With an extension of the geological entropy concept in porous media,the approach called directional entrogram is applied to link hydraulic behavior to the anisotropy of the 3D fracture networks.A metric called directi...With an extension of the geological entropy concept in porous media,the approach called directional entrogram is applied to link hydraulic behavior to the anisotropy of the 3D fracture networks.A metric called directional entropic scale is used to measure the anisotropy of spatial order in different directions.Compared with the traditional connectivity indexes based on the statistics of fracture geometry,the directional entropic scale is capable to quantify the anisotropy of connectivity and hydraulic conductivity in heterogeneous 3D fracture networks.According to the numerical analysis of directional entrogram and fluid flow in a number of the 3D fracture networks,the hydraulic conductivities and entropic scales in different directions both increase with spatial order(i.e.,trace length decreasing and spacing increasing)and are independent of the dip angle.As a result,the nonlinear correlation between the hydraulic conductivities and entropic scales from different directions can be unified as quadratic polynomial function,which can shed light on the anisotropic effect of spatial order and global entropy on the heterogeneous hydraulic behaviors.展开更多
Direct air capture(DAC)of CO_(2)plays an indispensable role in achieving carbon-neutral goals as one of the key negative emission technologies.Since large air flows are required to capture the ultradilute CO_(2)from t...Direct air capture(DAC)of CO_(2)plays an indispensable role in achieving carbon-neutral goals as one of the key negative emission technologies.Since large air flows are required to capture the ultradilute CO_(2)from the air,lab-synthesized adsorbents in powder form may cause unacceptable gas pressure drops and poor heat and mass transfer efficiencies.A structured adsorbent is essential for the implementation of gas-solid contactors for cost-and energy-efficient DAC systems.In this study,efficient adsorbent poly(ethyleneimine)(PEI)-functionalized Mg-Al-CO_(3)layered double hydroxide(LDH)-derived mixed metal oxides(MMOs)are three-dimensional(3D)printed into monoliths for the first time with more than 90%adsorbent loadings.The printing process has been optimized by initially printing the LDH powder into monoliths followed by calcination into MMO monoliths.This structure exhibits a 32.7%higher specific surface area and a 46.1%higher pore volume,as compared to the direct printing of the MMO powder into a monolith.After impregnation of PEI,the monolith demonstrates a large adsorption capacity(1.82 mmol/g)and fast kinetics(0.7 mmol/g/h)using a CO_(2)feed gas at 400 ppm at 25℃,one of the highest values among the shaped DAC adsorbents.Smearing of the amino-polymers during the post-printing process affects the diffusion of CO_(2),resulting in slower adsorption kinetics of pre-impregnation monoliths compared to post-impregnation monoliths.The optimal PEI/MeOH ratio for the post-impregnation solution prevents pores clogging that would affect both adsorption capacity and kinetics.展开更多
Three dimensional(3D)echocardiogram enables cardiologists to visua-lize suspicious cardiac structures in detail.In recent years,this three-dimensional echocardiogram carries important clinical value in virtual surgica...Three dimensional(3D)echocardiogram enables cardiologists to visua-lize suspicious cardiac structures in detail.In recent years,this three-dimensional echocardiogram carries important clinical value in virtual surgical simulation.However,this 3D echocardiogram involves a trade-off difficulty between accu-racy and efficient computation in clinical diagnosis.This paper presents a novel Flip Directional 3D Volume Reconstruction(FD-3DVR)method for the recon-struction of echocardiogram images.The proposed method consists of two main steps:multiplanar volumetric imaging and 3D volume reconstruction.In the crea-tion of multiplanar volumetric imaging,two-dimensional(2D)image pixels are mapped into voxels of the volumetric grid.As the obtained slices are discontin-uous,there are some missing voxels in the volume data.To restore the structural and textural information of 3D ultrasound volume,the proposed method creates a volume pyramid in parallel with theflip directional texture pyramid.Initially,the nearest neighbors of missing voxels in the multiplanar volumetric imaging are identified by 3D ANN(Approximate Nearest Neighbor)patch matching method.Furthermore,aflip directional texture pyramid is proposed and aggregated with distance in patch matching tofind out the most similar neighbors.In the recon-struction step,structural and textural information obtained from differentflip angle directions can reconstruct 3D volume well with the desired accuracy.Com-pared with existing 3D reconstruction methods,the proposed Flip Directional 3D Volume Reconstruction(FD-3DVR)method provides superior performance for the mean peak signal-to-noise ratio(40.538 for the proposed method I and 39.626 for the proposed method II).Experimental results performed on the cardi-ac datasets demonstrate the efficiency of the proposed method for the reconstruc-tion of echocardiogram images.展开更多
Helical hierarchy found in biomolecules like cellulose,chitin,and collagen underpins the remarkable mechanical strength and vibrant colors observed in living organisms.This study advances the integration of helical/ch...Helical hierarchy found in biomolecules like cellulose,chitin,and collagen underpins the remarkable mechanical strength and vibrant colors observed in living organisms.This study advances the integration of helical/chiral assembly and 3D printing technology,providing precise spatial control over chiral nano/microstructures of rod-shaped colloidal nanoparticles in intricate geometries.We designed reactive chiral inks based on cellulose nanocrystal(CNC)suspensions and acrylamide monomers,enabling the chiral assembly at nano/microscale,beyond the resolution seen in printed materials.We employed a range of complementary techniques including Orthogonal Superposition rheometry and in situ rheo-optic measurements under steady shear rate conditions.These techniques help us to understand the nature of the nonlinear flow behavior of the chiral inks,and directly probe the flow-induced microstructural dynamics and phase transitions at constant shear rates,as well as their post-flow relaxation.Furthermore,we analyzed the photo-curing process to identify key parameters affecting gelation kinetics and structural integrity of the printed object within the supporting bath.These insights into the interplay between the chiral inks self-assembly dynamics,3D printing flow kinematics and photopolymerization kinetics provide a roadmap to direct the out-of-equilibrium arrangement of CNC particles in the 3D printed filaments,ranging from uniform nematic to 3D concentric chiral structures with controlled pitch length,as well as random orientation of chiral domains.Our biomimetic approach can pave the way for the creation of materials with superior mechanical properties or programable photonic responses that arise from 3D nano/microstructure and can be translated into larger scale 3D printed designs.展开更多
A γ-TiAl alloy with nominal composition of Ti-47%Al(molar fraction) was directionally solidified in an alumina mould with an Y2O3 protective coating.The effects of processing parameters(melting temperature and int...A γ-TiAl alloy with nominal composition of Ti-47%Al(molar fraction) was directionally solidified in an alumina mould with an Y2O3 protective coating.The effects of processing parameters(melting temperature and interaction time) on the metal-coating interface,microstructure and chemical composition of the alloy were evaluated.The result shows that the Y2O3 protective coating exhibits an effective barrier capability to avoid direct contact between the mould base material and the TiAl melt,although the Y2O3 coating is found to suffer some erosion and be slightly dissolved by the molten TiAl due to the coating-metal interactions.The directionally solidified alloys were contaminated with Y and O,and Y2O3 inclusions were dispersed in the metal matrix.The reason for this metal contamination is the Y2O3 coating dissolution by the TiAl melt.One mode of the interaction between Y2O3 and the TiAl melt is dissolution of yttrium and atomic oxygen in the melt by reaction Y2O3(s)=2Y(in TiAl melt)+3O(in TiAl melt).Both the extent of alloy contamination and the volume fractions of Y2O3 inclusions depend on the melting temperature and the interaction time.展开更多
It is vital to choose a factual and reasonable micro-structural model of braided composites for improving the calculating precision of thermal property of 3-D braided composites by finite element method (FEM). On th...It is vital to choose a factual and reasonable micro-structural model of braided composites for improving the calculating precision of thermal property of 3-D braided composites by finite element method (FEM). On the basis of new microstructure model of braided composites proposed recently, the model of FEM calculation for thermal conductivity of 3-dimennsional and 4-directional braided composites is set up in this paper. The curves of coefficient of effective thermal conductivity versus fiber volume ratio and interior braiding angle are obtained. Furthermore, comparing the results of FEM with the available experimental data, the reasonability and veracity of calculation are confirmed at the same time.展开更多
The effect of different amounts of rare earth element yttrium on the microstructure of the directionally solidified (DS) Ni 3Al base alloy IC6 was studied with scanning electron microscope(SEM). The results showed tha...The effect of different amounts of rare earth element yttrium on the microstructure of the directionally solidified (DS) Ni 3Al base alloy IC6 was studied with scanning electron microscope(SEM). The results showed that the microstructure of alloys with addition of 0.04%~0.12%Y had no obvious difference compared with that of IC6 without yttrium, and a bulk shape phase rich in Ni, Mo and Y was formed within large size γ′ phase in interdendritic area in the alloy with 0.20%Y, and the volume of large size γ′ phase in interdendritic area increased when the adding amounts of yttrium increased to 0.3%. The stress rupture properties at 1 100 ℃, 80 MPa were improved by adding 0.04%~0.20%Y. The oxidation resistance and thermal fatigue property of the alloys with different amounts of yttrium were tested at 1 100 ℃. The results showed that the oxidation resistance and thermal fatigue property were substantially improved by adding proper amounts of yttrium.展开更多
Relations of the 3D multi-directional derivatives are studied in this paper. These relations are applied to a geeral second-order linear elliptical operator and the corresponding expression are obtained. These relatio...Relations of the 3D multi-directional derivatives are studied in this paper. These relations are applied to a geeral second-order linear elliptical operator and the corresponding expression are obtained. These relations and expressions play important roles in the meshless finite point method.展开更多
A switchable autostereoscopic 3-dimensional(3D) display device with wide color gamut is introduced in this paper. In conjunction with a novel directional quantum-dot(QD) backlight, the precise scanning control strateg...A switchable autostereoscopic 3-dimensional(3D) display device with wide color gamut is introduced in this paper. In conjunction with a novel directional quantum-dot(QD) backlight, the precise scanning control strategy, and the eye-tracking system, this spatial-sequential solution enables our autostereoscopic display to combine all the advantages of full resolution,wide color gamut, low crosstalk, and switchable 2D/3D. And also, we fabricated an autostereoscopic display prototype and demonstrated its performances effectively. The results indicate that our system can both break the limitation of viewing position and provide high-quality 3D images. We present two working modes in this system. In the spatial-sequential mode,the crosstalk is about 6%. In the time-multiplexed mode, the viewer should wear auxiliary and the crosstalk is about 1%,just next to that of a commercial 3D display(BENQ XL2707-B and View Sonic VX2268 WM). Additionally, our system is also completely compatible with active shutter glasses and its 3D resolution is same as its 2D resolution. Because of the excellent properties of the QD material, the color gamut can be widely extended to 77.98% according to the ITU-R recommendation BT.2020(Rec.2020).展开更多
Stoichiometric (25.0% Al in mole) and hyperstoichiometric (26.5% Al in mole) Ni 3Al alloy can be made ductile by directional solidification in ceramic mould. In the stoichiometric alloy, texture formation varies betwe...Stoichiometric (25.0% Al in mole) and hyperstoichiometric (26.5% Al in mole) Ni 3Al alloy can be made ductile by directional solidification in ceramic mould. In the stoichiometric alloy, texture formation varies between samples and more than 20% plastic elongation can be obtained. In the hyper stoichiometric alloy, strong 〈110〉 texture forms and 12% plastic elongation can be obtained. The high plastic elongation of the directionally solidified alloy is attributed to the suppression of intergranular fracture by reducing the portion of the transverse boundaries. The texture and microstructure formation mechanism were proposed.展开更多
基金supported by the National Natural Science Foundation of China(Nos.42077243,52209148,and 52079062).
文摘With an extension of the geological entropy concept in porous media,the approach called directional entrogram is applied to link hydraulic behavior to the anisotropy of the 3D fracture networks.A metric called directional entropic scale is used to measure the anisotropy of spatial order in different directions.Compared with the traditional connectivity indexes based on the statistics of fracture geometry,the directional entropic scale is capable to quantify the anisotropy of connectivity and hydraulic conductivity in heterogeneous 3D fracture networks.According to the numerical analysis of directional entrogram and fluid flow in a number of the 3D fracture networks,the hydraulic conductivities and entropic scales in different directions both increase with spatial order(i.e.,trace length decreasing and spacing increasing)and are independent of the dip angle.As a result,the nonlinear correlation between the hydraulic conductivities and entropic scales from different directions can be unified as quadratic polynomial function,which can shed light on the anisotropic effect of spatial order and global entropy on the heterogeneous hydraulic behaviors.
基金supported by the Shanghai Agricultural Science and Technology Program (2022-02-08-00-12-F01176)he National Natural Science Foundation of China (52006135)
文摘Direct air capture(DAC)of CO_(2)plays an indispensable role in achieving carbon-neutral goals as one of the key negative emission technologies.Since large air flows are required to capture the ultradilute CO_(2)from the air,lab-synthesized adsorbents in powder form may cause unacceptable gas pressure drops and poor heat and mass transfer efficiencies.A structured adsorbent is essential for the implementation of gas-solid contactors for cost-and energy-efficient DAC systems.In this study,efficient adsorbent poly(ethyleneimine)(PEI)-functionalized Mg-Al-CO_(3)layered double hydroxide(LDH)-derived mixed metal oxides(MMOs)are three-dimensional(3D)printed into monoliths for the first time with more than 90%adsorbent loadings.The printing process has been optimized by initially printing the LDH powder into monoliths followed by calcination into MMO monoliths.This structure exhibits a 32.7%higher specific surface area and a 46.1%higher pore volume,as compared to the direct printing of the MMO powder into a monolith.After impregnation of PEI,the monolith demonstrates a large adsorption capacity(1.82 mmol/g)and fast kinetics(0.7 mmol/g/h)using a CO_(2)feed gas at 400 ppm at 25℃,one of the highest values among the shaped DAC adsorbents.Smearing of the amino-polymers during the post-printing process affects the diffusion of CO_(2),resulting in slower adsorption kinetics of pre-impregnation monoliths compared to post-impregnation monoliths.The optimal PEI/MeOH ratio for the post-impregnation solution prevents pores clogging that would affect both adsorption capacity and kinetics.
文摘Three dimensional(3D)echocardiogram enables cardiologists to visua-lize suspicious cardiac structures in detail.In recent years,this three-dimensional echocardiogram carries important clinical value in virtual surgical simulation.However,this 3D echocardiogram involves a trade-off difficulty between accu-racy and efficient computation in clinical diagnosis.This paper presents a novel Flip Directional 3D Volume Reconstruction(FD-3DVR)method for the recon-struction of echocardiogram images.The proposed method consists of two main steps:multiplanar volumetric imaging and 3D volume reconstruction.In the crea-tion of multiplanar volumetric imaging,two-dimensional(2D)image pixels are mapped into voxels of the volumetric grid.As the obtained slices are discontin-uous,there are some missing voxels in the volume data.To restore the structural and textural information of 3D ultrasound volume,the proposed method creates a volume pyramid in parallel with theflip directional texture pyramid.Initially,the nearest neighbors of missing voxels in the multiplanar volumetric imaging are identified by 3D ANN(Approximate Nearest Neighbor)patch matching method.Furthermore,aflip directional texture pyramid is proposed and aggregated with distance in patch matching tofind out the most similar neighbors.In the recon-struction step,structural and textural information obtained from differentflip angle directions can reconstruct 3D volume well with the desired accuracy.Com-pared with existing 3D reconstruction methods,the proposed Flip Directional 3D Volume Reconstruction(FD-3DVR)method provides superior performance for the mean peak signal-to-noise ratio(40.538 for the proposed method I and 39.626 for the proposed method II).Experimental results performed on the cardi-ac datasets demonstrate the efficiency of the proposed method for the reconstruc-tion of echocardiogram images.
基金National Natural Science Foundation of China(No.52201103)Natural Science Basis Research Plan in Shaanxi Province of China(No.2023JCYB445)Fundamental Research Funds for the Central Universities of CHD(Nos.300102122201,300102122106)。
基金the support from the University of South Carolina
文摘Helical hierarchy found in biomolecules like cellulose,chitin,and collagen underpins the remarkable mechanical strength and vibrant colors observed in living organisms.This study advances the integration of helical/chiral assembly and 3D printing technology,providing precise spatial control over chiral nano/microstructures of rod-shaped colloidal nanoparticles in intricate geometries.We designed reactive chiral inks based on cellulose nanocrystal(CNC)suspensions and acrylamide monomers,enabling the chiral assembly at nano/microscale,beyond the resolution seen in printed materials.We employed a range of complementary techniques including Orthogonal Superposition rheometry and in situ rheo-optic measurements under steady shear rate conditions.These techniques help us to understand the nature of the nonlinear flow behavior of the chiral inks,and directly probe the flow-induced microstructural dynamics and phase transitions at constant shear rates,as well as their post-flow relaxation.Furthermore,we analyzed the photo-curing process to identify key parameters affecting gelation kinetics and structural integrity of the printed object within the supporting bath.These insights into the interplay between the chiral inks self-assembly dynamics,3D printing flow kinematics and photopolymerization kinetics provide a roadmap to direct the out-of-equilibrium arrangement of CNC particles in the 3D printed filaments,ranging from uniform nematic to 3D concentric chiral structures with controlled pitch length,as well as random orientation of chiral domains.Our biomimetic approach can pave the way for the creation of materials with superior mechanical properties or programable photonic responses that arise from 3D nano/microstructure and can be translated into larger scale 3D printed designs.
文摘A γ-TiAl alloy with nominal composition of Ti-47%Al(molar fraction) was directionally solidified in an alumina mould with an Y2O3 protective coating.The effects of processing parameters(melting temperature and interaction time) on the metal-coating interface,microstructure and chemical composition of the alloy were evaluated.The result shows that the Y2O3 protective coating exhibits an effective barrier capability to avoid direct contact between the mould base material and the TiAl melt,although the Y2O3 coating is found to suffer some erosion and be slightly dissolved by the molten TiAl due to the coating-metal interactions.The directionally solidified alloys were contaminated with Y and O,and Y2O3 inclusions were dispersed in the metal matrix.The reason for this metal contamination is the Y2O3 coating dissolution by the TiAl melt.One mode of the interaction between Y2O3 and the TiAl melt is dissolution of yttrium and atomic oxygen in the melt by reaction Y2O3(s)=2Y(in TiAl melt)+3O(in TiAl melt).Both the extent of alloy contamination and the volume fractions of Y2O3 inclusions depend on the melting temperature and the interaction time.
基金Aeronautical Science Foundation of China (04B51045)
文摘It is vital to choose a factual and reasonable micro-structural model of braided composites for improving the calculating precision of thermal property of 3-D braided composites by finite element method (FEM). On the basis of new microstructure model of braided composites proposed recently, the model of FEM calculation for thermal conductivity of 3-dimennsional and 4-directional braided composites is set up in this paper. The curves of coefficient of effective thermal conductivity versus fiber volume ratio and interior braiding angle are obtained. Furthermore, comparing the results of FEM with the available experimental data, the reasonability and veracity of calculation are confirmed at the same time.
文摘The effect of different amounts of rare earth element yttrium on the microstructure of the directionally solidified (DS) Ni 3Al base alloy IC6 was studied with scanning electron microscope(SEM). The results showed that the microstructure of alloys with addition of 0.04%~0.12%Y had no obvious difference compared with that of IC6 without yttrium, and a bulk shape phase rich in Ni, Mo and Y was formed within large size γ′ phase in interdendritic area in the alloy with 0.20%Y, and the volume of large size γ′ phase in interdendritic area increased when the adding amounts of yttrium increased to 0.3%. The stress rupture properties at 1 100 ℃, 80 MPa were improved by adding 0.04%~0.20%Y. The oxidation resistance and thermal fatigue property of the alloys with different amounts of yttrium were tested at 1 100 ℃. The results showed that the oxidation resistance and thermal fatigue property were substantially improved by adding proper amounts of yttrium.
基金Supported by the National Natural Science Foundation of China 1060100910701014+1 种基金10871029)the Foundation of China Academy of Engineering Physics (2007B09008)
文摘Relations of the 3D multi-directional derivatives are studied in this paper. These relations are applied to a geeral second-order linear elliptical operator and the corresponding expression are obtained. These relations and expressions play important roles in the meshless finite point method.
基金Project supported by the National Key R&D Program of China(Grant No.2016YFB0401503)the R&D Plan of Jiangsu Science and Technology Department,China(Grant No.BE2016173)
文摘A switchable autostereoscopic 3-dimensional(3D) display device with wide color gamut is introduced in this paper. In conjunction with a novel directional quantum-dot(QD) backlight, the precise scanning control strategy, and the eye-tracking system, this spatial-sequential solution enables our autostereoscopic display to combine all the advantages of full resolution,wide color gamut, low crosstalk, and switchable 2D/3D. And also, we fabricated an autostereoscopic display prototype and demonstrated its performances effectively. The results indicate that our system can both break the limitation of viewing position and provide high-quality 3D images. We present two working modes in this system. In the spatial-sequential mode,the crosstalk is about 6%. In the time-multiplexed mode, the viewer should wear auxiliary and the crosstalk is about 1%,just next to that of a commercial 3D display(BENQ XL2707-B and View Sonic VX2268 WM). Additionally, our system is also completely compatible with active shutter glasses and its 3D resolution is same as its 2D resolution. Because of the excellent properties of the QD material, the color gamut can be widely extended to 77.98% according to the ITU-R recommendation BT.2020(Rec.2020).
文摘Stoichiometric (25.0% Al in mole) and hyperstoichiometric (26.5% Al in mole) Ni 3Al alloy can be made ductile by directional solidification in ceramic mould. In the stoichiometric alloy, texture formation varies between samples and more than 20% plastic elongation can be obtained. In the hyper stoichiometric alloy, strong 〈110〉 texture forms and 12% plastic elongation can be obtained. The high plastic elongation of the directionally solidified alloy is attributed to the suppression of intergranular fracture by reducing the portion of the transverse boundaries. The texture and microstructure formation mechanism were proposed.