Introduction: Enterobacteriaceae causing urinary tract infections (UTI) have developed resistance to the commonly used antibiotics due to emergence of Extended Spectrum Beta-Lactamases (ESBLs) and Carbapenamase produc...Introduction: Enterobacteriaceae causing urinary tract infections (UTI) have developed resistance to the commonly used antibiotics due to emergence of Extended Spectrum Beta-Lactamases (ESBLs) and Carbapenamase producing Enterobactericeae which are a public health problem worldwide. This study aims to determine the prevalence and characterize ESBLs and carbapenamase producing Enterobactericeae. Method: A cross-sectional study was carried out in Gertrude’s Children’s Hospital, Nairobi. 238 urine samples were collected from patients with urinary symptoms attending the outpatient department within the period 2020-2021. The urine were examined macroscopically and microscopically. Identification and antimicrobial susceptibility testing were done using VITEK® 2 Compact system (BioMérieux). Double disc synergy test and modified hodge tests were done as confirmatory tests for ESBLs and Carbapenamase phenotypes respectively. Polymerase Chain Reaction was used for the detection of blaCTX-M, blaTEM, blaSHV, blaKPC and blaOXA-48 genes. Results: From the 238 children sampled the prevalence of UTI caused by Enterobactericeae was 22.3%. The Enterobacteriaceae species isolated were Escherichia coli (84.9%), Klebsiella pneumoniae (5.66%), Proteus mirabillis (5.66%), Enterobacter aerogenes (1.89%) and Morganella morganii (1.89%). The isolated species were resistant to ampicillin. Meropenem had the highest susceptibility. Only E. coli species had the ESBLs (26.4%) and carbapenamase (1.9%) phenotypes. 100% had BlaCTX-M while 50% had blaTEM resistant gene. There was a significant association (p Conclusion: Ampicillin resistance resulted to use of alternative drugs and Meropenem was the drug of choice where increased resistance to the recommended drugs was noted. Further research on resistant genes is recommended.展开更多
Background: Recently micro-organisms that synthesize extended-spectrum β-lactamase (ESBLs) were increased. The peculiarities of ESBL synthesis of Escherichia coli and Klebsiella pneumoniae strains that cause nosocomi...Background: Recently micro-organisms that synthesize extended-spectrum β-lactamase (ESBLs) were increased. The peculiarities of ESBL synthesis of Escherichia coli and Klebsiella pneumoniae strains that cause nosocomial urinary tract infections, surgical site infections and pneumonia in surgical clinic were studied. ESBL synthesis were observed 38.9% of E. coli strains obtained from urine, 92.3% of strains obtained from surgical site infections, and 50% of strains obtained from sputum. ESBL synthesis were observed 37.5% of K. pneumoniae strains obtained from urine, 85.7% of strains obtained from surgical site infections, and 60% of strains obtained from sputum. Different levels of ESBL synthesize of E. coli and K. pneumoniae strains isolated from different pattern is discussed. Conclusion. ESBL synthesis is common in E. coli and K. pneumoniae strains, which cause nosocomial infections. The frequency of occurrence of ESBL s synthesis among of these strains depends on clinical forms of nosocomial infections.展开更多
Background: Urinary tract infection (UTI) is a bacterial infection affecting males and females but is more prevalent in expectant women. ESBLs are bacteria with enzymes that make them resistant to many antibiotics, po...Background: Urinary tract infection (UTI) is a bacterial infection affecting males and females but is more prevalent in expectant women. ESBLs are bacteria with enzymes that make them resistant to many antibiotics, posing a significant health challenge. This study aims to determine the characteristics of ESBL-producing bacteria causing UTIs in expectant women. Methodology: A self-administered survey was carried out;300 expectant women were recruited using a random sampling method. A questionnaire was used to collect socio-demographic information. Urine samples were collected in sterile universal bottles and processed at the JKUAT Zoology laboratory. Urine samples were analyzed using urinalysis, microscopy, culture, and sensitivity testing. ESBL-producing bacteria were identified phenotypically using the double-disc synergy test (DDST) and genotyped for specific resistant genes using PCR. Results: UTI prevalence was 32.7% (98/300). UTI was significantly associated with the history of previous UTI (OR = 0.84, p = 0.02) and multigravida (OR = 0.14 p = 0.01). UTI was common in women aged between 28-37 years in their second trimester. Bacteria isolated were E. coli 57.1% (56/98), S. aureus 21.4% (21/98) K. pneumonia 11.2% (11/98) and Proteus spp 10.4% (10/98). Bacteria antibiotic resistance patterns were E. coli-tetracycline (91.1%), sulfamethoxazole (55.4%), cefotaxime (53.4%) and augmentin (53.4%). S. aureus-sulfamethozaxole (100%) and augmentin (71.4%), K. pneumoniae-sulfame-thoxazole (72.2%) cefotaxime (63.6%), chloramphenicol and tetracycline (54.5%). Proteus spp: tetracycline (100%), nitrofurantoin (90%), cefotaxime and chloramphenicol (50%). The proportion of ESBLs bacterial producers was 37.6% (29/77) and 44.8% (13/29) possessed ESBLs resistant genes;Bla CTX-M 53.8% (7/13), Bla SHV and Bla TEM 23.1% (3/13) each, Bla OXA (0%) was not detected. Conclusion: The study revealed a high proportion of ESBLs producing bacteria responsible for UTI in expectant women. ESBLs screening, routine culture and sensitivity testing will guide on proper management and empirical treatment of UTI patients thus reducing multi-drug resistance.展开更多
Background and Objectives: Mitigation of antibiotic resistant Neisseria gonorrhoeae has become a priority due to considerable health and economical disabilities it generates. In order to tackle the emergence of resist...Background and Objectives: Mitigation of antibiotic resistant Neisseria gonorrhoeae has become a priority due to considerable health and economical disabilities it generates. In order to tackle the emergence of resistant Neisseria gonorrhoeae, this study aimed to determine the prevalence and risk factors of penicillinase type β-lactamase-producing Neisseria gonorrheae among patients consulting for genital infectious disorders in two health-facilities in Yaounde, Cameroon. Materials and Method: A cross-sectional descriptive and analytical study was conducted over a 3-month period, from July 2<sup>nd</sup> to October 2<sup>nd</sup>, 2022. Vaginal and urethral secretions were collected. Biochemical identification tests were performed on colonies grown on chocolate agar + polyvitex using the Api NH gallery. The detection of penicillinases was equally performed using the API NH gallery and confirmed using the antimicrobial susceptibility testing. The Minimum Inhibitory Concentrations of some antibiotics were determined using the E-Test. Results: The results showed that out of the 198 patients sampled, 16 (8.08%) were positive for Neisseria gonorrhoeae, among which 13/16 (81.25%) were penicillinase-type β-lactamase producers. Antimicrobial susceptibility testing results showed high co-resistances to antibiotics, mainly ciprofloxacin (100%), nalidixic acid (92.31%) and azithromycin (84.62%). Moreover, high Minimum Inhibitory Concentrations of ceftriaxone (ranging from 6 to 24 mg/L) was observed toward Neisseria gonorrhoeae isolates. The risk factors of the carriage of penicillinase-type β-lactamase producing Neisseria gonorrhoeae identified were: a history of Sexually Transmitted infections (p = 0.01) and unprotected sexual intercourse (p = 0.01). Conclusion: The emergence of penicillinase-type β-lactamase producing Neisseria gonorrhoeae is increasing and the situation is becoming worrisome. The identified risk factors can constitute a basic outlook to tackle resistant Neisseria gonorrhoeae, and therefore sustain antibiotic stewardship.展开更多
Objective: Increasing the emergence of Metallo-β-lactamase (MBL) producing gram-negative bacteria and their dexterous horizontal transmission demands rapid and accurate detection. This study was conducted to determin...Objective: Increasing the emergence of Metallo-β-lactamase (MBL) producing gram-negative bacteria and their dexterous horizontal transmission demands rapid and accurate detection. This study was conducted to determine a suitable method to promptly detect MBL-producing gram-negative bacteria. Methods: A total of 103 gram-negative bacteria were identified from various clinical samples at a tertiary care hospital in Dhaka city. MBL producers were detected by two phenotypic methods, the Disk Potentiation Test (DPT) and the Double Disk Synergy Test (DDST) based on β-lactam chelator combinations where EDTA/SMA has been used as an inhibitor and Imipenem, Ceftazidime as substrates. Results: 103 isolates which were identified as Escherichia coli spp, Klebsiella spp, Pseudomonas spp, Acinetobacter spp, Proteus spp, Providencia spp were found to be multidrug-resistant in antibiogram test. Isolates showed complete resistance (100%) to Imipenem, Meropenem, and Amoxiclav. The highest carbapenem-resistant etiological agents were Acinetobacter spp 40 (38.8%) followed by Pseudomonas spp 27 (26.2%), Klebsiella spp 26 (25.2%), Escherichia coli 8 (7.8%), Proteus spp 1 (1%) and Providencia spp 1 (1%). DPT method detected significantly (p = 0.000009) a higher number of MBL-producers (Imipenem with 0.5 M EDTA n = 61, 59.2% & Ceftazidime with 0.5 M EDTA n = 56, 54.4%) compared to the DDST method (Imipenem -0.5 M EDTA n = 43, 41.7%, Imipenem – SMA n = 38, 36.9% & Ceftazidime -0.5 M EDTA n = 15, 14.6%). Conclusion: Pieces of evidence suggest that DPT is a more sensitive method than DDST and could be recommended for identifying MBL-producing bacteria in Bangladeshi hospitals for the proper management of patients, to reduce time constraints and treatment costs.展开更多
文摘Introduction: Enterobacteriaceae causing urinary tract infections (UTI) have developed resistance to the commonly used antibiotics due to emergence of Extended Spectrum Beta-Lactamases (ESBLs) and Carbapenamase producing Enterobactericeae which are a public health problem worldwide. This study aims to determine the prevalence and characterize ESBLs and carbapenamase producing Enterobactericeae. Method: A cross-sectional study was carried out in Gertrude’s Children’s Hospital, Nairobi. 238 urine samples were collected from patients with urinary symptoms attending the outpatient department within the period 2020-2021. The urine were examined macroscopically and microscopically. Identification and antimicrobial susceptibility testing were done using VITEK® 2 Compact system (BioMérieux). Double disc synergy test and modified hodge tests were done as confirmatory tests for ESBLs and Carbapenamase phenotypes respectively. Polymerase Chain Reaction was used for the detection of blaCTX-M, blaTEM, blaSHV, blaKPC and blaOXA-48 genes. Results: From the 238 children sampled the prevalence of UTI caused by Enterobactericeae was 22.3%. The Enterobacteriaceae species isolated were Escherichia coli (84.9%), Klebsiella pneumoniae (5.66%), Proteus mirabillis (5.66%), Enterobacter aerogenes (1.89%) and Morganella morganii (1.89%). The isolated species were resistant to ampicillin. Meropenem had the highest susceptibility. Only E. coli species had the ESBLs (26.4%) and carbapenamase (1.9%) phenotypes. 100% had BlaCTX-M while 50% had blaTEM resistant gene. There was a significant association (p Conclusion: Ampicillin resistance resulted to use of alternative drugs and Meropenem was the drug of choice where increased resistance to the recommended drugs was noted. Further research on resistant genes is recommended.
文摘Background: Recently micro-organisms that synthesize extended-spectrum β-lactamase (ESBLs) were increased. The peculiarities of ESBL synthesis of Escherichia coli and Klebsiella pneumoniae strains that cause nosocomial urinary tract infections, surgical site infections and pneumonia in surgical clinic were studied. ESBL synthesis were observed 38.9% of E. coli strains obtained from urine, 92.3% of strains obtained from surgical site infections, and 50% of strains obtained from sputum. ESBL synthesis were observed 37.5% of K. pneumoniae strains obtained from urine, 85.7% of strains obtained from surgical site infections, and 60% of strains obtained from sputum. Different levels of ESBL synthesize of E. coli and K. pneumoniae strains isolated from different pattern is discussed. Conclusion. ESBL synthesis is common in E. coli and K. pneumoniae strains, which cause nosocomial infections. The frequency of occurrence of ESBL s synthesis among of these strains depends on clinical forms of nosocomial infections.
文摘Background: Urinary tract infection (UTI) is a bacterial infection affecting males and females but is more prevalent in expectant women. ESBLs are bacteria with enzymes that make them resistant to many antibiotics, posing a significant health challenge. This study aims to determine the characteristics of ESBL-producing bacteria causing UTIs in expectant women. Methodology: A self-administered survey was carried out;300 expectant women were recruited using a random sampling method. A questionnaire was used to collect socio-demographic information. Urine samples were collected in sterile universal bottles and processed at the JKUAT Zoology laboratory. Urine samples were analyzed using urinalysis, microscopy, culture, and sensitivity testing. ESBL-producing bacteria were identified phenotypically using the double-disc synergy test (DDST) and genotyped for specific resistant genes using PCR. Results: UTI prevalence was 32.7% (98/300). UTI was significantly associated with the history of previous UTI (OR = 0.84, p = 0.02) and multigravida (OR = 0.14 p = 0.01). UTI was common in women aged between 28-37 years in their second trimester. Bacteria isolated were E. coli 57.1% (56/98), S. aureus 21.4% (21/98) K. pneumonia 11.2% (11/98) and Proteus spp 10.4% (10/98). Bacteria antibiotic resistance patterns were E. coli-tetracycline (91.1%), sulfamethoxazole (55.4%), cefotaxime (53.4%) and augmentin (53.4%). S. aureus-sulfamethozaxole (100%) and augmentin (71.4%), K. pneumoniae-sulfame-thoxazole (72.2%) cefotaxime (63.6%), chloramphenicol and tetracycline (54.5%). Proteus spp: tetracycline (100%), nitrofurantoin (90%), cefotaxime and chloramphenicol (50%). The proportion of ESBLs bacterial producers was 37.6% (29/77) and 44.8% (13/29) possessed ESBLs resistant genes;Bla CTX-M 53.8% (7/13), Bla SHV and Bla TEM 23.1% (3/13) each, Bla OXA (0%) was not detected. Conclusion: The study revealed a high proportion of ESBLs producing bacteria responsible for UTI in expectant women. ESBLs screening, routine culture and sensitivity testing will guide on proper management and empirical treatment of UTI patients thus reducing multi-drug resistance.
文摘Background and Objectives: Mitigation of antibiotic resistant Neisseria gonorrhoeae has become a priority due to considerable health and economical disabilities it generates. In order to tackle the emergence of resistant Neisseria gonorrhoeae, this study aimed to determine the prevalence and risk factors of penicillinase type β-lactamase-producing Neisseria gonorrheae among patients consulting for genital infectious disorders in two health-facilities in Yaounde, Cameroon. Materials and Method: A cross-sectional descriptive and analytical study was conducted over a 3-month period, from July 2<sup>nd</sup> to October 2<sup>nd</sup>, 2022. Vaginal and urethral secretions were collected. Biochemical identification tests were performed on colonies grown on chocolate agar + polyvitex using the Api NH gallery. The detection of penicillinases was equally performed using the API NH gallery and confirmed using the antimicrobial susceptibility testing. The Minimum Inhibitory Concentrations of some antibiotics were determined using the E-Test. Results: The results showed that out of the 198 patients sampled, 16 (8.08%) were positive for Neisseria gonorrhoeae, among which 13/16 (81.25%) were penicillinase-type β-lactamase producers. Antimicrobial susceptibility testing results showed high co-resistances to antibiotics, mainly ciprofloxacin (100%), nalidixic acid (92.31%) and azithromycin (84.62%). Moreover, high Minimum Inhibitory Concentrations of ceftriaxone (ranging from 6 to 24 mg/L) was observed toward Neisseria gonorrhoeae isolates. The risk factors of the carriage of penicillinase-type β-lactamase producing Neisseria gonorrhoeae identified were: a history of Sexually Transmitted infections (p = 0.01) and unprotected sexual intercourse (p = 0.01). Conclusion: The emergence of penicillinase-type β-lactamase producing Neisseria gonorrhoeae is increasing and the situation is becoming worrisome. The identified risk factors can constitute a basic outlook to tackle resistant Neisseria gonorrhoeae, and therefore sustain antibiotic stewardship.
文摘Objective: Increasing the emergence of Metallo-β-lactamase (MBL) producing gram-negative bacteria and their dexterous horizontal transmission demands rapid and accurate detection. This study was conducted to determine a suitable method to promptly detect MBL-producing gram-negative bacteria. Methods: A total of 103 gram-negative bacteria were identified from various clinical samples at a tertiary care hospital in Dhaka city. MBL producers were detected by two phenotypic methods, the Disk Potentiation Test (DPT) and the Double Disk Synergy Test (DDST) based on β-lactam chelator combinations where EDTA/SMA has been used as an inhibitor and Imipenem, Ceftazidime as substrates. Results: 103 isolates which were identified as Escherichia coli spp, Klebsiella spp, Pseudomonas spp, Acinetobacter spp, Proteus spp, Providencia spp were found to be multidrug-resistant in antibiogram test. Isolates showed complete resistance (100%) to Imipenem, Meropenem, and Amoxiclav. The highest carbapenem-resistant etiological agents were Acinetobacter spp 40 (38.8%) followed by Pseudomonas spp 27 (26.2%), Klebsiella spp 26 (25.2%), Escherichia coli 8 (7.8%), Proteus spp 1 (1%) and Providencia spp 1 (1%). DPT method detected significantly (p = 0.000009) a higher number of MBL-producers (Imipenem with 0.5 M EDTA n = 61, 59.2% & Ceftazidime with 0.5 M EDTA n = 56, 54.4%) compared to the DDST method (Imipenem -0.5 M EDTA n = 43, 41.7%, Imipenem – SMA n = 38, 36.9% & Ceftazidime -0.5 M EDTA n = 15, 14.6%). Conclusion: Pieces of evidence suggest that DPT is a more sensitive method than DDST and could be recommended for identifying MBL-producing bacteria in Bangladeshi hospitals for the proper management of patients, to reduce time constraints and treatment costs.