Automatic Identification System(AIS)data stream analysis is based on the AIS data of different vessel’s behaviours,including the vessels’routes.When the AIS data consists of outliers,noises,or are incomplete,then th...Automatic Identification System(AIS)data stream analysis is based on the AIS data of different vessel’s behaviours,including the vessels’routes.When the AIS data consists of outliers,noises,or are incomplete,then the analysis of the vessel’s behaviours is not possible or is limited.When the data consists of outliers,it is not possible to automatically assign the AIS data to a particular vessel.In this paper,a clustering method is proposed to support the AIS data analysis,to qualify noises and outliers with respect to their suitability,and finally to aid the reconstruction of the vessel’s trajectory.In this paper,clustering results have been obtained using selected algorithms,including k-means,k-medoids,and fuzzy c-means.Based on the clustering results,it is possible to decide on the qualification of data with outliers and on their usefulness in the reconstruction of the vessel trajectory.The main aim of this paper is to answer how different distance measures during a clustering process can influence AIS data clustering quality.The main core question is whether or not they have an impact on the process of reconstruction of the vessel trajectories when the data are damaged.The research question during the computational experiments asked whether or not distance measure influence AIS data clustering quality.The computational experiments have been carried out using original AIS data.In general,the experiment and the results confirm the usefulness of the cluster-based analysis when the data include outliers that are derived from the natural environment.It is also possible to monitor and to analyse AIS data using clustering when the data include outliers.The computational experiment results confirm that the k-means with Euclidean distance has the best performance.展开更多
This study developed a new methodology for analyzing the risk level of marine spill accidents from two perspectives,namely,marine traffic density and sensitive resources.Through a case study conducted in Busan,South K...This study developed a new methodology for analyzing the risk level of marine spill accidents from two perspectives,namely,marine traffic density and sensitive resources.Through a case study conducted in Busan,South Korea,detailed procedures of the methodology were proposed and its scalability was confirmed.To analyze the risk from a more detailed and microscopic viewpoint,vessel routes as hazard sources were delineated on the basis of automated identification system(AIS)big data.The outliers and errors of AIS big data were removed using the density-based spatial clustering of applications with noise algorithm,and a marine traffic density map was evaluated by combining all of the gridded routes.Vulnerability of marine environment was identified on the basis of the sensitive resource map constructed by the Korea Coast Guard in a similar manner to the National Oceanic and Atmospheric Administration environmental sensitivity index approach.In this study,aquaculture sites,water intake facilities of power plants,and beach/resort areas were selected as representative indicators for each category.The vulnerability values of neighboring cells decreased according to the Euclidean distance from the resource cells.Two resulting maps were aggregated to construct a final sensitive resource and traffic density(SRTD)risk analysis map of the Busan–Ulsan sea areas.We confirmed the effectiveness of SRTD risk analysis by comparing it with the actual marine spill accident records.Results show that all of the marine spill accidents in 2018 occurred within 2 km of high-risk cells(level 6 and above).Thus,if accident management and monitoring capabilities are concentrated on high-risk cells,which account for only 6.45%of the total study area,then it is expected that it will be possible to cope with most marine spill accidents effectively.展开更多
Maritime transportation,a cornerstone of global trade,faces increasing safety challenges due to growing sea traffic volumes.This study proposes a novel approach to vessel trajectory prediction utilizing Automatic Iden...Maritime transportation,a cornerstone of global trade,faces increasing safety challenges due to growing sea traffic volumes.This study proposes a novel approach to vessel trajectory prediction utilizing Automatic Identification System(AIS)data and advanced deep learning models,including Long Short-Term Memory(LSTM),Gated Recurrent Unit(GRU),Bidirectional LSTM(DBLSTM),Simple Recurrent Neural Network(SimpleRNN),and Kalman Filtering.The research implemented rigorous AIS data preprocessing,encompassing record deduplication,noise elimination,stationary simplification,and removal of insignificant trajectories.Models were trained using key navigational parameters:latitude,longitude,speed,and heading.Spatiotemporal aware processing through trajectory segmentation and topological data analysis(TDA)was employed to capture dynamic patterns.Validation using a three-month AIS dataset demonstrated significant improvements in prediction accuracy.The GRU model exhibited superior performance,achieving training losses of 0.0020(Mean Squared Error,MSE)and 0.0334(Mean Absolute Error,MAE),with validation losses of 0.0708(MSE)and 0.1720(MAE).The LSTM model showed comparable efficacy,with training losses of 0.0011(MSE)and 0.0258(MAE),and validation losses of 0.2290(MSE)and 0.2652(MAE).Both models demonstrated reductions in training and validation losses,measured by MAE,MSE,Average Displacement Error(ADE),and Final Displacement Error(FDE).This research underscores the potential of advanced deep learning models in enhancing maritime safety through more accurate trajectory predictions,contributing significantly to the development of robust,intelligent navigation systems for the maritime industry.展开更多
This paper explores how artificial intelligence(AI)can support social researchers in utilizing web-mediated documents for research purposes.It extends traditional documentary analysis to include digital artifacts such...This paper explores how artificial intelligence(AI)can support social researchers in utilizing web-mediated documents for research purposes.It extends traditional documentary analysis to include digital artifacts such as blogs,forums,emails and online archives.The discussion highlights the role of AI in different stages of the research process,including question generation,sample and design definition,ethical considerations,data analysis,and results dissemination,emphasizing how AI can automate complex tasks and enhance research design.The paper also reports on practical experiences using AI tools,specifically ChatGPT-4,in conducting web-mediated documentary analysis and shares some ideas for the integration of AI in social research.展开更多
Using automatic identification system(AIS)data,this article first has extended the definition of three widely used roadway congestion indices to maritime transportation systems(MTS),traffic speed index(TSI),traffic ra...Using automatic identification system(AIS)data,this article first has extended the definition of three widely used roadway congestion indices to maritime transportation systems(MTS),traffic speed index(TSI),traffic rate index(TRI),and dwell time index(DTI).Next,a methodology is developed to measure the indices based on AIS data,considering various factors,including path geometry,time of day,and the type and size of vessels,and finally the method has been applied to the AIS data of the Houston Ship Channel(HSC)to evaluate the applicability in real cases.The results show that although average TSI and TRI cannot represent waterway congestion,the real-time values(rather than the average)at the micro level can help finding location,time,and severity of traffic congestion.Besides,while TSI and TRI have shortcomings,both average and real-time dwell time index(DTI)can quantify traffic congestion and highlight severity in different waterway segments for different types of vessels.When congestion happens at some narrow waterways,vessels need to wait at sea buoy or docks,thus dwell time index(DTI)can quantify traffic congestion better than in-transit indices such as travel speed,TSI.According to HSC DTI,most tankers experience long waiting times at the sea buoy and Galveston Bay,while cargo vessels experience delays at Bayport and Barbour’s Cut terminals.This paper helps the decision-makers quantify congestion in different sections of a waterway and provides measures to compare congestion for national competing projects at different waterways.展开更多
Water transportation today has become increasingly busy because of economic globalization.In order to solve the problem of inaccurate port traffic flow prediction,this paper proposes an algorithm based on gated recurr...Water transportation today has become increasingly busy because of economic globalization.In order to solve the problem of inaccurate port traffic flow prediction,this paper proposes an algorithm based on gated recurrent units(GRUs)and Markov residual correction to pass a fixed cross-section.To analyze the traffic flow of ships,the statistical method of ship traffic flow based on the automatic identification system(AIS)is introduced.And a model is put forward for predicting the ship flow.According to the basic principle of cyclic neural networks,the law of ship traffic flow in the channel is explored in the time series.Experiments have been performed using a large number of AIS data in the waters near Xiazhimen in Zhoushan,Ningbo,and the results show that the accuracy of the GRU-Markov algorithm is higher than that of other algorithms,proving the practicability and effectiveness of this method in ship flow prediction.展开更多
In recent years, maritime transportation has played an important role in global economy development. As a result, ship traffic has become more congested. Moreover, ship navigation is susceptible to weather and environ...In recent years, maritime transportation has played an important role in global economy development. As a result, ship traffic has become more congested. Moreover, ship navigation is susceptible to weather and environmental conditions, and in some cases, it may become dangerous. Therefore, vessels are subjected to high-risk navigation conditions. To understand the latent risk of ship navigation, this study focused on the actual ship behavior. Thus, an analysis of ship behavior was carded out using historical ship navigation based on automatic identification system data. Consequently, a dynamic analysis of the speed and encounter situation was performed. One of the main results of this work was the understanding of the latent risk involved in ships navigating the Seto Inland Sea, which is one of the most congested routes in Japan. Moreover, the risk areas were obtained, and visualized using a geographical information system. The obtained results can be applied to ensure safe navigation and the development of a safe and efficient navigation model.展开更多
Data factors have become one of the five essential production factors,but their role in economic growth has always been ambiguous.Starting from AI technologies,this paper establishes an endogenous growth model of data...Data factors have become one of the five essential production factors,but their role in economic growth has always been ambiguous.Starting from AI technologies,this paper establishes an endogenous growth model of data factors affecting economic growth,constructs the generation path and value path of data factors,and estimates the value of new data factors at the provincial level in China from 1999 to 2018 accordingly.Based on theoretical analyses and empirical tests,it clarifes that data factors have a“two-dimensional driving effect”on China's economic growth,that is,data factors can drive growth both directly through its own economic growth effect and indirectly by promoting technological progress.Furthermore,this paper makes three extended discussions,aiming to make a trial study on the impacts of local government big data transaction platforms on data factors and their growth effects,discuss whether it is possible to reduce the uncertainties of local economic policy based on the nature of data factors,and make a preliminary survey of the output elasticity of data factors between 1999 and 2018.展开更多
文摘Automatic Identification System(AIS)data stream analysis is based on the AIS data of different vessel’s behaviours,including the vessels’routes.When the AIS data consists of outliers,noises,or are incomplete,then the analysis of the vessel’s behaviours is not possible or is limited.When the data consists of outliers,it is not possible to automatically assign the AIS data to a particular vessel.In this paper,a clustering method is proposed to support the AIS data analysis,to qualify noises and outliers with respect to their suitability,and finally to aid the reconstruction of the vessel’s trajectory.In this paper,clustering results have been obtained using selected algorithms,including k-means,k-medoids,and fuzzy c-means.Based on the clustering results,it is possible to decide on the qualification of data with outliers and on their usefulness in the reconstruction of the vessel trajectory.The main aim of this paper is to answer how different distance measures during a clustering process can influence AIS data clustering quality.The main core question is whether or not they have an impact on the process of reconstruction of the vessel trajectories when the data are damaged.The research question during the computational experiments asked whether or not distance measure influence AIS data clustering quality.The computational experiments have been carried out using original AIS data.In general,the experiment and the results confirm the usefulness of the cluster-based analysis when the data include outliers that are derived from the natural environment.It is also possible to monitor and to analyse AIS data using clustering when the data include outliers.The computational experiment results confirm that the k-means with Euclidean distance has the best performance.
基金This research was supported by a grant[KCG-01-2017-01]through the Disaster and Safety Management Institute funded by the Ministry of Public Safety and Securitythe National Research Foundation of Korea(NRF)grant[No.2018R1D1A1B07050208]funded by the Ministry of Science and ICT of Korea Government.
文摘This study developed a new methodology for analyzing the risk level of marine spill accidents from two perspectives,namely,marine traffic density and sensitive resources.Through a case study conducted in Busan,South Korea,detailed procedures of the methodology were proposed and its scalability was confirmed.To analyze the risk from a more detailed and microscopic viewpoint,vessel routes as hazard sources were delineated on the basis of automated identification system(AIS)big data.The outliers and errors of AIS big data were removed using the density-based spatial clustering of applications with noise algorithm,and a marine traffic density map was evaluated by combining all of the gridded routes.Vulnerability of marine environment was identified on the basis of the sensitive resource map constructed by the Korea Coast Guard in a similar manner to the National Oceanic and Atmospheric Administration environmental sensitivity index approach.In this study,aquaculture sites,water intake facilities of power plants,and beach/resort areas were selected as representative indicators for each category.The vulnerability values of neighboring cells decreased according to the Euclidean distance from the resource cells.Two resulting maps were aggregated to construct a final sensitive resource and traffic density(SRTD)risk analysis map of the Busan–Ulsan sea areas.We confirmed the effectiveness of SRTD risk analysis by comparing it with the actual marine spill accident records.Results show that all of the marine spill accidents in 2018 occurred within 2 km of high-risk cells(level 6 and above).Thus,if accident management and monitoring capabilities are concentrated on high-risk cells,which account for only 6.45%of the total study area,then it is expected that it will be possible to cope with most marine spill accidents effectively.
基金the“Regional Innovation Strategy(RIS)”through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(MOE)(2021RIS-004)Institute of Information and Communications Technology Planning and Evaluation(IITP)grant funded by the Korean government(MSIT)(No.RS-2022-00155857,Artificial Intelligence Convergence Innovation Human Resources Development(Chungnam National University)).
文摘Maritime transportation,a cornerstone of global trade,faces increasing safety challenges due to growing sea traffic volumes.This study proposes a novel approach to vessel trajectory prediction utilizing Automatic Identification System(AIS)data and advanced deep learning models,including Long Short-Term Memory(LSTM),Gated Recurrent Unit(GRU),Bidirectional LSTM(DBLSTM),Simple Recurrent Neural Network(SimpleRNN),and Kalman Filtering.The research implemented rigorous AIS data preprocessing,encompassing record deduplication,noise elimination,stationary simplification,and removal of insignificant trajectories.Models were trained using key navigational parameters:latitude,longitude,speed,and heading.Spatiotemporal aware processing through trajectory segmentation and topological data analysis(TDA)was employed to capture dynamic patterns.Validation using a three-month AIS dataset demonstrated significant improvements in prediction accuracy.The GRU model exhibited superior performance,achieving training losses of 0.0020(Mean Squared Error,MSE)and 0.0334(Mean Absolute Error,MAE),with validation losses of 0.0708(MSE)and 0.1720(MAE).The LSTM model showed comparable efficacy,with training losses of 0.0011(MSE)and 0.0258(MAE),and validation losses of 0.2290(MSE)and 0.2652(MAE).Both models demonstrated reductions in training and validation losses,measured by MAE,MSE,Average Displacement Error(ADE),and Final Displacement Error(FDE).This research underscores the potential of advanced deep learning models in enhancing maritime safety through more accurate trajectory predictions,contributing significantly to the development of robust,intelligent navigation systems for the maritime industry.
文摘This paper explores how artificial intelligence(AI)can support social researchers in utilizing web-mediated documents for research purposes.It extends traditional documentary analysis to include digital artifacts such as blogs,forums,emails and online archives.The discussion highlights the role of AI in different stages of the research process,including question generation,sample and design definition,ethical considerations,data analysis,and results dissemination,emphasizing how AI can automate complex tasks and enhance research design.The paper also reports on practical experiences using AI tools,specifically ChatGPT-4,in conducting web-mediated documentary analysis and shares some ideas for the integration of AI in social research.
基金partially supported by the Center for Advances in Port Management,Lamar University.
文摘Using automatic identification system(AIS)data,this article first has extended the definition of three widely used roadway congestion indices to maritime transportation systems(MTS),traffic speed index(TSI),traffic rate index(TRI),and dwell time index(DTI).Next,a methodology is developed to measure the indices based on AIS data,considering various factors,including path geometry,time of day,and the type and size of vessels,and finally the method has been applied to the AIS data of the Houston Ship Channel(HSC)to evaluate the applicability in real cases.The results show that although average TSI and TRI cannot represent waterway congestion,the real-time values(rather than the average)at the micro level can help finding location,time,and severity of traffic congestion.Besides,while TSI and TRI have shortcomings,both average and real-time dwell time index(DTI)can quantify traffic congestion and highlight severity in different waterway segments for different types of vessels.When congestion happens at some narrow waterways,vessels need to wait at sea buoy or docks,thus dwell time index(DTI)can quantify traffic congestion better than in-transit indices such as travel speed,TSI.According to HSC DTI,most tankers experience long waiting times at the sea buoy and Galveston Bay,while cargo vessels experience delays at Bayport and Barbour’s Cut terminals.This paper helps the decision-makers quantify congestion in different sections of a waterway and provides measures to compare congestion for national competing projects at different waterways.
文摘Water transportation today has become increasingly busy because of economic globalization.In order to solve the problem of inaccurate port traffic flow prediction,this paper proposes an algorithm based on gated recurrent units(GRUs)and Markov residual correction to pass a fixed cross-section.To analyze the traffic flow of ships,the statistical method of ship traffic flow based on the automatic identification system(AIS)is introduced.And a model is put forward for predicting the ship flow.According to the basic principle of cyclic neural networks,the law of ship traffic flow in the channel is explored in the time series.Experiments have been performed using a large number of AIS data in the waters near Xiazhimen in Zhoushan,Ningbo,and the results show that the accuracy of the GRU-Markov algorithm is higher than that of other algorithms,proving the practicability and effectiveness of this method in ship flow prediction.
文摘In recent years, maritime transportation has played an important role in global economy development. As a result, ship traffic has become more congested. Moreover, ship navigation is susceptible to weather and environmental conditions, and in some cases, it may become dangerous. Therefore, vessels are subjected to high-risk navigation conditions. To understand the latent risk of ship navigation, this study focused on the actual ship behavior. Thus, an analysis of ship behavior was carded out using historical ship navigation based on automatic identification system data. Consequently, a dynamic analysis of the speed and encounter situation was performed. One of the main results of this work was the understanding of the latent risk involved in ships navigating the Seto Inland Sea, which is one of the most congested routes in Japan. Moreover, the risk areas were obtained, and visualized using a geographical information system. The obtained results can be applied to ensure safe navigation and the development of a safe and efficient navigation model.
基金“Research on System Regulation on High-quality Supply of Data Factors under the Framework of‘Market+Government+Community’Collaborative Governance”,a National Social Science Fund Project for 2022.(22BJL033).
文摘Data factors have become one of the five essential production factors,but their role in economic growth has always been ambiguous.Starting from AI technologies,this paper establishes an endogenous growth model of data factors affecting economic growth,constructs the generation path and value path of data factors,and estimates the value of new data factors at the provincial level in China from 1999 to 2018 accordingly.Based on theoretical analyses and empirical tests,it clarifes that data factors have a“two-dimensional driving effect”on China's economic growth,that is,data factors can drive growth both directly through its own economic growth effect and indirectly by promoting technological progress.Furthermore,this paper makes three extended discussions,aiming to make a trial study on the impacts of local government big data transaction platforms on data factors and their growth effects,discuss whether it is possible to reduce the uncertainties of local economic policy based on the nature of data factors,and make a preliminary survey of the output elasticity of data factors between 1999 and 2018.