An efficient,economical,and phosgene-free approach was developed for the preparation of l,4-dihydro-2H-3,l-benzoxazin-2-one from 2-aminobenzyl alcohol.In terms of its key features,this reaction uses the cheap and recy...An efficient,economical,and phosgene-free approach was developed for the preparation of l,4-dihydro-2H-3,l-benzoxazin-2-one from 2-aminobenzyl alcohol.In terms of its key features,this reaction uses the cheap and recyclable non-metal selenium as a catalyst instead of the noble metal palladium;carbon monoxide as a carbonylation agent instead of virulent phosgene or one of its derivatives;and oxygen as an oxidant.The selenium-catalyzed oxidative carbonylation reaction of2-aminobenzyl alcohol proceeded efficiently in a single pot in the presence of triethylamine to afford l,4-dihydro-2H-3,l-benzoxazin-2-one in 87%yield.Furthermore,the selenium catalyst was readily recovered and recycled,affording a product yield of 80%after five cycles.展开更多
New cobalt(II) complex, [Co(O<sub>2</sub>C<sub>15</sub>H<sub>11</sub>N<sub>2</sub>S)<sub>2</sub>(OH<sub>2</sub>)<sub>2</sub>]∙2H<s...New cobalt(II) complex, [Co(O<sub>2</sub>C<sub>15</sub>H<sub>11</sub>N<sub>2</sub>S)<sub>2</sub>(OH<sub>2</sub>)<sub>2</sub>]∙2H<sub>2</sub>O (1∙2H<sub>2</sub>O), has been synthesized upon reaction of cobalt chloride hexahydrate (Co(Cl)<sub>2</sub>∙6H<sub>2</sub>O) with 3-methyl-1-Phenyl-4-(2-thienoyl)-pyrazol-5-one (referred as HL) in ethanol at room temperature. Single crystal X-ray diffraction (XRD), spectroscopic methods, and microelemental analyses were used to characterize 1∙2H<sub>2</sub>O. Compound 1∙2H<sub>2</sub>O crystallizes in the orthorhombic crystal system with a Pbca space group and with the cobalt atom being pseudo-octahedral coordinated. The broth microdilution technique was used to screen the free ligand (HL) and the complex (1∙2H<sub>2</sub>O) for antimicrobial activities. HL has a low activity (MIC > 100 μg/mL) on all microorganisms, whereas compound 1∙2H<sub>2</sub>O displayed moderate activity (10 ∙2H<sub>2</sub>O exhibited bactericidal and fungicidal activity respectively on all the bacteria and yeasts tested. These findings reveal that the antimicrobial activity of HL was enhanced upon coordination to Co(II) ion against all microorganisms (bacteria and fungus).展开更多
New cobalt(II) complex, [Co(O<sub>2</sub>C<sub>15</sub>H<sub>11</sub>N<sub>2</sub>S)<sub>2</sub>(OH<sub>2</sub>)<sub>2</sub>]∙2H<s...New cobalt(II) complex, [Co(O<sub>2</sub>C<sub>15</sub>H<sub>11</sub>N<sub>2</sub>S)<sub>2</sub>(OH<sub>2</sub>)<sub>2</sub>]∙2H<sub>2</sub>O (1∙2H<sub>2</sub>O), has been synthesized upon reaction of cobalt chloride hexahydrate (Co(Cl)<sub>2</sub>∙6H<sub>2</sub>O) with 3-methyl-1-Phenyl-4-(2-thienoyl)-pyrazol-5-one (referred as HL) in ethanol at room temperature. Single crystal X-ray diffraction (XRD), spectroscopic methods, and microelemental analyses were used to characterize 1∙2H<sub>2</sub>O. Compound 1∙2H<sub>2</sub>O crystallizes in the orthorhombic crystal system with a Pbca space group and with the cobalt atom being pseudo-octahedral coordinated. The broth microdilution technique was used to screen the free ligand (HL) and the complex (1∙2H<sub>2</sub>O) for antimicrobial activities. HL has a low activity (MIC > 100 μg/mL) on all microorganisms, whereas compound 1∙2H<sub>2</sub>O displayed moderate activity (10 ∙2H<sub>2</sub>O exhibited bactericidal and fungicidal activity respectively on all the bacteria and yeasts tested. These findings reveal that the antimicrobial activity of HL was enhanced upon coordination to Co(II) ion against all microorganisms (bacteria and fungus).展开更多
The title compound has been synthesized by the reaction of 3,3-dimethyl-1-(1H-1,2,4-triazol-1-yl)butan-2-one oxime with 2-chlorobenzyl chloride, and then treated with 65~68% HNO3. Its crystal structure was determin...The title compound has been synthesized by the reaction of 3,3-dimethyl-1-(1H-1,2,4-triazol-1-yl)butan-2-one oxime with 2-chlorobenzyl chloride, and then treated with 65~68% HNO3. Its crystal structure was determined by single-crystal X-ray diffraction. The crystal belongs to the monoclinic system, space group P21/c with a = 14.5481(8), b = 9.3351(5), c = 13.1911(7) , β = 98.9450(10)°, Z = 4, V = 1769.67(17) 3, Mr = 369.81, Dc = 1.388 g/cm3, S = 1.06, μ = 0.247 mm-1, F(000) = 776, the final R = 0.0352 and wR = 0.0960 for 3069 observed reflections (I 2σ(I)). X-ray crystal structure presents the intramolecular N–H…O hydrogen bond. The packing is nearly parallel without π-π stacking interactions between two adjacent phenyl rings and stabilized by Van der Waals force. The preliminary bioassay shows that the title compound possesses fungicidal activity against Gibberella zeae at the dosage of 25 mg/L.展开更多
The title compound trans-4-[(5-(2,4-dichlorophenoxy)-3-methyl- 1-phenyl-1H-pyrazol-4-yl)methyleneamino]- 1,5-dimethyl-2-phenyl-1,2-dihydropyrazol-3-one 3 (C28H23Cl2N5O2, Mr = 532.41) has been synthesized and its...The title compound trans-4-[(5-(2,4-dichlorophenoxy)-3-methyl- 1-phenyl-1H-pyrazol-4-yl)methyleneamino]- 1,5-dimethyl-2-phenyl-1,2-dihydropyrazol-3-one 3 (C28H23Cl2N5O2, Mr = 532.41) has been synthesized and its crystal structure was determined by single-crystal X-ray diffraction analysis. It crystallizes in triclinic, space group P1- with a = 8.9438(4), b = 11.6065(5), c = 14.2215(6)A, α = 112.566(1), β = 92.324(2), γ = 102.91(1)°, V= 1315.65(10) A^3, Z = 2, Dc = 1.344 g/cm^3,μ(MoKa) = 0.282 mm^-1, λ = 0.71073 A, F(000) = 552, the final R = 0.0587 and wR = 0.1578 for 5071 observed reflections (I 〉 2σ(I)). X-ray analysis reveals that the product is a thermodynamically stable trans isomer. Intra- and intermolecular C( 12)-H(12)…O(1) and C(28)-H(28)...O(1)# 1 hydrogen bonds were observed in the title compound.展开更多
An efficient synthesis of symmetrical 2,2-bis(1H-indol-3-yl)-2H-acenaphthen-1-one is achieved via a reaction of acenaphthe-nequinone and indoles catalyzed by solid superacid SO4^2-/TiO2 under solvent-free conditions...An efficient synthesis of symmetrical 2,2-bis(1H-indol-3-yl)-2H-acenaphthen-1-one is achieved via a reaction of acenaphthe-nequinone and indoles catalyzed by solid superacid SO4^2-/TiO2 under solvent-free conditions at room temperature by grinding, which provides an efficient route to the synthesis of symmetrical 2,2-bis(1H-indol-3-yl)-2H-acenaphthen-1-one.This procedure offers several advantages including solvent-free conditions,excellent yields of products,simple work-up as well as reuse of catalysts which makes it a useful and attractive protocol for the synthesis of these compounds.展开更多
2,2'-Bis (4H-3,1-benaoxazin-4-one) (BBON) has been proved to be an effective chain extender for poly (ethylene terephthalate) (PET). In order to study the reaction mechanism and kinetics of chain-extending reactio...2,2'-Bis (4H-3,1-benaoxazin-4-one) (BBON) has been proved to be an effective chain extender for poly (ethylene terephthalate) (PET). In order to study the reaction mechanism and kinetics of chain-extending reaction, beta-bishydroxyethylene terephthalate (BHET) was selected as model compound. The NMR data, IR spectra and number average molecular weight (<(M)over bar (n)>) of the products obtained from the reaction of BBON and BHET verify that BBON is a hydroxyl-reactive extender. The mechanism was discussed. Kinetics data indicate that extending reaction is a second order reaction, and BBON has high reactivity. The activation energy (E(a)) was measured.展开更多
基金supported by the Program for Changjiang Scholars and Innovative Research Team in University(IRT1061)the Program for Innovative Research Team in Science and Technology in University of Henan Province(15IRTSTHN003)+1 种基金the Young Backbone Teachers Training Fund of the Education Department of Henan Province(2013GGJS-059)Henan Normal University(2011-8)
文摘An efficient,economical,and phosgene-free approach was developed for the preparation of l,4-dihydro-2H-3,l-benzoxazin-2-one from 2-aminobenzyl alcohol.In terms of its key features,this reaction uses the cheap and recyclable non-metal selenium as a catalyst instead of the noble metal palladium;carbon monoxide as a carbonylation agent instead of virulent phosgene or one of its derivatives;and oxygen as an oxidant.The selenium-catalyzed oxidative carbonylation reaction of2-aminobenzyl alcohol proceeded efficiently in a single pot in the presence of triethylamine to afford l,4-dihydro-2H-3,l-benzoxazin-2-one in 87%yield.Furthermore,the selenium catalyst was readily recovered and recycled,affording a product yield of 80%after five cycles.
文摘New cobalt(II) complex, [Co(O<sub>2</sub>C<sub>15</sub>H<sub>11</sub>N<sub>2</sub>S)<sub>2</sub>(OH<sub>2</sub>)<sub>2</sub>]∙2H<sub>2</sub>O (1∙2H<sub>2</sub>O), has been synthesized upon reaction of cobalt chloride hexahydrate (Co(Cl)<sub>2</sub>∙6H<sub>2</sub>O) with 3-methyl-1-Phenyl-4-(2-thienoyl)-pyrazol-5-one (referred as HL) in ethanol at room temperature. Single crystal X-ray diffraction (XRD), spectroscopic methods, and microelemental analyses were used to characterize 1∙2H<sub>2</sub>O. Compound 1∙2H<sub>2</sub>O crystallizes in the orthorhombic crystal system with a Pbca space group and with the cobalt atom being pseudo-octahedral coordinated. The broth microdilution technique was used to screen the free ligand (HL) and the complex (1∙2H<sub>2</sub>O) for antimicrobial activities. HL has a low activity (MIC > 100 μg/mL) on all microorganisms, whereas compound 1∙2H<sub>2</sub>O displayed moderate activity (10 ∙2H<sub>2</sub>O exhibited bactericidal and fungicidal activity respectively on all the bacteria and yeasts tested. These findings reveal that the antimicrobial activity of HL was enhanced upon coordination to Co(II) ion against all microorganisms (bacteria and fungus).
文摘New cobalt(II) complex, [Co(O<sub>2</sub>C<sub>15</sub>H<sub>11</sub>N<sub>2</sub>S)<sub>2</sub>(OH<sub>2</sub>)<sub>2</sub>]∙2H<sub>2</sub>O (1∙2H<sub>2</sub>O), has been synthesized upon reaction of cobalt chloride hexahydrate (Co(Cl)<sub>2</sub>∙6H<sub>2</sub>O) with 3-methyl-1-Phenyl-4-(2-thienoyl)-pyrazol-5-one (referred as HL) in ethanol at room temperature. Single crystal X-ray diffraction (XRD), spectroscopic methods, and microelemental analyses were used to characterize 1∙2H<sub>2</sub>O. Compound 1∙2H<sub>2</sub>O crystallizes in the orthorhombic crystal system with a Pbca space group and with the cobalt atom being pseudo-octahedral coordinated. The broth microdilution technique was used to screen the free ligand (HL) and the complex (1∙2H<sub>2</sub>O) for antimicrobial activities. HL has a low activity (MIC > 100 μg/mL) on all microorganisms, whereas compound 1∙2H<sub>2</sub>O displayed moderate activity (10 ∙2H<sub>2</sub>O exhibited bactericidal and fungicidal activity respectively on all the bacteria and yeasts tested. These findings reveal that the antimicrobial activity of HL was enhanced upon coordination to Co(II) ion against all microorganisms (bacteria and fungus).
基金Supported by the Central University Basic Scientific Research Fund of Hunan University (2009)the Key Scientific and Technological Project of Changsha, Hunan Province (No. 0901077-31)
文摘The title compound has been synthesized by the reaction of 3,3-dimethyl-1-(1H-1,2,4-triazol-1-yl)butan-2-one oxime with 2-chlorobenzyl chloride, and then treated with 65~68% HNO3. Its crystal structure was determined by single-crystal X-ray diffraction. The crystal belongs to the monoclinic system, space group P21/c with a = 14.5481(8), b = 9.3351(5), c = 13.1911(7) , β = 98.9450(10)°, Z = 4, V = 1769.67(17) 3, Mr = 369.81, Dc = 1.388 g/cm3, S = 1.06, μ = 0.247 mm-1, F(000) = 776, the final R = 0.0352 and wR = 0.0960 for 3069 observed reflections (I 2σ(I)). X-ray crystal structure presents the intramolecular N–H…O hydrogen bond. The packing is nearly parallel without π-π stacking interactions between two adjacent phenyl rings and stabilized by Van der Waals force. The preliminary bioassay shows that the title compound possesses fungicidal activity against Gibberella zeae at the dosage of 25 mg/L.
基金the Science Research Foundation of Henan Institute of Science and Technology (No. 06036)
文摘The title compound trans-4-[(5-(2,4-dichlorophenoxy)-3-methyl- 1-phenyl-1H-pyrazol-4-yl)methyleneamino]- 1,5-dimethyl-2-phenyl-1,2-dihydropyrazol-3-one 3 (C28H23Cl2N5O2, Mr = 532.41) has been synthesized and its crystal structure was determined by single-crystal X-ray diffraction analysis. It crystallizes in triclinic, space group P1- with a = 8.9438(4), b = 11.6065(5), c = 14.2215(6)A, α = 112.566(1), β = 92.324(2), γ = 102.91(1)°, V= 1315.65(10) A^3, Z = 2, Dc = 1.344 g/cm^3,μ(MoKa) = 0.282 mm^-1, λ = 0.71073 A, F(000) = 552, the final R = 0.0587 and wR = 0.1578 for 5071 observed reflections (I 〉 2σ(I)). X-ray analysis reveals that the product is a thermodynamically stable trans isomer. Intra- and intermolecular C( 12)-H(12)…O(1) and C(28)-H(28)...O(1)# 1 hydrogen bonds were observed in the title compound.
基金supported by the research foundation of Hebei University of Science and Technology
文摘An efficient synthesis of symmetrical 2,2-bis(1H-indol-3-yl)-2H-acenaphthen-1-one is achieved via a reaction of acenaphthe-nequinone and indoles catalyzed by solid superacid SO4^2-/TiO2 under solvent-free conditions at room temperature by grinding, which provides an efficient route to the synthesis of symmetrical 2,2-bis(1H-indol-3-yl)-2H-acenaphthen-1-one.This procedure offers several advantages including solvent-free conditions,excellent yields of products,simple work-up as well as reuse of catalysts which makes it a useful and attractive protocol for the synthesis of these compounds.
文摘2,2'-Bis (4H-3,1-benaoxazin-4-one) (BBON) has been proved to be an effective chain extender for poly (ethylene terephthalate) (PET). In order to study the reaction mechanism and kinetics of chain-extending reaction, beta-bishydroxyethylene terephthalate (BHET) was selected as model compound. The NMR data, IR spectra and number average molecular weight (<(M)over bar (n)>) of the products obtained from the reaction of BBON and BHET verify that BBON is a hydroxyl-reactive extender. The mechanism was discussed. Kinetics data indicate that extending reaction is a second order reaction, and BBON has high reactivity. The activation energy (E(a)) was measured.