期刊文献+
共找到350篇文章
< 1 2 18 >
每页显示 20 50 100
Research on Abrasives in the Chemical Mechanical Polishing Process for Silicon Nitride Balls 被引量:6
1
作者 YUAN Ju-long, Lü Bing-hai, LIN Xü, JI Shi-ming, ZHANG Li-bin (Mechanical and Electronic Engineering College, Zhejiang University of Technology, Hangzhou 310014, China) 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期63-64,共2页
Silicon nitride (Si 3N 4) has been the main material for balls in ceramic ball bearings, for its lower density, high strength, high hardness, fine thermal stability and anticorrosive, and is widely used in various fie... Silicon nitride (Si 3N 4) has been the main material for balls in ceramic ball bearings, for its lower density, high strength, high hardness, fine thermal stability and anticorrosive, and is widely used in various fields, such as high speed and high temperature areojet engines, precision machine tools and chemical engineer machines. Silicon nitride ceramics is a kind of brittle and hard material that is difficult to machining. In the traditional finishing process of silicon nitride balls, balls are lapped by expensive diamond abrasive. The machining is inefficiency and the cost is high, but also lots of pits, scratch subsurface micro crazes and dislocations will be caused on the surface of the balls, the performance of the ball bearings would be declined seriously. In these year, a kind of new technology known as chemical mechanical polishing is introduced in the ultraprecision machining process of ceramic balls. In this technology, abrasives such as ZrO 2, CeO 2 whose hardness is close to or lower than the work material (Si 3N 4) are used to polishing the balls. In special slurry, these abrasives can chemo-mechanically react with the work material and environment (air or water) to generate softer material (SiO 2). And the resultants will be removed easily at 0.1 nm level. So the surface defects can be minimized, very smooth surface (Ra=4 nm) and fine sphericity (0.15~0.25 μm ) can be obtained, and the machining efficiency is also improved. The action mechanism of the abrasives in the chemical mechanical polishing process in finishing of silicon nitride ball will be introduced in this paper. 展开更多
关键词 silicon nitride ball chemical mechanical polishing abrasives
下载PDF
Preparation and Optimization of High-Purity Silicon Carbide Magnetic Abrasives for the Magnetic Induction-Wire Sawing Process 被引量:2
2
作者 Wei Zhang Tengwei Qiu Chunyan Yao 《Fluid Dynamics & Materials Processing》 EI 2020年第4期709-721,共13页
In this study,magnetic abrasives were obtained by crushing and sieving sintered iron-silicon carbide(Fe-SiC)composites.Fe and SiC powders with different mesh numbers were pre-compacted using different pressures and th... In this study,magnetic abrasives were obtained by crushing and sieving sintered iron-silicon carbide(Fe-SiC)composites.Fe and SiC powders with different mesh numbers were pre-compacted using different pressures and then sintered at various temperatures and with different holding times.The dispersion uniformity of the SiC powder was improved through surface modification using polyethylene glycol(PEG)300.The resulting magnetic abrasives were characterized in terms of phase composition,density,relative permeability,and microstructure;this was followed by a comprehensive analysis to reveal the optimal processing parameters.The ideal combination of process parameters for preparing SiC magnetic-abrasive grains for the magnetic induction-wire sawing process was obtained,which are preparation load of 60 kN,a SiC mesh number of 1,500,a sintering temperature of 1100℃,and a holding time of 4 h. 展开更多
关键词 Wire sawing magnetic abrasives SINTERING phase compositions
下载PDF
Preparation of composite abrasives by electrostatic self-assembly method and its polishing properties in Cu CMP
3
作者 Huang Yishen Xu Xuefeng +2 位作者 Yao Chunyan Hu Jiande Peng Wei 《Engineering Sciences》 EI 2014年第2期75-81,92,共8页
The adsorption characteristics of cationic polyelectrolyte poly dimethyl diallyl ammonium chloride (PDADMAC) and anionic polyelectrolyte poly (sodium-p-styrenesulfonate) (PSS) on benzoguanamine formal- dehyde (... The adsorption characteristics of cationic polyelectrolyte poly dimethyl diallyl ammonium chloride (PDADMAC) and anionic polyelectrolyte poly (sodium-p-styrenesulfonate) (PSS) on benzoguanamine formal- dehyde (BGF) particles are investigated. The charging characteristics of BGF particles are changed and con- trolled using electrostatic self-assembly method. A variety of PE,-BGF/SiO2 composite abrasives are obtained. The as-prepared samples are analyzed by zeta potential analysis, transmission electron microscope (TEM) and thermogravimetric (TG) analysis. The composite abrasive slurries are prepared for copper polishing. The poli- shing results indicate that it is SiO2 abrasives, not only coated SiO2 abrasive on polymer particles but also free SiO2 abrasive in slurry, that offer the polishing action. The material removal rates of copper polishing are 264 nm/min, 348 nm/min and 476 nm/min using single SiO2 abrasive slurry, PE0-BGF/SiO2 mixed abrasive slur- ry and PE3-BGF/SiO2 composite abrasive slurry, respectively. The surface roughness Ra of copper wafer (with 5μm×5μm district) is decreased from 0.166 μm to 3.7 nm, 2.6 nm and 1.5 nm, and the surface peak-valley values Rrv are less than 20 nm, 14 nm and 10 nm using these kinds of slurries, respectively. Key words : chemico-mechanical polishing; polishing slurry; composite abrasives ; polyelectrolyte ; copper 展开更多
关键词 chemico-mechanical polishing polishing slurry composite abrasives POLYELECTROLYTE copper
下载PDF
High Speed Lapping of SiC Ceramic Material with Solid (Fixed) Abrasives 被引量:1
4
作者 张伟 杨鑫宏 +2 位作者 尚春民 胡孝勇 胡忠辉 《Defence Technology(防务技术)》 SCIE EI CAS 2005年第2期225-228,共4页
An experimental investigation is carried out to machine SiC ceramic material through the method of high speed plane lapping with solid(fixed) abrasives after the critical condition of brittle-ductile transition is the... An experimental investigation is carried out to machine SiC ceramic material through the method of high speed plane lapping with solid(fixed) abrasives after the critical condition of brittle-ductile transition is theoretically analyzed. The results show that the material removal mechanism and the surface roughness are chiefly related to the granularity of abrasives for brittle materials such as SiC ceramic. It is easily realized to machine SiC ceramic in the ductile mode using W3.5 grit and a high efficiency, low cost and smooth surface with a surface roughness of R_a 2.4?nm can be achieved. 展开更多
关键词 SiC ceramic MATERIAL high speed LAPPING with SOLID ABRASIVE machining in DUCTILE mode surface roughness
下载PDF
Effect of Heat-Insulating Layer Thickness on Melting Rate of Ice Fixed Abrasives Polishing Pad 被引量:1
5
作者 赵研 左敦稳 +1 位作者 孙玉利 王珉 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2015年第4期415-420,共6页
The formula of the thickness of the heat-insulating layer is deduced via heat transfer analysis,according to the principle of heat transfer in limited space.Polishing experiments are carried out using the same technol... The formula of the thickness of the heat-insulating layer is deduced via heat transfer analysis,according to the principle of heat transfer in limited space.Polishing experiments are carried out using the same technological parameters.Compared with the polishing experimental results,the heat transfer model is proved to be correct.As validated by the experimental results,polyurethane heat-insulating layer can effectively improve the service life of the ice fixed abrasive pad and alleviate the melting rate in the polishing process to improve the polishing quality proposed.The heat transfer model provides theoretical basis for research of temperature field of ice fixed abrasive polishing. 展开更多
关键词 ice fixed abrasive heat-insulating layer unsteady-state conduction
下载PDF
Performance of recycling abrasives in rock cutting by abrasive water jet 被引量:2
6
作者 Gokhan Aydin 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第3期1055-1061,共7页
Rock cutting performance of recycling abrasives was investigated in terms of cutting depth, kerf width, kerf taper angle and surface roughness. Gravity separation technique was employed to separate the abrasives and t... Rock cutting performance of recycling abrasives was investigated in terms of cutting depth, kerf width, kerf taper angle and surface roughness. Gravity separation technique was employed to separate the abrasives and the rock particles. The recycling abrasive particles were then dried and sieved for determination of their disintegration behaviors. Before each cutting with recycling abrasives, the abrasive particles less than 106 ?m were screened out. It is revealed that a considerable amount of used abrasives can be effectively reused in the rock cutting. The reusabilities of abrasives are determined as 81.77%, 57.50%, 34.37% and 17.72% after the first, second, third and fourth cuttings, respectively. Additionally, it is determined that recycling must be restricted three times due to the excessive disintegration of abrasives with further recycling. Moreover, it is concluded that cutting depth, kerf width and surface roughness decreases with recycling. No clear trend is found between the kerf taper angle and recycling. Particle size distribution is determined as an important parameter for improving the cutting performance of recycling abrasives. 展开更多
关键词 abrasive water jet rock abrasive recycling
下载PDF
Optimization of Input Parameters of AWJM: Using Three Different Abrasives on MS2062
7
作者 Kusnurkar S.V J.S.Sidhu 《Non-Metallic Material Science》 2019年第1期28-38,共11页
The objective of this work is to optimize input parameters of AWJM (Abrasive Water Jet Machining) such as Nozzle Transverse Speed (NTS), Abrasive Flow Rate (AFR) and Stand-off Distance (SOD) using three different abra... The objective of this work is to optimize input parameters of AWJM (Abrasive Water Jet Machining) such as Nozzle Transverse Speed (NTS), Abrasive Flow Rate (AFR) and Stand-off Distance (SOD) using three different abrasives Garnet, Brown Fused Alumina and White Aluminum Oxide on MS2062 and to compare their performance with surface finish, MRR and kerf angle. Experiments were conducted according to Taguchi’s design of experiments. Analysis of variance is conducted to investigate the influence of each parameter on responses Three controllable parameters of three levels are applied for determining the optimal responses The results revealed that NTS is a most significant factor for MRR among three abrasives followed by AFR and SOD, with regards to surface finish and MRR White Aluminum Oxide has emerged as a most strong abrasive followed by Brown Fused Alumina and Garnet. It is recommended, to achieve the better surface finish, less kerf angle and good MRR White Aluminum Oxide be used in place of Garnet which is mostly used by the industry today. 展开更多
关键词 GARNET White aluminum oxide BROWN FUSED alumina Nozzle transverse speed Abrasive flow Rate Standoff distance KERF angle MRR Taguchi ANOVA
下载PDF
Non-spherical abrasives with ordered mesoporous structures for chemical mechanical polishing 被引量:2
8
作者 Peili Gao Tingting Liu +3 位作者 Zhenyu Zhang Fanning Meng Run-Ping Ye Jian Liu 《Science China Materials》 SCIE EI CAS CSCD 2021年第11期2747-2763,共17页
The chemical mechanical polishing(CMP)technology has been widely used for surface modification of critical materials and components with high quality and efficiency.In a typical CMP process,the mechanical properties o... The chemical mechanical polishing(CMP)technology has been widely used for surface modification of critical materials and components with high quality and efficiency.In a typical CMP process,the mechanical properties of abrasives play a vital role in obtaining the ultra-precision and damage-free surface of wafers for improvement of their performances.In this work,a series of fine structured rod-shaped silica(RmSiO2)-based abrasives with controllable sizes and diverse ordered mesoporous structures were synthesized via a soft template approach,and successfully applied in the sustainable polishing slurry for improving the surface quality of cadmium zinc telluride(CZT)wafers.Compared with commercial silica gel,solid and mesoporous silica spheres,the RmSiO2 abrasives present superior elastic deformation capacity and surface precision machinability on account of their mesoporous structures and rod shapes.Especially,ultra-precision surface roughness and relatively effective material removal speed were achieved by the CMP process using the RmSiO2 abrasives with a length/diameter(L/d)ratio of 1.In addition,a potential CMP mechanism of the developed polishing slurry to CZT wafer was elucidated by analyzing X-ray photoelectron spectra and other characterizations.The proposed interfacial chemical and mechanical effects will provide a new strategy for improving abrasives’machinability and precision manufacture of hard-to-machine materials. 展开更多
关键词 non-spherical abrasives mesoporous structure chemical mechanical polishing interfacial mechanochemistry
原文传递
Advances in fabrication of ceramic corundum abrasives based on sol–gel process 被引量:13
9
作者 Baoteng HUANG Changhe LI +12 位作者 Yanbin ZHANG Wenfeng DING Min YANG Yuying YANG Han ZHAI Xuefeng XU Dazhong WANG Sujan DEBNATH Muhammad JAMIL Hao Nan Li Hafiz Muhammad ALI Munish Kumar GUPTA Zafar SAID 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第6期1-17,共17页
Corundum abrasives with good chemical stability can be fabricated into various free abrasives and bonded abrasive tools that are widely used in the precision machining of various parts.However,these abrasives cannot s... Corundum abrasives with good chemical stability can be fabricated into various free abrasives and bonded abrasive tools that are widely used in the precision machining of various parts.However,these abrasives cannot satisfy the machining requirements of difficult-to-machine materials with high hardness,high strength,and strong wearing resistance.Although superhard abrasives can machine the above-mentioned materials,their dressing and manufacturing costs are high.By contrast,ceramic corundum abrasives fabricated by sol–gel method is a costeffective product between conventional and superhard abrasives.Ceramic corundum abrasives exhibit self-sharpening and high toughness.In this review,the optimization methods of ceramic corundum abrasive properties are introduced from three aspects:precursor synthesis,particle shaping,and sintering.Firstly,the functional mechanism of seeds and additives on the microstructural and mechanical properties of abrasives is analyzed.Specifically,seeds can reduce the phase transition temperature and improve fracture toughness.The grain size and uniformly dense structure can be controlled by applying an appropriate amount of multicomponent additives.Then,the urgent need of engineering application and machinability of special shape ceramic corundum abrasives is reviewed,and three methods of abrasive shaping are summarized.The micromold replication technique is highly advanced and can be used to prepare functional abrasives.Additionally,the influence of a new sintering method,namely,two-step sintering technique,on the microstructural and mechanical performance of ceramic corundum abrasives is summarized.Finally,the challenge and developmental trend of the optimization of ceramic corundum abrasives are prospected. 展开更多
关键词 Ceramic corundum abrasive Seed Shaping technique Sintering additive Sol–Gel Two-step sintering process
原文传递
Preparation of Ag2O modified silica abrasives and their chemical mechanical polishing performances on sapphire 被引量:9
10
作者 Baichun ZHANG Hong LEI Yi CHEN 《Friction》 CSCD 2017年第4期429-436,共8页
The chemical mechanical polishing (CMP) process has become a widely accepted global planarization technology.The abrasive material is one of the key elements in CMP.In the presented paper,an Ag-doped colloidal SiO2 ab... The chemical mechanical polishing (CMP) process has become a widely accepted global planarization technology.The abrasive material is one of the key elements in CMP.In the presented paper,an Ag-doped colloidal SiO2 abrasive is synthesized by a seed-induced growth method.It is characterized by time-of-flight secondary ion mass spectroscopy and scanning electron microscopy to analyze the composition and morphology.The CMP performance of the Ag-doped colloidal silica abrasives on sapphire substrates is investigated.Experiment results show the material removal rate (MRR) of Ag-doped colloidal silica abrasives is obviously higher than that of pure colloidal silica abrasives under the same testing conditions.The surfaces that are polished by composite colloidal abrasives exhibit lower surface roughness (Ra) than those polished by pure colloidal silica abrasives.Furthermore,the acting mechanism of Ag-doped colloidal SiO2 composite abrasives in sapphire CMP is analyzed by X-ray photoelectron spectroscopy,and analytical results show that element Ag forms Ag2O which acts as a catalyst to promote the chemical effect in CMP and leads to the increasing of MRR. 展开更多
关键词 chemical mechanical polishing Ag-doped colloidal silica abrasive SAPPHIRE material removal rate
原文传递
Effect of low-speed waterjet pressure on the rock-breaking performance of unsubmerged cavitating abrasive waterjet
11
作者 Chen-Xing Fan Deng Li +1 位作者 Yong Kang Hai-Tao Zhang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2638-2649,共12页
Unsubmerged cavitating abrasive waterjet(UCAWJ)has been shown to artificially create a submerged environment that produces shear cavitation,which effectively enhances rock-breaking performance.The shear cavitation gen... Unsubmerged cavitating abrasive waterjet(UCAWJ)has been shown to artificially create a submerged environment that produces shear cavitation,which effectively enhances rock-breaking performance.The shear cavitation generation and collapse intensity depend on the pressure difference between the intermediate high-speed abrasive waterjet and the coaxial low-speed waterjet.However,the effect of the pressure of the coaxial low-speed waterjet is pending.For this purpose,the effect of low-speed waterjet pressure on rock-breaking performance at different standoff distances was experimentally investigated,and the effects of erosion time and ruby nozzle diameter on erosion performance were discussed.Finally,the micromorphology of the sandstone was observed at different locations.The results show that increased erosion time and ruby nozzle diameter can significantly improve the rock-breaking performance.At different standoff distances,the mass loss increases first and then decreases with the increase of low-speed waterjet pressure,the maximum mass loss is 10.4 g at a low-speed waterjet pressure of0.09 MPa.The surface morphology of cavitation erosion was measured using a 3D profiler,the increase in both erosion depth and surface roughness indicated a significant increase in the intensity of the shear cavitation collapse.At a low-speed waterjet pressure of 0.18 MPa,the cavitation erosion surface depth can reach 600μm with a roughness of 127μm. 展开更多
关键词 Rock-breaking Coaxial low-speed waterjet pressure Abrasive waterjet CAVITATION Unsubmerged environment
下载PDF
A novel approach of jet polishing for interior surface of small-grooved components using three developed setups
12
作者 Qinming Gu Zhenyu Zhang +6 位作者 Hongxiu Zhou Jiaxin Yu Dong Wang Junyuan Feng Chunjing Shi Jianjun Yang Junfeng Qi 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第2期428-447,共20页
It is a challenge to polish the interior surface of an additively manufactured component with complex structures and groove sizes less than 1 mm.Traditional polishing methods are disabled to polish the component,meanw... It is a challenge to polish the interior surface of an additively manufactured component with complex structures and groove sizes less than 1 mm.Traditional polishing methods are disabled to polish the component,meanwhile keeping the structure intact.To overcome this challenge,small-grooved components made of aluminum alloy with sizes less than 1 mm were fabricated by a custom-made printer.A novel approach to multi-phase jet(MPJ)polishing is proposed,utilizing a self-developed polisher that incorporates solid,liquid,and gas phases.In contrast,abrasive air jet(AAJ)polishing is recommended,employing a customized polisher that combines solid and gas phases.After jet polishing,surface roughness(Sa)on the interior surface of grooves decreases from pristine 8.596μm to 0.701μm and 0.336μm via AAJ polishing and MPJ polishing,respectively,and Sa reduces 92%and 96%,correspondingly.Furthermore,a formula defining the relationship between linear energy density and unit defect volume has been developed.The optimized parameters in additive manufacturing are that linear energy density varies from 0.135 J mm^(-1)to 0.22 J mm^(-1).The unit area defect volume achieved via the optimized parameters decreases to 1/12 of that achieved via non-optimized ones.Computational fluid dynamics simulation results reveal that material is removed by shear stress,and the alumina abrasives experience multiple collisions with the defects on the heat pipe groove,resulting in uniform material removal.This is in good agreement with the experimental results.The novel proposed setups,approach,and findings provide new insights into manufacturing complex-structured components,polishing the small-grooved structure,and keeping it unbroken. 展开更多
关键词 abrasive air jet polishing multi-phase jet polishing interior curved surface small-grooved component aluminum alloy
下载PDF
Optimizing the Diameter of Plugging Balls in Deep Shale Gas Wells
13
作者 Yi Song Zheyu Hu +5 位作者 Cheng Shen Lan Ren Xingwu Guo Ran Lin Kun Wang Zhiyong Zhao 《Fluid Dynamics & Materials Processing》 EI 2024年第3期609-624,共16页
Deep shale gas reserves that have been fractured typically have many relatively close perforation holes. Due to theproximity of each fracture during the formation of the fracture network, there is significant stress i... Deep shale gas reserves that have been fractured typically have many relatively close perforation holes. Due to theproximity of each fracture during the formation of the fracture network, there is significant stress interference,which results in uneven fracture propagation. It is common practice to use “balls” to temporarily plug fractureopenings in order to lessen liquid intake and achieve uniform propagation in each cluster. In this study, a diameteroptimization model is introduced for these plugging balls based on a multi-cluster fracture propagationmodel and a perforation dynamic abrasion model. This approach relies on proper consideration of the multiphasenature of the considered problem and the interaction force between the involved fluid and solid phases. Accordingly,it can take into account the behavior of the gradually changing hole diameter due to proppant continuousperforation erosion. Moreover, it can provide useful information about the fluid-dynamic behavior of the consideredsystem before and after plugging. It is shown that when the diameter of the temporary plugging ball is1.2 times that of the perforation hole, the perforation holes of each cluster can be effectively blocked. 展开更多
关键词 Deep shale gas fracture propagation fluid mechanics fluid-solid coupling perforation hole abrasion
下载PDF
The Impact of Heat Treatment and Surface Treatment on Thermal Conductivity of Heat Sinks Made of Aluminium Die Casting Alloys
14
作者 Rajesh Kumar Manickam Dilip Raja Narayana 《Journal of Harbin Institute of Technology(New Series)》 CAS 2024年第4期34-41,共8页
This research contributes to understand the thermal management capabilities of Plate Fin Heat Sinks(PFHS)fabricated from AlSi10Mg.The uniqueness in this study is that the heat sinks were exposed to abrasive blasting,h... This research contributes to understand the thermal management capabilities of Plate Fin Heat Sinks(PFHS)fabricated from AlSi10Mg.The uniqueness in this study is that the heat sinks were exposed to abrasive blasting,heat treatment,and graphene coating,and a full evaluation of the influence of the aforementioned treatments on the thermal management capacities of PFHS was found.Untreated PFHS is compared with 1)abrasive blasted and graphene coated heat sink,and 2)heat treated and graphene coated heat sink.To assess the thermal efficiency of the PFHS variants,a dedicated experimental set up was meticulously constructed.It is noteworthy that a junction temperature of 60℃was assumed as the reference point for the analysis.The results revealed that the charging cycle time which denotes the time required attaining the junction temperature,increased 1.3 times for the sample being abrasive-blasted at 0.5 MPa pressure and graphene-coated for 0.5 mm when the maximum heat input of 45 W is evaluated.When low heat input of 15 W is evaluated,the results revealed that there is no significant difference in charging cycle when compared to the untreated heat sink.The charging cycle time increased 2 times for the sample which is heat-treated at 450℃and graphene-coated for 0.5 mm at heat input of 15 W.This finding unequivocally underscores the heightened capacity of the heat treated and graphene coated PFHS made of AlSi10Mg to withstand elevated junction temperatures. 展开更多
关键词 PFHS abrasive blasting heat treatment GRAPHENE
下载PDF
Experimental Abrasion Study of the Evolution of Gold Morphological Criteria in Different Sediments as a Function of Time
15
作者 Fary Diome 《Open Journal of Soil Science》 2024年第1期13-27,共15页
The use of gold as a tracer element for understanding the mode of emplacement of these formations requires a good knowledge of its dynamics. To this end, we have carried out experimental studies to investigate the evo... The use of gold as a tracer element for understanding the mode of emplacement of these formations requires a good knowledge of its dynamics. To this end, we have carried out experimental studies to investigate the evolution of contour states (regular, irregular), surface states (blunt, rough), shape (elongation) and dimension (size). The study of these criteria is carried out on SEM photos of particles, taken before and after the experiment, using Aphelion image processing software. Five experiments were carried out to study the influence of sediment granulometry and water dilution on particle morphological changes. The results of these experiments show that coarse sediments (>1 mm) are largely responsible for morphological changes in gold. They cause fragmentation and/or folding of the particle edges, depending on the magnitude of the impact forces. Strong impacts due to high water dilution cause staking on the particle surface. Fine sediments (<1 mm) slow down particle evolution as they cushion impacts and particles tend to flatten rather than fragment. 展开更多
关键词 Weathering Mantles Experimental Abrasion GOLD
下载PDF
Dry sliding wear behavior of cast Mg-11Y-5Gd-2Zn magnesium alloy 被引量:2
16
作者 胡茂良 王渠东 +1 位作者 李程 丁文江 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第8期1918-1923,共6页
Dry sliding wear tests on as-cast and cast+T6 Mg-11Y-5Gd-2Zn magnesium alloys were performed using a ball-on-plate configuration. The wear rates were measured within a load range of 3-15 N, sliding speed range of 0.0... Dry sliding wear tests on as-cast and cast+T6 Mg-11Y-5Gd-2Zn magnesium alloys were performed using a ball-on-plate configuration. The wear rates were measured within a load range of 3-15 N, sliding speed range of 0.03-0.24 m/s, test temperature range of 25-200 °C and at a constant sliding distance of 400 m. The wear tracks, worn surfaces and wear debris of the alloys were analyzed using scanning electron microscope (SEM). The results show that the wear rate of the alloys increases almost linearly with increasing applied load and decreases with increasing sliding speed. The wear rate of the as-cast alloy is higher than that of the cast+T6 alloy. The amount of Mg12Y1Zn1 phase, surface oxidation and retained wear debris affect the wear rate. The dominant wear mechanisms under the test condition are abrasion and plastic deformation. 展开更多
关键词 Mg-Y-Gd-Zn alloy wear behavior wear rate sliding wear abrasive wear
下载PDF
Study on the new materials for fiberboard refiner plate of defibrator 被引量:2
17
作者 向红亮 罗吉荣 肖泽辉 《Journal of Forestry Research》 SCIE CAS CSCD 2003年第1期89-92,共4页
Defibrator is a very important machine in the wood industry for producing fiberboard. The refiner plates are the key parts of defibrator that directly act with the wood, and broken easily. The working life of the refi... Defibrator is a very important machine in the wood industry for producing fiberboard. The refiner plates are the key parts of defibrator that directly act with the wood, and broken easily. The working life of the refiner plates is of significance to the wood industry. It may affect refining quality, production efficiency, and power consumption. In this paper, the abrasion resistance of the refiner plate made of different materials, the stainless steels and high chromium cast irons, were tested and compared. The results showed that abrasion resistance of refiner plate made of high chromium cast irons was better than that of the stainless steel materials. Although the two kinds of materials have the same compositions, their abrasion resistances have ap-parent difference. The main reason is that the material microstructures have very important effects on their performance. The refiner plates made of developed high chromium cast irons don抰 demand the complex heat treatment. This can simplify the producing process, save the cost of production, decrease labor strength, and increase the production efficiency. 展开更多
关键词 Refiner plate High chromium cast iron Abrasion resistance Stainless steel
下载PDF
Effect of particulate reinforcement on wear behavior of magnesium matrix composites 被引量:3
18
作者 胡勇 饶丽 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第11期2659-2664,共6页
The friction and wear behavior of magnesium matrix composites reinforced with particulate Mg2Si was characterized. The influence of Si, applied load and sliding rate on the wear behavior of Mg2Si/AM60 magnesium matrix... The friction and wear behavior of magnesium matrix composites reinforced with particulate Mg2Si was characterized. The influence of Si, applied load and sliding rate on the wear behavior of Mg2Si/AM60 magnesium matrix composites was studied. The results indicate that the particulate Mg2Si can be synthesized by adding Si into magnesium alloy. The wear properties of AM60 magnesium alloy are significantly improved with MgzSi particles. The wear mass losses of AM60 magnesium alloy and MgaSi/AM60 magnesium matrix composites decrease with increase in applied load and sliding rate. The wear feature of the AM60 magnesium alloy is adhesion wear. The wear mechanism of Mg2Si/AM60 magnesium matrix composites transforms from abrasive wear to adhesion wear with the increase of load. 展开更多
关键词 magnesium alloy Mg2Si/AM60 composite FRICTION WEAR wear mechanism abrasive wear adhesion wear
下载PDF
Nanostructured grinding wheels for ultra-precision engineering applications 被引量:1
19
作者 M.J.Jackson 《Nanotechnology and Precision Engineering》 CAS CSCD 2021年第3期63-75,共13页
Manufacturers face challenges when dealing with abrasives that lose roundness,wear excessively,and suffer from pitting of the surface of the grinding wheel that needs rectification using dressing techniques.Nanostruct... Manufacturers face challenges when dealing with abrasives that lose roundness,wear excessively,and suffer from pitting of the surface of the grinding wheel that needs rectification using dressing techniques.Nanostructured abrasive grits manufactured by hybrid fusion processes and by sintering/extrusion/printing processes are found to reduce pitting quite significantly.The phenomenon of wheel collapse is increasing and cycle times developed during the grinding of aerospace alloys are much smaller compared to using conventional materials.This paper reviews the phenomenon of wheel collapse induced by pitting and takes a critical look at the production and analysis of hybrid fused and printed/sintered abrasives.A mathematical analysis is carried out of the diffusion of primary and secondary phases due to mechanical and ultrasonic agitation with the aim of producing abrasive grits with improved strength and retention.Current developments in extruded,printed,and sintered grits for use in precision grinding applications are critically reviewed.The paper concludes by explaining how such abrasives are used in practice by industrial manufacturers of high-precision products. 展开更多
关键词 NANOTECHNOLOGY abrasives Alloys FINISHING GRINDING Machining
下载PDF
STUDIES ON MAGNETIC ABRASIVE MACHINING
20
作者 吴健 王珉 +1 位作者 左敦稳 李亮 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 1997年第1期47-52,共6页
This paper deals with the machining process using magnetic abrasives. Using an apparatus designed and made, a series of experiments are carried out, where the workpiece is cylindrical and the magnetic abrasives used ... This paper deals with the machining process using magnetic abrasives. Using an apparatus designed and made, a series of experiments are carried out, where the workpiece is cylindrical and the magnetic abrasives used are mainly Fe and Al 2O 3, for investigating the effects of machining time, working gap, rotating speed of workpieces, magnetic flux density on machining efficiency and surface roughness. At the end of this paper, the machining mechanism is also discussed. 展开更多
关键词 GRINDING surface roughness magnetic abrasive magnetic field density
下载PDF
上一页 1 2 18 下一页 到第
使用帮助 返回顶部