In order to ensure that Chinese BeiDou satellite navigation system runs smoothly,the assessment of signal quality has become a significant task.Alternative binary offset carrier(AltBOC)is BeiDou B2 frequency signal.Th...In order to ensure that Chinese BeiDou satellite navigation system runs smoothly,the assessment of signal quality has become a significant task.Alternative binary offset carrier(AltBOC)is BeiDou B2 frequency signal.The acquisition of BeiDou signal is processed in off-line mode and the evaluation is performed by taking signal power spectrum,eye diagram,constellation,correlation,loss and s-curve deviation on AltBOC as signal quality evaluation parameters.The results illustrate that the new system signal,namely AltBOC signal,has the best performance in code tracking precision,anti-jamming and anti-multipath.展开更多
Many safety-critical applications that utilize the global navigation satellite system (GNSS) demand highly accurate positioning information, as well as highly integrity and reliability. Due to GNSS signals are easily ...Many safety-critical applications that utilize the global navigation satellite system (GNSS) demand highly accurate positioning information, as well as highly integrity and reliability. Due to GNSS signals are easily distorted by the interferences or disturbances, the signal quality monitoring (SQM) is necessary to detect the presence of dangerous signal distortions. In this paper, we developed an SQM software for binary offset carrier (BOC) modulated navigation signals. Firstly, the models of BOC signal with ideal and distortion are presented respectively. Then the architecture of SQM software is proposed. Moreover, the effect of the white gaussian noise (WGN) and the front-end filter on the correlation peak of the receiver is analyzed. Finally, the biases induced by the signal distortion are evaluated. The experiments simulate the relationships between the code phase shift and the normalized correlation value in the case of the signal digital distortion and the analog distortion. The simulation results demonstrate that the proposed SQM method can effectively monitor the signal distortion and accurately estimate the correlation peak deviation caused by the distortion.展开更多
文摘In order to ensure that Chinese BeiDou satellite navigation system runs smoothly,the assessment of signal quality has become a significant task.Alternative binary offset carrier(AltBOC)is BeiDou B2 frequency signal.The acquisition of BeiDou signal is processed in off-line mode and the evaluation is performed by taking signal power spectrum,eye diagram,constellation,correlation,loss and s-curve deviation on AltBOC as signal quality evaluation parameters.The results illustrate that the new system signal,namely AltBOC signal,has the best performance in code tracking precision,anti-jamming and anti-multipath.
基金supported by the National Natural Science Foundation of China(61771393 61571368)
文摘Many safety-critical applications that utilize the global navigation satellite system (GNSS) demand highly accurate positioning information, as well as highly integrity and reliability. Due to GNSS signals are easily distorted by the interferences or disturbances, the signal quality monitoring (SQM) is necessary to detect the presence of dangerous signal distortions. In this paper, we developed an SQM software for binary offset carrier (BOC) modulated navigation signals. Firstly, the models of BOC signal with ideal and distortion are presented respectively. Then the architecture of SQM software is proposed. Moreover, the effect of the white gaussian noise (WGN) and the front-end filter on the correlation peak of the receiver is analyzed. Finally, the biases induced by the signal distortion are evaluated. The experiments simulate the relationships between the code phase shift and the normalized correlation value in the case of the signal digital distortion and the analog distortion. The simulation results demonstrate that the proposed SQM method can effectively monitor the signal distortion and accurately estimate the correlation peak deviation caused by the distortion.