The purpose of this study is to reveal the effects of historic climate change on rice yield over the middle and lower reaches of the Yangtze River, China, and to better adapt to climate change in the future. This stud...The purpose of this study is to reveal the effects of historic climate change on rice yield over the middle and lower reaches of the Yangtze River, China, and to better adapt to climate change in the future. This study presents the relation of temperature and precipitation and rice components from 1981 to 2003 at 48 early rice stations and 30 middle rice stations. It focuses on an analysis of three stages: flowering, pre-milk, and late milk. The results show that mean maximum temperature and mean daily precipitation at the stages of flowering and pre-milk are most related to early rice yield. Yield change of middle rice is mainly because of mean precipitation change at the flowering stage. Furthermore, percentage of undeveloped grain increases as mean maximum temperature rises at the flowering stage. Over-precipitation in the reproductive stage is a major reason for reduction in yield of early rice. Consecutive rainfall and continuous high temperature can have negative effects on middle rice yield. Global warming would affect middle rice more seriously than early rice.展开更多
The QTL qTGW3-1 was located on chromosome 3 of rice (Oryza sativa L.) and associated with the 1 000-grain weight (TGW) according to the result of our earlier study. With the objective of fine mapping of this locus...The QTL qTGW3-1 was located on chromosome 3 of rice (Oryza sativa L.) and associated with the 1 000-grain weight (TGW) according to the result of our earlier study. With the objective of fine mapping of this locus, we developed a F2 population consisting of 3 428 plants derived from the cross between TGW-related near isogenic line DL017 (BC3F4 generation of GSL 156×Nipponbare) and the recurrent parent Nipponbare. Using six microsatellites, this QTL was delimited between RM5477 and RM6417. Markers MM 1455 and MM 1456 within this region were used for further mapping of this QTL. Finally, qTGW3-1 was fine-mapped into a 89-kb interval between RM5477 and MM1456, which locates in the BAC clone AC107226 harboring five putative candidate genes.展开更多
The yield and yield components of Japonica variety Tongjing 981 under different density and fertilization levels were studied through regression and correlation and path analysis. The results showed that the number of...The yield and yield components of Japonica variety Tongjing 981 under different density and fertilization levels were studied through regression and correlation and path analysis. The results showed that the number of panicles per unit area, number of filled grains per panicle and 1 000-grain weight all had very significant yield increasing effects, and the number of panicles per unit area played a leading role. However, the yield increasing effects of the number of panicles per unit area and number of filled grains per panicle are equally important when the basic seedlings are more or the N fertilizer application rate is large. In practical production, a major factor should be determined among the yield components, and rational cultivation measures should be taken accordingly, to improve yield.展开更多
文摘The purpose of this study is to reveal the effects of historic climate change on rice yield over the middle and lower reaches of the Yangtze River, China, and to better adapt to climate change in the future. This study presents the relation of temperature and precipitation and rice components from 1981 to 2003 at 48 early rice stations and 30 middle rice stations. It focuses on an analysis of three stages: flowering, pre-milk, and late milk. The results show that mean maximum temperature and mean daily precipitation at the stages of flowering and pre-milk are most related to early rice yield. Yield change of middle rice is mainly because of mean precipitation change at the flowering stage. Furthermore, percentage of undeveloped grain increases as mean maximum temperature rises at the flowering stage. Over-precipitation in the reproductive stage is a major reason for reduction in yield of early rice. Consecutive rainfall and continuous high temperature can have negative effects on middle rice yield. Global warming would affect middle rice more seriously than early rice.
基金supported by the National Basic Research Program of China (2010CB129504)the National Key Technologies R&D Program of China (2009BADA2B01)the 948 Project of MOA, China (2011-G2B)
文摘The QTL qTGW3-1 was located on chromosome 3 of rice (Oryza sativa L.) and associated with the 1 000-grain weight (TGW) according to the result of our earlier study. With the objective of fine mapping of this locus, we developed a F2 population consisting of 3 428 plants derived from the cross between TGW-related near isogenic line DL017 (BC3F4 generation of GSL 156×Nipponbare) and the recurrent parent Nipponbare. Using six microsatellites, this QTL was delimited between RM5477 and RM6417. Markers MM 1455 and MM 1456 within this region were used for further mapping of this QTL. Finally, qTGW3-1 was fine-mapped into a 89-kb interval between RM5477 and MM1456, which locates in the BAC clone AC107226 harboring five putative candidate genes.
基金Supported by National Spark Program(2013GA690123)Agricultural New Variety Postsubsidy Project of Major Research and Development Programof Jiangsu Province(BE2016398)~~
文摘The yield and yield components of Japonica variety Tongjing 981 under different density and fertilization levels were studied through regression and correlation and path analysis. The results showed that the number of panicles per unit area, number of filled grains per panicle and 1 000-grain weight all had very significant yield increasing effects, and the number of panicles per unit area played a leading role. However, the yield increasing effects of the number of panicles per unit area and number of filled grains per panicle are equally important when the basic seedlings are more or the N fertilizer application rate is large. In practical production, a major factor should be determined among the yield components, and rational cultivation measures should be taken accordingly, to improve yield.