The current research aims to implement the numerical resultsfor the Holling third kind of functional response delay differential modelutilizing a stochastic framework based on Levenberg-Marquardt backpropagationneural...The current research aims to implement the numerical resultsfor the Holling third kind of functional response delay differential modelutilizing a stochastic framework based on Levenberg-Marquardt backpropagationneural networks (LVMBPNNs). The nonlinear model depends uponthree dynamics, prey, predator, and the impact of the recent past. Threedifferent cases based on the delay differential system with the Holling 3^(rd) type of the functional response have been used to solve through the proposedLVMBPNNs solver. The statistic computing framework is provided byselecting 12%, 11%, and 77% for training, testing, and verification. Thirteennumbers of neurons have been used based on the input, hidden, and outputlayers structure for solving the delay differential model with the Holling 3rdtype of functional response. The correctness of the proposed stochastic schemeis observed by using the comparison performances of the proposed and referencedata-based Adam numerical results. The authentication and precision ofthe proposed solver are approved by analyzing the state transitions, regressionperformances, correlation actions, mean square error, and error histograms.展开更多
基金This research received funding support from the NSRF via the Program Management Unit for Human Resources&Institutional Development,Research and Innovation[Grant Number B05F650018].
文摘The current research aims to implement the numerical resultsfor the Holling third kind of functional response delay differential modelutilizing a stochastic framework based on Levenberg-Marquardt backpropagationneural networks (LVMBPNNs). The nonlinear model depends uponthree dynamics, prey, predator, and the impact of the recent past. Threedifferent cases based on the delay differential system with the Holling 3^(rd) type of the functional response have been used to solve through the proposedLVMBPNNs solver. The statistic computing framework is provided byselecting 12%, 11%, and 77% for training, testing, and verification. Thirteennumbers of neurons have been used based on the input, hidden, and outputlayers structure for solving the delay differential model with the Holling 3rdtype of functional response. The correctness of the proposed stochastic schemeis observed by using the comparison performances of the proposed and referencedata-based Adam numerical results. The authentication and precision ofthe proposed solver are approved by analyzing the state transitions, regressionperformances, correlation actions, mean square error, and error histograms.