AM50-4%(Zn,Y)alloy with a Zn/Y mole ratio of6:1was subjected to thermal analysis,and the results were used for designing a two-step progressive solution treatment process.The effects of solution and aging treatments o...AM50-4%(Zn,Y)alloy with a Zn/Y mole ratio of6:1was subjected to thermal analysis,and the results were used for designing a two-step progressive solution treatment process.The effects of solution and aging treatments on the microstructure and mechanical properties of the AM50-4%(Zn,Y)alloy were investigated using OM,XRD,SEM/EDS,TEM,tensile test and hardness test.The experimental results demonstrated that the two-step progressive solution treatment could make theΦandβphases sufficiently dissolve into the matrix which possessed higher supersaturated degree of the dissolved solute compared with the one-step solution treatment.This resulted in a certain enhancement of the precipitation strengthening effect during the subsequent aging process.The precipitation of theФphase had a greater impact on the comprehensive mechanical properties of the alloy thanβphase precipitation when the aging treatment was performed at180℃.The peak aging strength of the AM50-4%(Zn,Y)alloy which was subjected to the two-step progressive solution treatment process(345℃for16h and375℃for6h)was obtained after the aging treatment at180℃for12h.展开更多
Ca2-xSrxZn4Ti15O36∶Pr red long decay phosphor was synthesized by high temperature solid state reaction. Photoluminescence property and crystalline and unit cell parameters of the orthorhombic were investigated by flu...Ca2-xSrxZn4Ti15O36∶Pr red long decay phosphor was synthesized by high temperature solid state reaction. Photoluminescence property and crystalline and unit cell parameters of the orthorhombic were investigated by fluorescence spectrophotometer and by powder X-ray diffraction, respectively. The emission intensity at 618 nm changes sharply when the concentration of Sr2+ (x) is less than 0.1 and the emission intensity reaches the maximum when x is equal to 0.007. There is an obviously broad excitation band at 270 nm when x is equal to 0.003 and it disappears gradually when x is over 0.01. The unit cell a parameter of Ca2-xSrxZn4Ti15O36∶Pr decreases while c parameter increases with the increases of the concentration of the doped Sr2+. When x is over 0.1 the value of the unit cell parameters a and c become stable. TL peaks of Ca2Zn4Ti15O36∶Pr, Ca1.993Sr0.007Zn4Ti15O36∶0.002Pr3+, 0.002Na+, are located at 62 ℃, 88 ℃, respectively, which indicates that there are deeper traps in Ca1.993Sr0.007Zn4 Ti15O36∶0.002Pr3+, 0.002Na+.展开更多
基金Project (201602548) supported by Liaoning Province Natural Science Foundation,ChinaProject (1711800) supported by Shenyang Science and Technology Plan,China+1 种基金Project (LQGD2017032) supported by Youth Project of Liaoning Education Department,ChinaProjects (51504153,51571145) supported by the National Natural Science Foundation of China
文摘AM50-4%(Zn,Y)alloy with a Zn/Y mole ratio of6:1was subjected to thermal analysis,and the results were used for designing a two-step progressive solution treatment process.The effects of solution and aging treatments on the microstructure and mechanical properties of the AM50-4%(Zn,Y)alloy were investigated using OM,XRD,SEM/EDS,TEM,tensile test and hardness test.The experimental results demonstrated that the two-step progressive solution treatment could make theΦandβphases sufficiently dissolve into the matrix which possessed higher supersaturated degree of the dissolved solute compared with the one-step solution treatment.This resulted in a certain enhancement of the precipitation strengthening effect during the subsequent aging process.The precipitation of theФphase had a greater impact on the comprehensive mechanical properties of the alloy thanβphase precipitation when the aging treatment was performed at180℃.The peak aging strength of the AM50-4%(Zn,Y)alloy which was subjected to the two-step progressive solution treatment process(345℃for16h and375℃for6h)was obtained after the aging treatment at180℃for12h.
文摘Ca2-xSrxZn4Ti15O36∶Pr red long decay phosphor was synthesized by high temperature solid state reaction. Photoluminescence property and crystalline and unit cell parameters of the orthorhombic were investigated by fluorescence spectrophotometer and by powder X-ray diffraction, respectively. The emission intensity at 618 nm changes sharply when the concentration of Sr2+ (x) is less than 0.1 and the emission intensity reaches the maximum when x is equal to 0.007. There is an obviously broad excitation band at 270 nm when x is equal to 0.003 and it disappears gradually when x is over 0.01. The unit cell a parameter of Ca2-xSrxZn4Ti15O36∶Pr decreases while c parameter increases with the increases of the concentration of the doped Sr2+. When x is over 0.1 the value of the unit cell parameters a and c become stable. TL peaks of Ca2Zn4Ti15O36∶Pr, Ca1.993Sr0.007Zn4Ti15O36∶0.002Pr3+, 0.002Na+, are located at 62 ℃, 88 ℃, respectively, which indicates that there are deeper traps in Ca1.993Sr0.007Zn4 Ti15O36∶0.002Pr3+, 0.002Na+.