carbon and microbial carbon contents in the 15-30 cm soil were increased by 18.1%and 12.7%,respectively;and soil urease,catalase,and alkaline phosphatase activities were increased by 46.1%,15.2%,and 23.1%,respectively.Annual crop yield and water use efficiency increased by 8.9%and 15.0%,respectively,in both the single-and double-season subsoiling treatment groups.This study demonstrated the advantages of subsoiling tillage and suggested that it is suitable for crop cultivation in the Haihe Plain,China.展开更多
文摘A 15-year field experiment was carried out in Henan Province, China, to study the effects of different fertilization practices on yield of a wheat-maize rotation. Fertilizers tested contained N alone (N), N plus P (NP) or plus P and K (NPK), all with or without manure (M). Different long-term fertilization practices affected the yields under the rotation system of wheat and maize differently and the effects on yields was in a general trend of MNPK>MNP>MN>NPK>NP>M>N>the control. The average contribution rate of soil fertility to the highest yield was 37.9%, and the rest 62.1% came from fertilizer applications. The yield effects of the chemical fertilizers were in the order of N>P>K and were increased by application of manure.Balanced fertilization with multielement chemical fertilizers and manure can be effective in maintaining growth in agricultural production. Combined application of chemical fertilizer and organic manure also increased the content of soil organic matter.
基金Supported by Science and Technology Project for Food Production(2011BAD16B15)"11th Five-Year Plan"National Science and Technology Support Program(2008-BADA4B07)Sino-International Plant Nutrition Research Institute(IPNI)Cooperation Project(NMBF-HenanAU-2008)~~
文摘[Objective] This study aimed to achieve high yield and stable yield of win- ter wheat-summer maize rotation system and provide basis for rational application of nitrogen fertilizer. [Method] Effects of continuous nitrogen application on grain yield, economic profit, nitrogen uptake and utilization efficiency, and soil inorganic nitrogen accumulation in winter wheat-summer maize rotation system were investigated. [Re- sult] Nitrogen application could significantly increase the y(eld of the winter wheat- summer maize rotation system, which increased by 17.76%-30.32% and 22.24%- 46.63% in two rotation cycles, respectively. The yield of the winter wheat-summer maize rotation system was the maximum in two rotation cycles with nitrogen appli- cation amount of 660.0 kg/hm2, which reached respectively 23 391.19 and 23 444.35 kg/hm2, the yield and economic benefit were the highest, the nitrogen fertilizer use efficiency was 22.2% and 30.7%, the agronomic efficiency was 8.3 and 11.3 kg/kg. However, the nitrogen fertilizer use efficiency and agronomic efficiency between ni- trogen application amount of 540.0 and 660.0 kg/hm2 showed no significant differ- ence. After two rotation cycles, inorganic nitrogen accumulation in 0-40 cm soil with nitrogen application amount of 540.0 kg/hm2 was almost equal to that before experi- ment. [Conclusion] Under the experimental conditions, comprehensively considering the grain yield, economic profit, nitrogen fertilizer efficiency and soil inorganic nitro- gen balance, the optimal nitrogen application amount was 625.3-660.0 kg/hm2 in high-yield winter wheat-summer maize rotation system.
基金Project supported by the National Natural Science Foundation of China (Nos. 40571071, 30390080 and 30370287)the Program for Changjiang Scholars and Innovative Research Team in University (No. IRT0511).
文摘A field experiment was conducted to investigate the fate of ^15N-labeled urea and its residual effect under the winter wheat (Triticum aestivum L.) and summer maize (Zea mays L.) rotation system on the North China Plain. Compared to a conventional application rate of 360 kg N ha^-1 (N360), a reduced rate of 120 kg N ha^-1 (N120) led to a significant increase (P 〈 0.05) in wheat yield and no significant differences were found for maize. However, in the 0-100 cm soil profile at harvest, compared with N360, N120 led to significant decreases (P 〈 0.05) of percent residual N and percent unaccounted-for N, which possibly reflected losses from the managed system. Of the residual fertilizer N in the soil profile, 25.6%-44.7% and 20.7%-38.2% for N120 and N360, respectively, were in the organic N pool, whereas 0.3%-3.0% and 11.2%-24.4%, correspondingly, were in the nitrate pool, indicating a higher potential for leaching loss associated with application at the conventional rate. Recovery of residual N in the soil profile by succeeding crops was less than 7.5% of the applied N. For N120, total soil N balance was negative; however, there was still considerable mineral N (NH4^+-N and NO3^--N) in the soil profile after harvest. Therefore, N120 could be considered ngronomically acceptable in the short run, but for long-term sustainability, the N rate should be recommended based on a soil mineral N test and a plant tissue nitrate test to maintain the soil fertility.
基金supported by the Special Fund for Agro-scientific Research in the Public Interest (201503125, 201503105)the Chinese National High Technology Research and Development Program (2011AA100504)
文摘Limited water resources often result in reduced crop yield and low water productivity(WP). In northwestern China, crop production is generally dependent on precipitation. Therefore, a variety of agricultural rainwater harvesting(ARH) techniques have been used for conserving soil moisture, ameliorating soil environment, increasing crop yield, and improving water use efficiency. A two-year(2013–2015) field experiment was conducted under a typical sub-humid drought-prone climate in Yangling(108°24′E, 34°20′N; 521 m a.s.l.), Shaanxi Province, China, to explore the effects of mulching(same for summer maize and winter wheat) on soil moisture, soil temperature, crop water consumption, and crop yield with a winter wheat/summer maize rotation. Crops were planted in a ridge-furrow pattern and the treatments consisted of a transparent film mulch over the ridges(M1), a crop straw mulch in the furrows(M2), a transparent film mulch over the ridges and a crop straw mulch in the furrows(M3), a black film mulch over the ridges and a crop straw mulch in the furrows(M4), and a control with no mulch(CK). Results showed that M4 was the best treatment for improving soil water storage and content, and decreasing crop water consumption during the summer maize and winter wheat rotation. In both maize and wheat seasons, M1 had a higher soil temperature than M2 and CK, and M3 had a higher soil temperature than M4. In the maize seasons, M4 had the highest yield, WP, and precipitation productivity(PP), with the average values for these parameters increasing by 30.9%, 39.0%, and 31.0%, respectively, compared to those in CK. In the wheat seasons, however, M3 had the highest yield, WP, and PP, with the average values for these parameters being 23.7%, 26.7%, and 23.8% higher, respectively, than those in CK. Annual yield(maize and wheat yields combined) and WP did not differ significantly between M3 and M4. These results suggested that M3 and M4 may thus be the optimal ARH practices for the production of winter wheat and summer maize, respectively, in arid and semi-arid areas.
基金The National Key Research and Development Program of China(2016YFD0300108,2016YFD0300208-02)the National Natural Science Foundation of China(31671638)+1 种基金the China Agriculture Research System(CARS-01-04A)the Special Fund for Agro-scientific Research in the Public Interest(201203096)partly supported this study
文摘To evaluate the effects of various rotation systems on rice grain yield and N use efficiency, a paddy–upland cropping experiment(2013–2016) was conducted in southeastern China. The experiment was designed using six different rice––winter crop rotations: rice–fallow(RF),rice–wheat(RW), rice–potato with rice straw mulch(RP), rice–green manure(Chinese milk vetch; RC–G), rice–oilseed rape(RO), and rice–green manure crop(oilseed rape with fresh straw incorporated into soil at flowering; RO–G) and three N rates, N0(0 kg N ha-1), N1(142.5 kg N ha-1), and N2(202.5 kg N ha-1). Average rice yields in the RF(5.93 t ha-1) rotation were significantly lower than those in the rotations with winter crops(7.20–7.48 t ha-1)under the N0 treatment, suggesting that incorporation of straw might be more effective for increasing soil N than winter fallow. The rice yield differences among the rotations varied by year with the N input. In general, the grain yields in the RP and RO–G rotations –were respectively 11.6–28.5% and 14.80–37.19% higher than those in the RF in plots with N applied. Increasing the N rate may have tended to minimize the average yield gap between the RF and the other rotations; the yield gaps were 18.55%, 4.14%, and 0.23% in N0, N1, and N2, respectively. However, the N recovery efficiency in the RF was significantly lower than that in other rotations, except for 2015 under both N1 and N2 rates, a finding that implies a large amount of chemical N loss. No significant differences in nitrogen agronomic efficiency(NAE) and physiological efficiency(NPE) were found between the rotations with legume(RC–G) and non–legume(RO and RW) winter crops, a result that may be due partly to straw incorporation. For this reason, we concluded that the return of straw could reduce differences in N use efficiency between rotations with and without legume crops. The degree of synchrony between the crop N demand and the N supply was evaluated by comparison of nitrogen balance degree(NBD) values. The NBD values in the RP and RW were significantly lower than those in the other rotations under both N1 and N2 rates. Thus,in view of the higher grain yield in the RP compared to the RW under the N1 rate, the RP rotation might be a promising practice with comparable grain yield and greater N use efficiency under reduced N input relative to the other rotations. The primary yield components of the RF and RP were identified as number of panicles m-2 and numbers of kernels panicle-1, respectively. The NAE and NPE were positively correlated with harvest index, possibly providing a useful indicator for evaluating N use efficiency.
基金funded by the National Natural Science Foundation of China (41471285)the Agricultural Science and Technology Innovation Program (ASTIP) of Chinese Academy of Agricultural Sciences (CAAS-ASTIP-2016AII)+2 种基金the Key Laboratory of Nonpoint Source Pollution Control,Ministry of Agriculture,China (2014-37)the Newton Fund,United Kingdom (BB/N013484/1)the National Key Research and Development Program of China (2016YFD0200601)
文摘Crop modelling can facilitate researchers' ability to understand and interpret experimental results, and to diagnose yield gaps. In this paper, the Decision Support Systems for Agrotechnology Transfer 4.6 (DSSAT) model together with the CENTURT soil model were employed to investigate the effect of low nitrogen (N) input on wheat (Triticum aestivum L.) yield, grain N concentration and soil organic carbon (SOC) in a long-term experiment (19 years) under a wheat-maize (Zea mays L.) rotation at Changping, Beijing, China. There were two treatments including NO (no N application) and N150 (150 kg N ha-1) before wheat and maize planting, with phosphorus (P) and potassium (K) basal fertilizers applied as 75 kg P205 ha-1 and 37.5 kg K^O ha-~, respectively. The DSSAT-CENTURY model was able to satisfactorily simulate measured wheat grain yield and grain N concentration at NO, but could not simulate these parameters at N150, or SOC in either N treatment, Model simulation and field measurement showed that N application (N150) increased wheat yield compared to no N application (NO). The results indicated that inorganic fertilizer application at the rates used did not maintain crop yield and SOC levels. It is suggested that if the DSSAT is calibrated carefully, it can be a useful tool for assessing and predicting wheat yield, grain N concentration, and SOC trends under wheat-maize cropping systems.
文摘Five-year trials (2011-2015) were accomplished in a continuous field experiment conducted at the Production and Research Station in Balcyny. The experiment was set up on a luvisol medium soil, derived from light loam with the objective of evaluating the response of two winter triticale varieties (Pigmej and Cyrkon) to cultivation without protection (O), chemical weed control (H) and combined protection against weeds and fungi (HF). Comparisons were made in two crop sequence systems: cultivation of winter triticale varieties in a 6-field crop rotation and cultivation in a 19-23-year-long monoculture. The results showed that the plant sequence system significantly differentiated the response of winter triticale varieties to the applied levels of field protection. Significantly higher grain yield gains of the winter triticale varieties in response to the application of herbicides or herbicides with fungicides were obtained in the monoculture than in the crop rotation. In the crop rotation, a higher increase in yields induced by the applied plant protection treatments was achieved by the variety Cyrkon. In the monoculture, the response of both varieties to the herbicides applied was nearly identical, while the combined application of herbicides and fungicides raised the yields of var. Pigmej higher than those of var. Cyrkon. Overall for the plant protection levels, var. Cyrkon yielded higher than var. Pigmej by 18.1% more in the crop rotation and by 26.9% in the monoculture. At the same time, var. Cyrkon demonstrated a weaker response to being grown in the monoculture than var. Pigmej did. The average yield of the former was reduced by 21.1%, whereas the latter yielded 26.6% less grain.
基金the Key R&D projects in Hebei Province(Grant No.20326407D)National Key Research and Development Project(Grant No.2017YFD0300906)National Science and Technology Support Project(Grant No.2012BAD04B06).
文摘Winter wheat and summer maize were planted from 2015-2017 to study the effects of different rotational tillage patterns on soil physicochemical properties,crop yield,water content,and fertilizer utilization.The tillage treatments were designed as wheat subsoiling-maize no tillage(WS-MN),wheat rotary tillage-maize subsoiling(WR-MS),wheat subsoiling-maize subsoiling(WS-MS),and conventional wheat rotary tillage-maize no tillage(WR-MN)as a control.Among the four treatments,WS-MN and WR-MS were single-season subsoiling treatments,and WS-MS was a two-season subsoiling treatment.The average soil bulk density decreased by 7.6%in the single-and double-season subsoiling groups compared to the WR-MN group,and the total porosity and noncapillary porosity increased by 10.7%and 12.2%,respectively.Single-or double-season subsoiling treatment was not conducive to water storage in the 0-20 cm soil layer but increased the water content of the 20-140 cm soil layer,and the average soil water content of the 0-140 cm layer was increased by 11.6%in the two-growing season treatment groups compared with the WR-MN group.In WS-MS and WS-MN groups compared with the WR-MN group,the soil ammonium nitrogen content was increased by an average of 18.6%in 0-20 cm soil and 16.8%in 20-100 cm soil;soil nitrate-nitrogen content was decreased by 13.5%in 0-100 cm soil;total organic carbon and microbial carbon contents in the 15-30 cm soil were increased by 18.1%and 12.7%,respectively;and soil urease,catalase,and alkaline phosphatase activities were increased by 46.1%,15.2%,and 23.1%,respectively.Annual crop yield and water use efficiency increased by 8.9%and 15.0%,respectively,in both the single-and double-season subsoiling treatment groups.This study demonstrated the advantages of subsoiling tillage and suggested that it is suitable for crop cultivation in the Haihe Plain,China.