Although hydrophilic membranes are desired for reducing resistance to water permeation, hydrophilic surfaces are not used in the water-in-oil(W/O) membrane emulsification process because water spreads on the hydrophil...Although hydrophilic membranes are desired for reducing resistance to water permeation, hydrophilic surfaces are not used in the water-in-oil(W/O) membrane emulsification process because water spreads on the hydrophilic surface without forming droplets. Here, we report that a hydrophilic ceramic membrane can form a hydrophobic interface in diesel at a higher temperature;interestingly, the experiments show that the contact angle increases when the temperature rises. The hydrophilic membrane surface evolves into a hydrophobic interface, particularly near the boiling point of water, resulting in a water contact angle of 147.5° ± 1.2°. This work established a method for preparing W/O monodispersed emulsions by direct emulsification of hydrophilic ceramic membranes at a temperature close to the boiling point of water.Additionally, it made high flux of membrane emulsification of monodispersed W/O emulsions possible,which satisfied the industrial requirements of fluidized catalytic cracking in the petrochemical industry.展开更多
Endogenous elicitor, termed cellulase-degraded cell wall (CDW), was prepared from the cell wall of suspension-cultured ginseng (Panax ginseng C.A. Meyer) cells via cellulase degradation. CDW activated the NADPH oxidas...Endogenous elicitor, termed cellulase-degraded cell wall (CDW), was prepared from the cell wall of suspension-cultured ginseng (Panax ginseng C.A. Meyer) cells via cellulase degradation. CDW activated the NADPH oxidase activity of isolated plasma membranes and stimulated in vivo H2O2 generation in ginseng cell suspensions. CDW also increased the activity of phenylalanine ammonia lyase (PAL), expression of a P. ginseng squalene epoxidase (sqe) gene and saponin synthesis. NADPH oxidase inhibitors inhibited both in vitro NADPH oxidase activity and in vivo H2O2 generation. Induction of PAL activity, saponin synthesis and sqe gene expression were all inhibited by such inhibitor treatments and reduced by incubation with catalase and HA scavengers. These data indicate that activation of NADPH oxidase and generation of H2O2 are essential signalling events mediating defence responses induced by the endogenous elicitor(s) present in CDW.展开更多
Both activity and stability of the catalyst can be improved in heterogeneous Fenton reaction,in particular,with no limitation for the working p H and no production of the sludge.In this work,a combination of catalyst ...Both activity and stability of the catalyst can be improved in heterogeneous Fenton reaction,in particular,with no limitation for the working p H and no production of the sludge.In this work,a combination of catalyst Cu_2O and pore-channel-dispersed H_2O_2is proposed to treat the pulp wastewater.Degradation degree of CODs in the wastewater was up to 77%in the ceramic membrane reactor using Cu_2O powder(2.0 g·L^(-1))and membranefeeding H_2O_2(0.8 ml·L^(-1))within 60 min.Evolution of·OH radical formation in the advanced oxidation process was analyzed with a fluorescent method.Utilization efficiency of H_2O_2was successfully enhanced by 10%with the membrane distributor.Further on,the catalyst recyclability was evaluated in a five-cycle test.The concentration of copper ions being dissolved in the treated water was monitored with ICP.After Cu_2O/H_2O_2(membrane)treatment the effluent is qualified to discharge with COD concentration lower than 15 mg·L^(-1)with regard to the national standard GB25467-2010.展开更多
This review compares the different types of membrane processes for air dehumidification.Three main categories of membrane-based dehumidification are identified–membrane contactors using porous membranes with concentr...This review compares the different types of membrane processes for air dehumidification.Three main categories of membrane-based dehumidification are identified–membrane contactors using porous membranes with concentrated liquid desiccants,separative membranes using dense membrane morphology with a pressure gradient to drive the separation of moisture from air,and adsorptive membranes using nanofibrous membranes which adsorb and capture moisture to realise dehumidification.Drawing upon the importance of dehumidification and humidity control for urban sustainability and energy efficacy,this review critically analyses and recognizes the three unique categories of membrane-based air dehumidification technologies.Essentially,the discussion is broken into three sections-one for each category-discriminating in terms of the driving force,membrane structure and properties,and its performance indicators.Readers will notice that despite having the same objective to dehumidify air,the polymers used amongst each category differs to suit the operating requirements and optimize dehumidification performance.At the end of each section,a performance table or summary of dehumidifying membranes in its class is provided.The final section concludes with a comparative review of the three categories on membrane-based air dehumidification technologies and draw inspiration from parallel research to rationalise the potential and innovative use of promising materials in membrane fabrication for air dehumidification.展开更多
The effect of additives CaCl\-2 and CaCl\-2/H\-2O on the properties of polyacrylonitrile(PAN) ultrafiltration(UF) membranes prepared by phase inversion process was studied. The dissolving capacity of the casting solut...The effect of additives CaCl\-2 and CaCl\-2/H\-2O on the properties of polyacrylonitrile(PAN) ultrafiltration(UF) membranes prepared by phase inversion process was studied. The dissolving capacity of the casting solution for CaCl\-2 was enhanced by the addition of H\-2O. The membranes are characterized in terms of the pure water flux and molecular weight cut\|off(MWCO). The addition of CaCl\-2 or CaCl\-2/H\-2O to the casting solution increases the resulting membrane permeability.展开更多
This paper reports that the transmission of O6+ ions with energy of 150keV through capillaries in an uncoated Al2O3 membrane was measured, and agreements with previously reported results in general angular distributi...This paper reports that the transmission of O6+ ions with energy of 150keV through capillaries in an uncoated Al2O3 membrane was measured, and agreements with previously reported results in general angular distribution of the transmitted ions and the transmission fractions as a function of the tilt angle well fitted to Gaussian-like functions were observed. Due tousing an uncoated capillary membrane, our φc is larger than that using a gold-coated one with a smaller value of Ep/q, which suggests a larger equilibrium charge Q∞ in our experiment. The observed special width variation with time and a larger width than that using a smaller Ep/q were qualitatively explained by using mean-field classical transport theory based on a classical-trajectory Monte Carlo simulation.展开更多
In the present study,nano-sized TiO2 /Al2O3 modified PVDF membranes (MM) were fabricated and utilized for anionic polyacrylamide ( APAM) separation. The results showed that,compared with PVDF membrane (OM) ,the contac...In the present study,nano-sized TiO2 /Al2O3 modified PVDF membranes (MM) were fabricated and utilized for anionic polyacrylamide ( APAM) separation. The results showed that,compared with PVDF membrane (OM) ,the contact angle of MM decreases from 83. 64° to 67. 42°,which indicates the increase of the hydrophilicity of MM. The relative flux (RF) decline curve of this ultrafiltration of APAM in water with time shows an obvious two stage properties. The cake filtration models were used to predict the performance of different time over the complete range of filtration times. All the four cake models could simulate this UF process to a certain extent,and the suitability of the two kinds of membranes was: cake filtration > intermediate pore blocking > standard pore blocking > complete pore blocking models. However,they became more and more unsuited to this process with time extending. Surface and cross-sectional morphology of membrane was investigated by SEM to make an advanced certificate of this UF mechanism.展开更多
The CS/PVA/Fe_3O_4 nanocomposite membranes with chainlike arrangement of Fe_3O_4 nanoparticles are prepared by a magnetic-field-assisted solution casting method. The aim of this work is to investigate the relationship...The CS/PVA/Fe_3O_4 nanocomposite membranes with chainlike arrangement of Fe_3O_4 nanoparticles are prepared by a magnetic-field-assisted solution casting method. The aim of this work is to investigate the relationship between the microstructure of the magnetic anisotropic CS/PVA/Fe_3O_4 membrane and the evolved macroscopic physicochemical property. With the same doping content, the relative crystallinity of CS/PVA/Fe_3O_4-M is lower than that of CS/PVA/Fe_3O_4.The Fourier transform infrared spectroscopy(FT-TR) measurements indicate that there is no chemical bonding between polymer molecule and Fe_3O_4 nanoparticle. The Fe_3O_4 nanoparticles in CS/PVA/Fe_3O_4 and CS/PVA/Fe_3O_4-M are wrapped by the chains of CS/PVA, which is also confirmed by scanning electron microscopy(SEM) and x-ray diffraction(XRD)analysis. The saturation magnetization value of CS/PVA/Fe_3O_4-M obviously increases compared with that of non-magnetic aligned membrane, meanwhile the transmittance decreases in the UV-visible region. The o-Ps lifetime distribution provides information about the free-volume nanoholes present in the amorphous region. It is suggested that the microstructure of CS/PVA/Fe_3O_4 membrane can be modified in its curing process under a magnetic field, which could affect the magnetic properties and the transmittance of nanocomposite membrane. In brief, a full understanding of the relationship between the microstructure and the macroscopic property of CS/PVA/Fe_3O_4 nanocomposite plays a vital role in exploring and designing the novel multifunctional materials.展开更多
In plant cells the plasma membrane is a highly elaborated structure that functions as the point of exchange with adjoining cells, cell walls and the external environment. In this study, we investigated the structure a...In plant cells the plasma membrane is a highly elaborated structure that functions as the point of exchange with adjoining cells, cell walls and the external environment. In this study, we investigated the structure and function characteristic of wheat root plasma membrane (PM) as affected by H2O2 and Fe by using fluorescence spectroscopic and attenuated total reflectance infrared (ATR-IR) techniques. The results showed that these oxidant damaged induced an obviously reduced membrane fluidity were observed in the roots PM treated with the 200 μM H2O2, FeSO4, and FeCl3. Computer-aided software analyses of the FTIR spectrum indicated that the content of the α-helices decreased and β-sheet increased in the secondary structures of proteins after exposure to the oxidants of 200 μM H2O2, FeSO4, and FeCl3. The number of P=O and C=C bonds area declined rapidly in the lipids of the membrane under the oxidants stress. These structural alterations might explain the reason of the roots PM instability under most of the abiotic stress.展开更多
To lower the costs of wastewater treatment, the submerged hollow fiber ultrafiltration membrane was employed to reuse the filter backwash water and settling tank sludge water. Experimental study indicates that the sub...To lower the costs of wastewater treatment, the submerged hollow fiber ultrafiltration membrane was employed to reuse the filter backwash water and settling tank sludge water. Experimental study indicates that the submerged hollow fiber uhrafihration membrane can condense the concentration of sludge from 0. 1% -0. 3% to 2.5%. At 20 ℃, the system can operate continuously for 80 clays with daily online backwashing with chemical additions only once, and the membrane flux can be recovered up to 97% by using NaClO and NaOH as chemical additions. The results show that the membrane flux is mainly affected by temperature,and has a positive lin- ear relation to temperature with a slope of 0. 368. After treated by submerged hollow fiber uhrafihration membrane, the effluent can reach the National Standard for Drinking Water( GB5749 -85 ) , especially for the sludge water from sedimentation tanks and the backwashing Water from filters in water supply plants.展开更多
The preparation process of γ-A12O3 nanofiltration membranes were studied by N2 absorption and desorption test and retention rate vs thickness gradient curve method. It was found that template and thermal treatment we...The preparation process of γ-A12O3 nanofiltration membranes were studied by N2 absorption and desorption test and retention rate vs thickness gradient curve method. It was found that template and thermal treatment were key factors for controlling pore size and its distribution. Under the optimized experimental conditions, the BJH (Barret-Joyner-Halenda) desorption average pore diameter, BJH desorption cumulative volume of pores and BET (Brunauer-Emmett-Teller) surface area of obtained membranes were about 3.9 nm, 0.33 cm3/g and 245 m2/g respectively, the pore size distribution was very narrow. Pore size decreased with the increasing of thickness and no evident change after the dense top layer was formed. The optimum thickness can be controlled by retention rate vs thickness gradient curve method.展开更多
Alumina membranes without pinholes and cracks were prepared by the sol-gel process using anunordum aluminium sulphate as the starting material. The effects of different preparing conditions on morphology characteristi...Alumina membranes without pinholes and cracks were prepared by the sol-gel process using anunordum aluminium sulphate as the starting material. The effects of different preparing conditions on morphology characteristics of the membrane were investigated by scanning electron microscopy and 3D rotational microscopy. The preparing conditions include the amounts of drying control chemical additives (DCCA), sintering procedure and sol-gel concentration. The results showed that PVA is a good crack-preventing reagent and the morphology of supported membranes was affected by ninny factors, including Al2O3 concentration, PVA/Al2O3 ratio, heating rate, membrane thickness and intrinsic defects of the substrate surface.展开更多
γ-Al2O3 membranes were successfidly deposited on the top of porous α-Al2O3 support by sol-gel process and characterized by means of XRD , SEM, N2 adsorption and gas permeation. The γ-Al2O3 membranes, free of pin-h...γ-Al2O3 membranes were successfidly deposited on the top of porous α-Al2O3 support by sol-gel process and characterized by means of XRD , SEM, N2 adsorption and gas permeation. The γ-Al2O3 membranes, free of pin-holes and cracks, adhere tightly to the supports and have a thlekness of about 7μm. When sintered at 400 ℃ , γ-Al2O3 membranes have a rutrrow pore size distribution, with a pore diameter of 3.6nm, and the transport of both H2 and CO2 in supported γ-Al2O3 membrane is governed by Knudsen mechanism, with H2 permeance of 3.3× 10^-6 molm^-2Pa^-1s^-1 and H2/ CO2 permselectivity close to the ideal Knudsen value at 50 ℃ . The γ-Al2O3 membranes are suitable for being used as the substrates of microparoas membranes .展开更多
基金the support from the National Key Research and Development Program of China (2021YFB3801303)the National Natural Science Foundation of China (21838005, 21921006)the Key Scientific Research and Development Projects of Jiangsu Province (BE201800901)。
文摘Although hydrophilic membranes are desired for reducing resistance to water permeation, hydrophilic surfaces are not used in the water-in-oil(W/O) membrane emulsification process because water spreads on the hydrophilic surface without forming droplets. Here, we report that a hydrophilic ceramic membrane can form a hydrophobic interface in diesel at a higher temperature;interestingly, the experiments show that the contact angle increases when the temperature rises. The hydrophilic membrane surface evolves into a hydrophobic interface, particularly near the boiling point of water, resulting in a water contact angle of 147.5° ± 1.2°. This work established a method for preparing W/O monodispersed emulsions by direct emulsification of hydrophilic ceramic membranes at a temperature close to the boiling point of water.Additionally, it made high flux of membrane emulsification of monodispersed W/O emulsions possible,which satisfied the industrial requirements of fluidized catalytic cracking in the petrochemical industry.
文摘Endogenous elicitor, termed cellulase-degraded cell wall (CDW), was prepared from the cell wall of suspension-cultured ginseng (Panax ginseng C.A. Meyer) cells via cellulase degradation. CDW activated the NADPH oxidase activity of isolated plasma membranes and stimulated in vivo H2O2 generation in ginseng cell suspensions. CDW also increased the activity of phenylalanine ammonia lyase (PAL), expression of a P. ginseng squalene epoxidase (sqe) gene and saponin synthesis. NADPH oxidase inhibitors inhibited both in vitro NADPH oxidase activity and in vivo H2O2 generation. Induction of PAL activity, saponin synthesis and sqe gene expression were all inhibited by such inhibitor treatments and reduced by incubation with catalase and HA scavengers. These data indicate that activation of NADPH oxidase and generation of H2O2 are essential signalling events mediating defence responses induced by the endogenous elicitor(s) present in CDW.
基金Supported by the Prospective Research Project of Jiangsu Province(BY2014005-06)
文摘Both activity and stability of the catalyst can be improved in heterogeneous Fenton reaction,in particular,with no limitation for the working p H and no production of the sludge.In this work,a combination of catalyst Cu_2O and pore-channel-dispersed H_2O_2is proposed to treat the pulp wastewater.Degradation degree of CODs in the wastewater was up to 77%in the ceramic membrane reactor using Cu_2O powder(2.0 g·L^(-1))and membranefeeding H_2O_2(0.8 ml·L^(-1))within 60 min.Evolution of·OH radical formation in the advanced oxidation process was analyzed with a fluorescent method.Utilization efficiency of H_2O_2was successfully enhanced by 10%with the membrane distributor.Further on,the catalyst recyclability was evaluated in a five-cycle test.The concentration of copper ions being dissolved in the treated water was monitored with ICP.After Cu_2O/H_2O_2(membrane)treatment the effluent is qualified to discharge with COD concentration lower than 15 mg·L^(-1)with regard to the national standard GB25467-2010.
基金supported by Singapore Membrane Technology Centre(SMTC),Interdisciplinary Graduate Programme,Nanyang Environment and Water Research institute and Nanyang Technological university for this research.
文摘This review compares the different types of membrane processes for air dehumidification.Three main categories of membrane-based dehumidification are identified–membrane contactors using porous membranes with concentrated liquid desiccants,separative membranes using dense membrane morphology with a pressure gradient to drive the separation of moisture from air,and adsorptive membranes using nanofibrous membranes which adsorb and capture moisture to realise dehumidification.Drawing upon the importance of dehumidification and humidity control for urban sustainability and energy efficacy,this review critically analyses and recognizes the three unique categories of membrane-based air dehumidification technologies.Essentially,the discussion is broken into three sections-one for each category-discriminating in terms of the driving force,membrane structure and properties,and its performance indicators.Readers will notice that despite having the same objective to dehumidify air,the polymers used amongst each category differs to suit the operating requirements and optimize dehumidification performance.At the end of each section,a performance table or summary of dehumidifying membranes in its class is provided.The final section concludes with a comparative review of the three categories on membrane-based air dehumidification technologies and draw inspiration from parallel research to rationalise the potential and innovative use of promising materials in membrane fabrication for air dehumidification.
文摘The effect of additives CaCl\-2 and CaCl\-2/H\-2O on the properties of polyacrylonitrile(PAN) ultrafiltration(UF) membranes prepared by phase inversion process was studied. The dissolving capacity of the casting solution for CaCl\-2 was enhanced by the addition of H\-2O. The membranes are characterized in terms of the pure water flux and molecular weight cut\|off(MWCO). The addition of CaCl\-2 or CaCl\-2/H\-2O to the casting solution increases the resulting membrane permeability.
基金supported by the National Natural Science Foundation of China(Grant No 10775063)
文摘This paper reports that the transmission of O6+ ions with energy of 150keV through capillaries in an uncoated Al2O3 membrane was measured, and agreements with previously reported results in general angular distribution of the transmitted ions and the transmission fractions as a function of the tilt angle well fitted to Gaussian-like functions were observed. Due tousing an uncoated capillary membrane, our φc is larger than that using a gold-coated one with a smaller value of Ep/q, which suggests a larger equilibrium charge Q∞ in our experiment. The observed special width variation with time and a larger width than that using a smaller Ep/q were qualitatively explained by using mean-field classical transport theory based on a classical-trajectory Monte Carlo simulation.
基金Sponsored by the National Natural Science Foundation of China (Grant No.50978068)International Cooperation Program (Grant No.2010DFA92460)+1 种基金National High Technology Research and Development Program of China (863 Program,Grant No.2008AA06Z304)Tianjin Key Laboratory of Aquatic Science and Technology
文摘In the present study,nano-sized TiO2 /Al2O3 modified PVDF membranes (MM) were fabricated and utilized for anionic polyacrylamide ( APAM) separation. The results showed that,compared with PVDF membrane (OM) ,the contact angle of MM decreases from 83. 64° to 67. 42°,which indicates the increase of the hydrophilicity of MM. The relative flux (RF) decline curve of this ultrafiltration of APAM in water with time shows an obvious two stage properties. The cake filtration models were used to predict the performance of different time over the complete range of filtration times. All the four cake models could simulate this UF process to a certain extent,and the suitability of the two kinds of membranes was: cake filtration > intermediate pore blocking > standard pore blocking > complete pore blocking models. However,they became more and more unsuited to this process with time extending. Surface and cross-sectional morphology of membrane was investigated by SEM to make an advanced certificate of this UF mechanism.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11475197,11575205,11404100,and 11304083)the Key Scientific and Technological Project of Henan Province,China(Grant No.102102210186)
文摘The CS/PVA/Fe_3O_4 nanocomposite membranes with chainlike arrangement of Fe_3O_4 nanoparticles are prepared by a magnetic-field-assisted solution casting method. The aim of this work is to investigate the relationship between the microstructure of the magnetic anisotropic CS/PVA/Fe_3O_4 membrane and the evolved macroscopic physicochemical property. With the same doping content, the relative crystallinity of CS/PVA/Fe_3O_4-M is lower than that of CS/PVA/Fe_3O_4.The Fourier transform infrared spectroscopy(FT-TR) measurements indicate that there is no chemical bonding between polymer molecule and Fe_3O_4 nanoparticle. The Fe_3O_4 nanoparticles in CS/PVA/Fe_3O_4 and CS/PVA/Fe_3O_4-M are wrapped by the chains of CS/PVA, which is also confirmed by scanning electron microscopy(SEM) and x-ray diffraction(XRD)analysis. The saturation magnetization value of CS/PVA/Fe_3O_4-M obviously increases compared with that of non-magnetic aligned membrane, meanwhile the transmittance decreases in the UV-visible region. The o-Ps lifetime distribution provides information about the free-volume nanoholes present in the amorphous region. It is suggested that the microstructure of CS/PVA/Fe_3O_4 membrane can be modified in its curing process under a magnetic field, which could affect the magnetic properties and the transmittance of nanocomposite membrane. In brief, a full understanding of the relationship between the microstructure and the macroscopic property of CS/PVA/Fe_3O_4 nanocomposite plays a vital role in exploring and designing the novel multifunctional materials.
文摘In plant cells the plasma membrane is a highly elaborated structure that functions as the point of exchange with adjoining cells, cell walls and the external environment. In this study, we investigated the structure and function characteristic of wheat root plasma membrane (PM) as affected by H2O2 and Fe by using fluorescence spectroscopic and attenuated total reflectance infrared (ATR-IR) techniques. The results showed that these oxidant damaged induced an obviously reduced membrane fluidity were observed in the roots PM treated with the 200 μM H2O2, FeSO4, and FeCl3. Computer-aided software analyses of the FTIR spectrum indicated that the content of the α-helices decreased and β-sheet increased in the secondary structures of proteins after exposure to the oxidants of 200 μM H2O2, FeSO4, and FeCl3. The number of P=O and C=C bonds area declined rapidly in the lipids of the membrane under the oxidants stress. These structural alterations might explain the reason of the roots PM instability under most of the abiotic stress.
基金National Natural Science Foundation of China (No.20576130) and the National Basic Research Program ofChina (973 program, No.2003CB615700), and the Innovation Fund for the Graduate Students of USTC (No.KD2005022).
基金the National High Technology Research and Development Program of China(Grant No.2004AA601020)
文摘To lower the costs of wastewater treatment, the submerged hollow fiber ultrafiltration membrane was employed to reuse the filter backwash water and settling tank sludge water. Experimental study indicates that the submerged hollow fiber uhrafihration membrane can condense the concentration of sludge from 0. 1% -0. 3% to 2.5%. At 20 ℃, the system can operate continuously for 80 clays with daily online backwashing with chemical additions only once, and the membrane flux can be recovered up to 97% by using NaClO and NaOH as chemical additions. The results show that the membrane flux is mainly affected by temperature,and has a positive lin- ear relation to temperature with a slope of 0. 368. After treated by submerged hollow fiber uhrafihration membrane, the effluent can reach the National Standard for Drinking Water( GB5749 -85 ) , especially for the sludge water from sedimentation tanks and the backwashing Water from filters in water supply plants.
文摘The preparation process of γ-A12O3 nanofiltration membranes were studied by N2 absorption and desorption test and retention rate vs thickness gradient curve method. It was found that template and thermal treatment were key factors for controlling pore size and its distribution. Under the optimized experimental conditions, the BJH (Barret-Joyner-Halenda) desorption average pore diameter, BJH desorption cumulative volume of pores and BET (Brunauer-Emmett-Teller) surface area of obtained membranes were about 3.9 nm, 0.33 cm3/g and 245 m2/g respectively, the pore size distribution was very narrow. Pore size decreased with the increasing of thickness and no evident change after the dense top layer was formed. The optimum thickness can be controlled by retention rate vs thickness gradient curve method.
基金Project supported by National Natural Science Foundation ofChina (Grant No .20373040) Science Foundation of Science andTechnology Commission of Zhejiang Province ( Grant No .0252nm101) Science Foundation of Shanghai MunicipalCommission of Science and Technology (Grant No .0452nm019)
文摘Alumina membranes without pinholes and cracks were prepared by the sol-gel process using anunordum aluminium sulphate as the starting material. The effects of different preparing conditions on morphology characteristics of the membrane were investigated by scanning electron microscopy and 3D rotational microscopy. The preparing conditions include the amounts of drying control chemical additives (DCCA), sintering procedure and sol-gel concentration. The results showed that PVA is a good crack-preventing reagent and the morphology of supported membranes was affected by ninny factors, including Al2O3 concentration, PVA/Al2O3 ratio, heating rate, membrane thickness and intrinsic defects of the substrate surface.
文摘γ-Al2O3 membranes were successfidly deposited on the top of porous α-Al2O3 support by sol-gel process and characterized by means of XRD , SEM, N2 adsorption and gas permeation. The γ-Al2O3 membranes, free of pin-holes and cracks, adhere tightly to the supports and have a thlekness of about 7μm. When sintered at 400 ℃ , γ-Al2O3 membranes have a rutrrow pore size distribution, with a pore diameter of 3.6nm, and the transport of both H2 and CO2 in supported γ-Al2O3 membrane is governed by Knudsen mechanism, with H2 permeance of 3.3× 10^-6 molm^-2Pa^-1s^-1 and H2/ CO2 permselectivity close to the ideal Knudsen value at 50 ℃ . The γ-Al2O3 membranes are suitable for being used as the substrates of microparoas membranes .