BACKGROUND Pulmonary alveolar proteinosis(PAP)and X-linked agammaglobulinemia(XLA)are rare diseases in children.Many theories infer that immunodeficiency can induce PAP,but these reports are almost all review articles...BACKGROUND Pulmonary alveolar proteinosis(PAP)and X-linked agammaglobulinemia(XLA)are rare diseases in children.Many theories infer that immunodeficiency can induce PAP,but these reports are almost all review articles,and there is little clinical evidence.We report the case of a child with both PAP and XLA.CASE SUMMARY A 4-month-old boy sought medical treatment due to coughing and difficulty in breathing for>2 wk.He had been hospitalized multiple times due to respiratory infections and diarrhea.Chest computed tomography and alveolar lavage fluid showed typical PAP-related manifestations.Genetic testing confirmed that the boy also had XLA.Following total lung alveolar lavage and intravenous immunoglobulin replacement therapy,the boy recovered and was discharged.During the follow-up period,the number of respiratory infections was significantly reduced,and PAP did not recur.CONCLUSION XLA can induce PAP and improving immune function contributes to the prognosis of children with this type of PAP.展开更多
Multiple sclerosis is characterized by demyelination and neuronal loss caused by inflammatory cell activation and infiltration into the central nervous system.Macrophage polarization plays an important role in the pat...Multiple sclerosis is characterized by demyelination and neuronal loss caused by inflammatory cell activation and infiltration into the central nervous system.Macrophage polarization plays an important role in the pathogenesis of experimental autoimmune encephalomyelitis,a traditional experimental model of multiple sclerosis.This study investigated the effect of Fasudil on macrophages and examined the therapeutic potential of Fasudil-modified macrophages in experimental autoimmune encephalomyelitis.We found that Fasudil induced the conversion of macrophages from the pro-inflammatory M1 type to the anti-inflammatory M2 type,as shown by reduced expression of inducible nitric oxide synthase/nitric oxide,interleukin-12,and CD16/32 and increased expression of arginase-1,interleukin-10,CD14,and CD206,which was linked to inhibition of Rho kinase activity,decreased expression of toll-like receptors,nuclear factor-κB,and components of the mitogen-activated protein kinase signaling pathway,and generation of the pro-inflammatory cytokines tumor necrosis factor-α,interleukin-1β,and interleukin-6.Crucially,Fasudil-modified macrophages effectively decreased the impact of experimental autoimmune encephalomyelitis,resulting in later onset of disease,lower symptom scores,less weight loss,and reduced demyelination compared with unmodified macrophages.In addition,Fasudil-modified macrophages decreased interleukin-17 expression on CD4^(+)T cells and CD16/32,inducible nitric oxide synthase,and interleukin-12 expression on F4/80^(+)macrophages,as well as increasing interleukin-10 expression on CD4^(+)T cells and arginase-1,CD206,and interleukin-10 expression on F4/80^(+)macrophages,which improved immune regulation and reduced inflammation.These findings suggest that Fasudil-modified macrophages may help treat experimental autoimmune encephalomyelitis by inducing M2 macrophage polarization and inhibiting the inflammatory response,thereby providing new insight into cell immunotherapy for multiple sclerosis.展开更多
BACKGROUND:There are currently no effective drugs to mitigate the ischemia/reperfusion injury caused by fluid resuscitation after hemorrhagic shock(HS).The aim of this study was to explore the potential of the histone...BACKGROUND:There are currently no effective drugs to mitigate the ischemia/reperfusion injury caused by fluid resuscitation after hemorrhagic shock(HS).The aim of this study was to explore the potential of the histone deacetylase 6(HDAC6)-specific inhibitor tubastatin A(TubA)to suppress nucleotide-binding oligomerization domain-like receptor protein 3(NLRP3)inflammasome activation in macrophages under hypoxia/reoxygenation(H/R)conditions.METHODS:The viability of RAW264.7 cells subjected to H/R after treatment with different concentrations of TubA was assessed using a cell-counting kit-8(CCK8)assay.Briefly,2.5μmol/L TubA was used with RAW264.7 cells under H/R condition.RAW264.7 cells were divided into three groups,namely the control,H/R,and TubA groups.The levels of reactive oxygen species(ROS)in the cells were detected using fluorescence microscopy.The protein expression of HDAC6,heat shock protein 90(Hsp90),inducible nitric oxide synthase(iNOS),NLRP3,gasdermin-D(GSDMD),Caspase-1,GSDMD-N,and Caspase-1 p20 was detected by western blotting.The levels of interleukin-1β(IL-1β)and IL-18 in the supernatants were detected using enzyme-linked immunosorbent assay(ELISA).RESULTS:HDAC6,Hsp90,and iNOS expression levels were significantly higher(P<0.01)in the H/R group than in the control group,but lower in the TubA group than in the H/R group(P<0.05).When comparing the H/R group to the control group,ROS levels were significantly higher(P<0.01),but significantly reduced in the TubA group(P<0.05).The H/R group had higher NLRP3,GSDMD,Caspase-1,GSDMD-N,and Caspase-1 p20 expression levels than the control group(P<0.05),however,the TubA group had significantly lower expression levels than the H/R group(P<0.05).IL-1βand IL-18 levels in the supernatants were significantly higher in the H/R group compared to the control group(P<0.01),but significantly lower in the TubA group compared to the H/R group(P<0.01).CONCLUSION:TubA inhibited the expression of HDAC6,Hsp90,and iNOS in macrophages subjected to H/R.This inhibition led to a decrease in the content of ROS in cells,which subsequently inhibited the activation of the NLRP3 inflammasome and the secretion of IL-1βand IL-18.展开更多
BACKGROUND Skeletal muscle handles about 80% of insulin-stimulated glucose uptake and become the major organ occurring insulin resistance(IR).Many studies have confirmed the interactions between macrophages and skelet...BACKGROUND Skeletal muscle handles about 80% of insulin-stimulated glucose uptake and become the major organ occurring insulin resistance(IR).Many studies have confirmed the interactions between macrophages and skeletal muscle regulated the inflammation and regeneration of skeletal muscle.However,despite of the decades of research,whether macrophages infiltration and polarization in skeletal muscle under high glucose(HG)milieus results in the development of IR is yet to be elucidated.C2C12 myoblasts are well-established and excellent model to study myogenic regulation and its responses to stimulation.Further exploration of macrophages'role in myoblasts IR and the dynamics of their infiltration and polarization is warranted.AIM To evaluate interactions between myoblasts and macrophages under HG,and its effects on inflammation and IR in skeletal muscle.METHODS We detected the polarization status of macrophages infiltrated to skeletal muscles of IR mice by hematoxylin and eosin and immunohistochemical staining.Then,we developed an in vitro co-culture system to study the interactions between myoblasts and macrophages under HG milieus.The effects of myoblasts on macrophages were explored through morphological observation,CCK-8 assay,Flow Cytometry,and enzyme-linked immunosorbent assay.The mediation of macrophages to myogenesis and insulin sensitivity were detected by morphological observation,CCK-8 assay,Immunofluorescence,and 2-NBDG assay.RESULTS The F4/80 and co-localization of F4/80 and CD86 increased,and the myofiber size decreased in IR group(P<0.01,g=6.26).Compared to Mc group,F4/80+CD86+CD206-cells,tumor necrosis factor-α(TNFα),inerleukin-1β(IL-1β)and IL-6 decreased,and IL-10 increased in McM group(P<0.01,g>0.8).In McM+HG group,F4/80+CD86+CD206-cells,monocyte chemoattractant protein 1,TNFα,IL-1βand IL-6 were increased,and F4/80+CD206+CD86-cells and IL-10 were decreased compared with Mc+HG group and McM group(P<0.01,g>0.8).Compered to M group,myotube area,myotube number and E-MHC were increased in MMc group(P<0.01,g>0.8).In MMc+HG group,myotube area,myotube number,E-MHC,GLUT4 and glucose uptake were decreased compared with M+HG group and MMc group(P<0.01,g>0.8).CONCLUSION Interactions between myoblasts and macrophages under HG milieus results in inflammation and IR,which support that the macrophage may serve as a promising therapeutic target for skeletal muscle atrophy and IR.展开更多
Inflammation plays an important role in the occurrence and development of many inflammatory diseases.The purpose of this study was to evaluate the anti-inflammatory effect and metabolic behavior of the dual targeting ...Inflammation plays an important role in the occurrence and development of many inflammatory diseases.The purpose of this study was to evaluate the anti-inflammatory effect and metabolic behavior of the dual targeting procyanidins(PC)nanoparticles on lipopolysaccharide(LPS)-stimulated inflammatory macrophages by metabolomics method.The double-targeting PC nanoparticles could specifi cally target both the CD44 receptor and mitochondria,while the single targeting PC-loaded nanoparticles that could target the CD44 receptor on the surface of macrophages.The double-targeting PC nanoparticles had better inhibitory effect than single-targeting PC nanoparticles on the leakage of lactate dehydrogenase and reactive oxygen species overexpression induced by LPS.Amino acid metabolism,energy metabolism and purine metabolism were disordered in LPS-treated group,and metabolic pathway analysis indicated that the double-targeting PC nanoparticles reversed some of LPS impacts.The changes of these potential biomarkers and their corresponding pathways are helpful to further understand the mechanism of PC nanoparticles in alleviating inflammation,and promote their application in nutrition intervention.展开更多
BACKGROUND The NOD-like receptor family pyrin domain-containing 3(NLRP3)inflammasome is a significant component of the innate immune system that plays a vital role in the development of various parasitic diseases.Howe...BACKGROUND The NOD-like receptor family pyrin domain-containing 3(NLRP3)inflammasome is a significant component of the innate immune system that plays a vital role in the development of various parasitic diseases.However,its role in hepatic alveolar echinococcosis(HAE)remains unclear.AIM To investigate the NLRP3 inflammasome and its mechanism of activation in HAE.METHODS We assessed the expression of NLRP3,caspase-1,interleukin(IL)-1β,and IL-18 in the marginal zone and corresponding normal liver of 60 patients with HAE.A rat model of HAE was employed to investigate the role of the NLRP3 inflammasome in the marginal zone of HAE.Transwell experiments were conducted to investigate the effect of Echinococcus multilocularis(E.multilocularis)in stimulating Kupffer cells and hepatocytes.Furthermore,immunohistochemistry,Western blotting,and enzyme-linked immunosorbent assay were used to evaluate NLRP3,caspase-1,IL-1β,and IL-18 expression;flow cytometry was used to detect apoptosis and reactive oxygen species(ROS).RESULTS NLRP3 inflammasome activation was significantly associated with ROS.Inhibition of ROS production decreased NLRP3-caspase-1-IL-1βpathway activation and mitigated hepatocyte damage and inflammation.CONCLUSION E.multilocularis induces hepatocyte damage and inflammation by activating the ROS-mediated NLRP3-caspase-1-IL-1βpathway in Kupffer cells,indicating that ROS may serve as a potential target for the treatment of HAE.展开更多
The roles of voltage-dependent K^+ channels during activation and damage in alveolar macrophages (AMs) exposed to different silica particles were examined. Rat AMs were collected by means of bronchoalveolar lavage,...The roles of voltage-dependent K^+ channels during activation and damage in alveolar macrophages (AMs) exposed to different silica particles were examined. Rat AMs were collected by means of bronchoalveolar lavage, and were adjusted to 5× 10^5/mL. After AMs were exposed to different concentrations (0, 25, 50, 100, 200 μg/mL) of quartz particles and 100 μg/mL amorphous silica particles for 24 h, the voltage-depended K^+ current in AMs was measured by using patch clamp technique. Meanwhile the leakage of lactate dehydrogenase (LDH) and the viability of AMs were detected respectively. Patch clamp studies demonstrated that AMs possessed outward delayed and inward rectifying K^+ current. Exposure to quartz particles increased the outward delayed K^+ current but it had no effect on inward rectifier K^+ current in AMs. Neither of the two K^+ channels in AMs was affected by amorphous silica particles. Cytotoxicity test showed that both silica particles could damage AM membrane and result in significant leakage of LDH (P〈0.05). MTT studies, however, showed that only quartz particles reduced viability of AMs (P〈0.05). It is concluded that quartz parti- cles can activate the outward delayed K^+ channel in AMs, which may act as an activating signal in AMs to initiate an inflammatory response during damage and necrosis in AMs induced by exposure to quartz particle. K^+ channels do not contribute to the membrane damage of AMs.展开更多
Objective:To explore the expression of microRNA(miRNA) let-7c and its function in chronic obstructive pulmonary disease(COPD) and alveolar macrophage cells.Methods:Real time PCR was performed to detect the expression ...Objective:To explore the expression of microRNA(miRNA) let-7c and its function in chronic obstructive pulmonary disease(COPD) and alveolar macrophage cells.Methods:Real time PCR was performed to detect the expression of miRNA let-7c in the lung tissue of COPD patients and COPD model in mice.MiRNA let-7c was overexpresscd in alveolar macrophages isolated from mice and its effect was measured by the production of pro-inflammation cytokines and the protein level of signal transducer and activator of transcription 3(STAT3) as well as phosphorylation level of STAT3 after LPS stimulation.Luciferase assay was used to detect the binding of miRNA let-7c and 3'UTR of STAT3.Results:MiRNA let-7c expression was significantly lower in patients with COPD compared with control group,and the similar result was found in COPD mice and LPS stimulated alveolar macrophages.Overexpression of miRNA lct-7c in alveolar macrophages inhibited LPS-induced increasing of tumor necrosis factor alpha,interleukin-6 and interleukin-1β.Luciferase assay showed STAT3 was a targeting of miRNA lct-7c in alveolar macrophages.Conclusions:MiRNA lct-7c low expression in COPD can regulate inflammatory responses by targeting STAT3 in alveolar macrophage,which may provide a new target for COPD treatment strategies.展开更多
BACKGROUND Diabetic foot ulcers(DFUs)are one of the most severe and popular complications of diabetes.The persistent non-healing of DFUs is the leading cause of amputation,which causes significant mental and financial...BACKGROUND Diabetic foot ulcers(DFUs)are one of the most severe and popular complications of diabetes.The persistent non-healing of DFUs is the leading cause of amputation,which causes significant mental and financial stress to patients and their families.Macrophages are critical cells in wound healing and perform essential roles in all phases of wound healing.However,no studies have been carried out to systematically illustrate this area from a scientometric point of view.Although there have been some bibliometric studies on diabetes,reports focusing on the investigation of macrophages in DFUs are lacking.AIM To perform a bibliometric analysis to systematically assess the current state of research on macrophage-related DFUs.METHODS The publications of macrophage-related DFUs from January 1,2004,to December 31,2023,were retrieved from the Web of Science Core Collection on January 9,2024.Four different analytical tools:VOSviewer(v1.6.19),CiteSpace(v6.2.R4),HistCite(v12.03.07),and Excel 2021 were used for the scientometric research.RESULTS A total of 330 articles on macrophage-related DFUs were retrieved.The most published countries,institutions,journals,and authors in this field were China,Shanghai Jiao Tong University of China,Wound Repair and Regeneration,and Aristidis Veves.Through the analysis of keyword co-occurrence networks,historical direct citation networks,thematic maps,and trend topics maps,we synthesized the prevailing research hotspots and emerging trends in this field.CONCLUSION Our bibliometric analysis provides a comprehensive overview of macrophage-related DFUs research and insights into promising upcoming research.展开更多
Our previous study has demonstrated that lnc_000048 is upregulated in large-artery atherosclerotic stroke and promotes atherosclerosis in ApoE^(-/-)mice.However,little is known about the role of lnc_000048 in classica...Our previous study has demonstrated that lnc_000048 is upregulated in large-artery atherosclerotic stroke and promotes atherosclerosis in ApoE^(-/-)mice.However,little is known about the role of lnc_000048 in classically activated macrophage(M1)polarization.In this study,we established THP-1-derived testing state macrophages(M0),M1 macrophages,and alternately activated macrophages(M2).Real-time fluorescence quantitative PCR was used to verify the expression of marker genes and the expression of lnc_000048 in macrophages.Flow cytometry was used to detect phenotypic proteins(CD11b,CD38,CD80).We generated cell lines with lentivirus-mediated upregulation or downregulation of lnc_000048.Flow cytometry,western blot,and real-time fluorescence quantitative PCR results showed that down-regulation of lnc_000048 reduced M1 macrophage polarization and the inflammation response,while over-expression of lnc_000048 led to the opposite effect.Western blot results indicated that lnc_000048 enhanced the activation of the STAT1 pathway and mediated the M1 macrophage polarization.Moreover,catRAPID prediction,RNA-pull down,and mass spectrometry were used to identify and screen the protein kinase RNA-activated(PKR),then catRAPID and RPIseq were used to predict the binding ability of lnc_000048 to PKR.Immunofluorescence(IF)-RNA fluorescence in situ hybridization(FISH)double labeling was performed to verify the subcellular colocalization of lnc_000048 and PKR in the cytoplasm of M1 macrophage.We speculate that lnc_000048 may form stem-loop structure-specific binding and activate PKR by inducing its phosphorylation,leading to activation of STAT1 phosphorylation and thereby enhancing STAT1 pathway-mediated polarization of THP-1 macrophages to M1 and inflammatory factor expression.Taken together,these results reveal that the lnc_000048/PKR/STAT1 axis plays a crucial role in the polarization of M1 macrophages and may be a novel therapeutic target for atherosclerosis alleviation in stroke.展开更多
Macrophages play an important role in peripheral nerve regeneration,but the specific mechanism of regeneration is still unclear.Our preliminary findings indicated that neutrophil peptide 1 is an innate immune peptide ...Macrophages play an important role in peripheral nerve regeneration,but the specific mechanism of regeneration is still unclear.Our preliminary findings indicated that neutrophil peptide 1 is an innate immune peptide closely involved in peripheral nerve regeneration.However,the mechanism by which neutrophil peptide 1 enhances nerve regeneration remains unclear.This study was designed to investigate the relationship between neutrophil peptide 1 and macrophages in vivo and in vitro in peripheral nerve crush injury.The functions of RAW 264.7 cells we re elucidated by Cell Counting Kit-8 assay,flow cytometry,migration assays,phagocytosis assays,immunohistochemistry and enzyme-linked immunosorbent assay.Axonal debris phagocytosis was observed using the CUBIC(Clear,Unobstructed Brain/Body Imaging Cocktails and Computational analysis)optical clearing technique during Wallerian degeneration.Macrophage inflammatory factor expression in different polarization states was detected using a protein chip.The results showed that neutrophil peptide 1 promoted the prolife ration,migration and phagocytosis of macrophages,and CD206 expression on the surfa ce of macrophages,indicating M2 polarization.The axonal debris clearance rate during Wallerian degeneration was enhanced after neutrophil peptide 1 intervention.Neutrophil peptide 1 also downregulated inflammatory factors interleukin-1α,-6,-12,and tumor necrosis factor-αin invo and in vitro.Thus,the results suggest that neutrophil peptide 1 activates macrophages and accelerates Wallerian degeneration,which may be one mechanism by which neutrophil peptide 1 enhances peripheral nerve regeneration.展开更多
BACKGROUND Bone healing is a complex process involving early inflammatory immune regu-lation,angiogenesis,osteogenic differentiation,and biomineralization.Fracture repair poses challenges for orthopedic surgeons,neces...BACKGROUND Bone healing is a complex process involving early inflammatory immune regu-lation,angiogenesis,osteogenic differentiation,and biomineralization.Fracture repair poses challenges for orthopedic surgeons,necessitating the search for efficient healing methods.AIM To investigate the underlying mechanism by which hydrogel-loaded exosomes derived from bone marrow mesenchymal stem cells(BMSCs)facilitate the process of fracture healing.METHODS Hydrogels and loaded BMSC-derived exosome(BMSC-exo)gels were charac-terized to validate their properties.In vitro evaluations were conducted to assess the impact of hydrogels on various stages of the healing process.Hydrogels could recruit macrophages and inhibit inflammatory responses,enhance of human umbilical vein endothelial cell angiogenesis,and promote the osteogenic differen-tiation of primary cranial osteoblasts.Furthermore,the effect of hydrogel on fracture healing was confirmed using a mouse fracture model.RESULTS The hydrogel effectively attenuated the inflammatory response during the initial repair stage and subsequently facilitated vascular migration,promoted the formation of large vessels,and enabled functional vascularization during bone repair.These effects were further validated in fracture models.CONCLUSION We successfully fabricated a hydrogel loaded with BMSC-exo that modulates macrophage polarization and angiogenesis to influence bone regeneration.展开更多
Objective:To investigate the effect of mitogen-activated protein kinase interaction serine kinase 1(Mnk1)gene deletion on lipopolysaccharide(LPS)-induced inflammatory response in mouse macrophages(Mφ)and the possible...Objective:To investigate the effect of mitogen-activated protein kinase interaction serine kinase 1(Mnk1)gene deletion on lipopolysaccharide(LPS)-induced inflammatory response in mouse macrophages(Mφ)and the possible mechanism.Methods:Healthy male wildtype C57BL/6J(WT)and Mnk1 knockout(KO)mice were selected at 8-10 weeks of age and divided into WT+PBS,KO+PBS,WT+LPS and KO+LPS groups,and the serum levels of IL-1βwere measured by ELISA after 24 h intraperitoneal injection of PBS or LPS.The mRNA expression levels of IL-1βand Sprouty2(Spry2)in the spleen Mφwere measured by qRTPCR.Mφwas also extracted from the peritoneal cavity of two strains of mice for in vitro experiments to detect macrophage adhesion function and stimulated with equal volumes of LPS or PBS solution for 24 h,divided into WT+PBS group,KO+PBS group,WT+LPS group and KO+LPS group,and transfected with adenovirus expressing Spry2.qRT-PCR was used to detect the mRNA expression levels of LFA-1α,IL-1β,iNOS,CD206,Arg1 and Spry2 in Mφ.Mnk1,ERK1/2,P-ERK1/2,P-p38,P-JNK and Spry2 protein levels in Mφwere detected by western blot.Results:In the in vivo experiments,the concentration of IL-1βin the serum of the KO+LPS group was more significantly elevated than that of the WT+LPS group in mice injected intraperitoneally with LPS.The expression level of splenic MφIL-1βwas higher and the mRNA expression level of Spry2 was decreased in the KO+LPS group compared to the WT+LPS group.In the in vitro experiments,the mRNA expression levels of IL-1βand iNOS were elevated and those of CD206,Arg1 and Spry2 were decreased in the KO+LPS group compared with the WT+LPS group;the expression of LFA-1αwas not significantly different in the WT+PBS and WT+LPS groups,while the expression level of LFA-1αwas significantly increased in the KO+LPS group compared with the WT+LPS group.The results of the macrophage adhesion function assay showed that the adhesion rate of Mφin the KO group was increased at several time points compared to the WT group.After LPS stimulation,the expression of MφSpry2 decreased in Mnk1 KO group compared to WT group,while the expression of P-ERK1/2 increased compared to WT group.After Mφwas transfected with adenovirus overexpressing Spry2 and stimulated with LPS,MφSpry2 expression increased in the KO+AdSpry2 group and P-ERK1/2 expression decreased significantly compared to KO+AdGFP.Conclusion:Mnk1 knockdown enhances LPS-induced inflammatory responses in macrophages,and the mechanism may be related to the involvement of Spry2,a substrate of Mnk1,in regulating macrophage function.展开更多
Preclinical and clinical studies have shown that microglia and macrophages participate in a multiphasic brain damage repair process following intracerebral hemorrhage.The E26 transformation-specific sequence-related t...Preclinical and clinical studies have shown that microglia and macrophages participate in a multiphasic brain damage repair process following intracerebral hemorrhage.The E26 transformation-specific sequence-related transcription factor Spi1 regulates microglial/macrophage commitment and maturation.However,the effect of Spi1 on intracerebral hemorrhage remains unclear.In this study,we found that Spi1 may regulate recovery from the neuroinflammation and neurofunctional damage caused by intracerebral hemorrhage by modulating the microglial/macrophage transcriptome.We showed that high Spi1expression in microglia/macrophages after intracerebral hemorrhage is associated with the activation of many pathways that promote phagocytosis,glycolysis,and autophagy,as well as debris clearance and sustained remyelination.Notably,microglia with higher levels of Soil expression were chara cterized by activation of pathways associated with a variety of hemorrhage-related cellular processes,such as complement activation,angiogenesis,and coagulation.In conclusion,our results suggest that Spi1 plays a vital role in the microglial/macrophage inflammatory response following intracerebral hemorrhage.This new insight into the regulation of Spi1 and its target genes may advance our understanding of neuroinflammation in intracerebral hemorrhage and provide therapeutic targets for patients with intracerebral hemorrhage.展开更多
Objective:To investigate the effect of exosomes secreted by decidual macrophages on trophoblast cells and their molecular mechanism.Methods:The decidual tissues of patients with preeclampsia(PE)and normal-term pregnan...Objective:To investigate the effect of exosomes secreted by decidual macrophages on trophoblast cells and their molecular mechanism.Methods:The decidual tissues of patients with preeclampsia(PE)and normal-term pregnant women were collected.Macrophages were obtained by the density gradient method and then flow cell sorting,then the exosomes were extracted.The structure of the exosomes was observed by transmission electron microscope.The expression of CD63,a marker protein of the exocrine body,was detected by western blot,and the exosomes were identified.CCK-8 was used to detect the effect of exosomes on trophoblast cell viability.Transwell migration experiment was used to detect the influence on migration ability.The expression of miR-146a-5p in exosomes was detected by qPCR.The effect of exosomes on the expression of HIF1αprotein in trophoblasts was detected by western blot and detection of the binding site between miR-146a-5p and HIF1αby double luciferase reporter gene was conducted.Results:The exosomes of macrophages present a"cake"structure with a middle depression about 30-130 nm in diameter,and CD63 is highly expressed,which conforms to the characteristics of exosomes.Compared with the normal group,the exosomes of decidual macrophages in the PE group inhibited the activity and migration of trophoblast cells(P<0.001).The expression of miR-146a-5p in the exosomes of decidual macrophages in the PE decreased significantly,and after exosomes of PE decidual macrophages treating trophoblast cells,the protein expression of HIF1αin trophoblast cells was significantly increased.There are targeted binding sites between miR-146a-5p and HIF1α.Conclusion:PE decidual macrophage exosomes can inhibit the viability and migration of trophoblast cells,which may be related to the decreased expression of miR-146a-5p in exosomes,thus promoting HIF1αprotein expression of trophoblast cells.展开更多
基金Supported by Sanitation Research Project of Kunming Municipal Health Commission,No.2020-06-01-119.
文摘BACKGROUND Pulmonary alveolar proteinosis(PAP)and X-linked agammaglobulinemia(XLA)are rare diseases in children.Many theories infer that immunodeficiency can induce PAP,but these reports are almost all review articles,and there is little clinical evidence.We report the case of a child with both PAP and XLA.CASE SUMMARY A 4-month-old boy sought medical treatment due to coughing and difficulty in breathing for>2 wk.He had been hospitalized multiple times due to respiratory infections and diarrhea.Chest computed tomography and alveolar lavage fluid showed typical PAP-related manifestations.Genetic testing confirmed that the boy also had XLA.Following total lung alveolar lavage and intravenous immunoglobulin replacement therapy,the boy recovered and was discharged.During the follow-up period,the number of respiratory infections was significantly reduced,and PAP did not recur.CONCLUSION XLA can induce PAP and improving immune function contributes to the prognosis of children with this type of PAP.
基金supported by a grant from the Department of Science and Technology of Shanxi Province,China,No.20210302123477(to CL)Datong Bureau of Science and Technology of China,No.2020152(to CL)the Opening Foundation of Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine,No.2022-KF-03(to CL).
文摘Multiple sclerosis is characterized by demyelination and neuronal loss caused by inflammatory cell activation and infiltration into the central nervous system.Macrophage polarization plays an important role in the pathogenesis of experimental autoimmune encephalomyelitis,a traditional experimental model of multiple sclerosis.This study investigated the effect of Fasudil on macrophages and examined the therapeutic potential of Fasudil-modified macrophages in experimental autoimmune encephalomyelitis.We found that Fasudil induced the conversion of macrophages from the pro-inflammatory M1 type to the anti-inflammatory M2 type,as shown by reduced expression of inducible nitric oxide synthase/nitric oxide,interleukin-12,and CD16/32 and increased expression of arginase-1,interleukin-10,CD14,and CD206,which was linked to inhibition of Rho kinase activity,decreased expression of toll-like receptors,nuclear factor-κB,and components of the mitogen-activated protein kinase signaling pathway,and generation of the pro-inflammatory cytokines tumor necrosis factor-α,interleukin-1β,and interleukin-6.Crucially,Fasudil-modified macrophages effectively decreased the impact of experimental autoimmune encephalomyelitis,resulting in later onset of disease,lower symptom scores,less weight loss,and reduced demyelination compared with unmodified macrophages.In addition,Fasudil-modified macrophages decreased interleukin-17 expression on CD4^(+)T cells and CD16/32,inducible nitric oxide synthase,and interleukin-12 expression on F4/80^(+)macrophages,as well as increasing interleukin-10 expression on CD4^(+)T cells and arginase-1,CD206,and interleukin-10 expression on F4/80^(+)macrophages,which improved immune regulation and reduced inflammation.These findings suggest that Fasudil-modified macrophages may help treat experimental autoimmune encephalomyelitis by inducing M2 macrophage polarization and inhibiting the inflammatory response,thereby providing new insight into cell immunotherapy for multiple sclerosis.
基金supported by National Natural Science Foundation of China(82102315).
文摘BACKGROUND:There are currently no effective drugs to mitigate the ischemia/reperfusion injury caused by fluid resuscitation after hemorrhagic shock(HS).The aim of this study was to explore the potential of the histone deacetylase 6(HDAC6)-specific inhibitor tubastatin A(TubA)to suppress nucleotide-binding oligomerization domain-like receptor protein 3(NLRP3)inflammasome activation in macrophages under hypoxia/reoxygenation(H/R)conditions.METHODS:The viability of RAW264.7 cells subjected to H/R after treatment with different concentrations of TubA was assessed using a cell-counting kit-8(CCK8)assay.Briefly,2.5μmol/L TubA was used with RAW264.7 cells under H/R condition.RAW264.7 cells were divided into three groups,namely the control,H/R,and TubA groups.The levels of reactive oxygen species(ROS)in the cells were detected using fluorescence microscopy.The protein expression of HDAC6,heat shock protein 90(Hsp90),inducible nitric oxide synthase(iNOS),NLRP3,gasdermin-D(GSDMD),Caspase-1,GSDMD-N,and Caspase-1 p20 was detected by western blotting.The levels of interleukin-1β(IL-1β)and IL-18 in the supernatants were detected using enzyme-linked immunosorbent assay(ELISA).RESULTS:HDAC6,Hsp90,and iNOS expression levels were significantly higher(P<0.01)in the H/R group than in the control group,but lower in the TubA group than in the H/R group(P<0.05).When comparing the H/R group to the control group,ROS levels were significantly higher(P<0.01),but significantly reduced in the TubA group(P<0.05).The H/R group had higher NLRP3,GSDMD,Caspase-1,GSDMD-N,and Caspase-1 p20 expression levels than the control group(P<0.05),however,the TubA group had significantly lower expression levels than the H/R group(P<0.05).IL-1βand IL-18 levels in the supernatants were significantly higher in the H/R group compared to the control group(P<0.01),but significantly lower in the TubA group compared to the H/R group(P<0.01).CONCLUSION:TubA inhibited the expression of HDAC6,Hsp90,and iNOS in macrophages subjected to H/R.This inhibition led to a decrease in the content of ROS in cells,which subsequently inhibited the activation of the NLRP3 inflammasome and the secretion of IL-1βand IL-18.
基金Supported by National Natural Science Foundation of China,No.32200944“Qing Lan”Project of Jiangsu Provincethe Jiangsu Research Institute of Sports Science Foundation,No.BM-2023-03.
文摘BACKGROUND Skeletal muscle handles about 80% of insulin-stimulated glucose uptake and become the major organ occurring insulin resistance(IR).Many studies have confirmed the interactions between macrophages and skeletal muscle regulated the inflammation and regeneration of skeletal muscle.However,despite of the decades of research,whether macrophages infiltration and polarization in skeletal muscle under high glucose(HG)milieus results in the development of IR is yet to be elucidated.C2C12 myoblasts are well-established and excellent model to study myogenic regulation and its responses to stimulation.Further exploration of macrophages'role in myoblasts IR and the dynamics of their infiltration and polarization is warranted.AIM To evaluate interactions between myoblasts and macrophages under HG,and its effects on inflammation and IR in skeletal muscle.METHODS We detected the polarization status of macrophages infiltrated to skeletal muscles of IR mice by hematoxylin and eosin and immunohistochemical staining.Then,we developed an in vitro co-culture system to study the interactions between myoblasts and macrophages under HG milieus.The effects of myoblasts on macrophages were explored through morphological observation,CCK-8 assay,Flow Cytometry,and enzyme-linked immunosorbent assay.The mediation of macrophages to myogenesis and insulin sensitivity were detected by morphological observation,CCK-8 assay,Immunofluorescence,and 2-NBDG assay.RESULTS The F4/80 and co-localization of F4/80 and CD86 increased,and the myofiber size decreased in IR group(P<0.01,g=6.26).Compared to Mc group,F4/80+CD86+CD206-cells,tumor necrosis factor-α(TNFα),inerleukin-1β(IL-1β)and IL-6 decreased,and IL-10 increased in McM group(P<0.01,g>0.8).In McM+HG group,F4/80+CD86+CD206-cells,monocyte chemoattractant protein 1,TNFα,IL-1βand IL-6 were increased,and F4/80+CD206+CD86-cells and IL-10 were decreased compared with Mc+HG group and McM group(P<0.01,g>0.8).Compered to M group,myotube area,myotube number and E-MHC were increased in MMc group(P<0.01,g>0.8).In MMc+HG group,myotube area,myotube number,E-MHC,GLUT4 and glucose uptake were decreased compared with M+HG group and MMc group(P<0.01,g>0.8).CONCLUSION Interactions between myoblasts and macrophages under HG milieus results in inflammation and IR,which support that the macrophage may serve as a promising therapeutic target for skeletal muscle atrophy and IR.
基金supported by the National Science Fund for Distinguished Young Scholars of China(31925031).
文摘Inflammation plays an important role in the occurrence and development of many inflammatory diseases.The purpose of this study was to evaluate the anti-inflammatory effect and metabolic behavior of the dual targeting procyanidins(PC)nanoparticles on lipopolysaccharide(LPS)-stimulated inflammatory macrophages by metabolomics method.The double-targeting PC nanoparticles could specifi cally target both the CD44 receptor and mitochondria,while the single targeting PC-loaded nanoparticles that could target the CD44 receptor on the surface of macrophages.The double-targeting PC nanoparticles had better inhibitory effect than single-targeting PC nanoparticles on the leakage of lactate dehydrogenase and reactive oxygen species overexpression induced by LPS.Amino acid metabolism,energy metabolism and purine metabolism were disordered in LPS-treated group,and metabolic pathway analysis indicated that the double-targeting PC nanoparticles reversed some of LPS impacts.The changes of these potential biomarkers and their corresponding pathways are helpful to further understand the mechanism of PC nanoparticles in alleviating inflammation,and promote their application in nutrition intervention.
基金Supported by the National Major Research and Development Project of“Precision Medicine Research”,No.2017YFC0909900Qinghai Province Science and Technology Department Programme,No.2019-SF-131the Qinghai Province Health and Family Planning Commission Programme,No.2016-wjzd-04.
文摘BACKGROUND The NOD-like receptor family pyrin domain-containing 3(NLRP3)inflammasome is a significant component of the innate immune system that plays a vital role in the development of various parasitic diseases.However,its role in hepatic alveolar echinococcosis(HAE)remains unclear.AIM To investigate the NLRP3 inflammasome and its mechanism of activation in HAE.METHODS We assessed the expression of NLRP3,caspase-1,interleukin(IL)-1β,and IL-18 in the marginal zone and corresponding normal liver of 60 patients with HAE.A rat model of HAE was employed to investigate the role of the NLRP3 inflammasome in the marginal zone of HAE.Transwell experiments were conducted to investigate the effect of Echinococcus multilocularis(E.multilocularis)in stimulating Kupffer cells and hepatocytes.Furthermore,immunohistochemistry,Western blotting,and enzyme-linked immunosorbent assay were used to evaluate NLRP3,caspase-1,IL-1β,and IL-18 expression;flow cytometry was used to detect apoptosis and reactive oxygen species(ROS).RESULTS NLRP3 inflammasome activation was significantly associated with ROS.Inhibition of ROS production decreased NLRP3-caspase-1-IL-1βpathway activation and mitigated hepatocyte damage and inflammation.CONCLUSION E.multilocularis induces hepatocyte damage and inflammation by activating the ROS-mediated NLRP3-caspase-1-IL-1βpathway in Kupffer cells,indicating that ROS may serve as a potential target for the treatment of HAE.
基金supported by a grant from the National Natural Sciences Foundation of China (No. 30671743)
文摘The roles of voltage-dependent K^+ channels during activation and damage in alveolar macrophages (AMs) exposed to different silica particles were examined. Rat AMs were collected by means of bronchoalveolar lavage, and were adjusted to 5× 10^5/mL. After AMs were exposed to different concentrations (0, 25, 50, 100, 200 μg/mL) of quartz particles and 100 μg/mL amorphous silica particles for 24 h, the voltage-depended K^+ current in AMs was measured by using patch clamp technique. Meanwhile the leakage of lactate dehydrogenase (LDH) and the viability of AMs were detected respectively. Patch clamp studies demonstrated that AMs possessed outward delayed and inward rectifying K^+ current. Exposure to quartz particles increased the outward delayed K^+ current but it had no effect on inward rectifier K^+ current in AMs. Neither of the two K^+ channels in AMs was affected by amorphous silica particles. Cytotoxicity test showed that both silica particles could damage AM membrane and result in significant leakage of LDH (P〈0.05). MTT studies, however, showed that only quartz particles reduced viability of AMs (P〈0.05). It is concluded that quartz parti- cles can activate the outward delayed K^+ channel in AMs, which may act as an activating signal in AMs to initiate an inflammatory response during damage and necrosis in AMs induced by exposure to quartz particle. K^+ channels do not contribute to the membrane damage of AMs.
基金founded by the Medical Scientific Research Projects of Health Family Planning Commission of Chongqing(20142019)
文摘Objective:To explore the expression of microRNA(miRNA) let-7c and its function in chronic obstructive pulmonary disease(COPD) and alveolar macrophage cells.Methods:Real time PCR was performed to detect the expression of miRNA let-7c in the lung tissue of COPD patients and COPD model in mice.MiRNA let-7c was overexpresscd in alveolar macrophages isolated from mice and its effect was measured by the production of pro-inflammation cytokines and the protein level of signal transducer and activator of transcription 3(STAT3) as well as phosphorylation level of STAT3 after LPS stimulation.Luciferase assay was used to detect the binding of miRNA let-7c and 3'UTR of STAT3.Results:MiRNA let-7c expression was significantly lower in patients with COPD compared with control group,and the similar result was found in COPD mice and LPS stimulated alveolar macrophages.Overexpression of miRNA lct-7c in alveolar macrophages inhibited LPS-induced increasing of tumor necrosis factor alpha,interleukin-6 and interleukin-1β.Luciferase assay showed STAT3 was a targeting of miRNA lct-7c in alveolar macrophages.Conclusions:MiRNA lct-7c low expression in COPD can regulate inflammatory responses by targeting STAT3 in alveolar macrophage,which may provide a new target for COPD treatment strategies.
基金Supported by the Science and Technology Planning Project of Guangzhou,No.2024A03J1132the Foundation of Guangdong Provincial Medical Science and Technology,No.B2024038.
文摘BACKGROUND Diabetic foot ulcers(DFUs)are one of the most severe and popular complications of diabetes.The persistent non-healing of DFUs is the leading cause of amputation,which causes significant mental and financial stress to patients and their families.Macrophages are critical cells in wound healing and perform essential roles in all phases of wound healing.However,no studies have been carried out to systematically illustrate this area from a scientometric point of view.Although there have been some bibliometric studies on diabetes,reports focusing on the investigation of macrophages in DFUs are lacking.AIM To perform a bibliometric analysis to systematically assess the current state of research on macrophage-related DFUs.METHODS The publications of macrophage-related DFUs from January 1,2004,to December 31,2023,were retrieved from the Web of Science Core Collection on January 9,2024.Four different analytical tools:VOSviewer(v1.6.19),CiteSpace(v6.2.R4),HistCite(v12.03.07),and Excel 2021 were used for the scientometric research.RESULTS A total of 330 articles on macrophage-related DFUs were retrieved.The most published countries,institutions,journals,and authors in this field were China,Shanghai Jiao Tong University of China,Wound Repair and Regeneration,and Aristidis Veves.Through the analysis of keyword co-occurrence networks,historical direct citation networks,thematic maps,and trend topics maps,we synthesized the prevailing research hotspots and emerging trends in this field.CONCLUSION Our bibliometric analysis provides a comprehensive overview of macrophage-related DFUs research and insights into promising upcoming research.
基金supported by the Natural Science Foundation of Shandong Province,No.ZR2020MH138(to XZ).
文摘Our previous study has demonstrated that lnc_000048 is upregulated in large-artery atherosclerotic stroke and promotes atherosclerosis in ApoE^(-/-)mice.However,little is known about the role of lnc_000048 in classically activated macrophage(M1)polarization.In this study,we established THP-1-derived testing state macrophages(M0),M1 macrophages,and alternately activated macrophages(M2).Real-time fluorescence quantitative PCR was used to verify the expression of marker genes and the expression of lnc_000048 in macrophages.Flow cytometry was used to detect phenotypic proteins(CD11b,CD38,CD80).We generated cell lines with lentivirus-mediated upregulation or downregulation of lnc_000048.Flow cytometry,western blot,and real-time fluorescence quantitative PCR results showed that down-regulation of lnc_000048 reduced M1 macrophage polarization and the inflammation response,while over-expression of lnc_000048 led to the opposite effect.Western blot results indicated that lnc_000048 enhanced the activation of the STAT1 pathway and mediated the M1 macrophage polarization.Moreover,catRAPID prediction,RNA-pull down,and mass spectrometry were used to identify and screen the protein kinase RNA-activated(PKR),then catRAPID and RPIseq were used to predict the binding ability of lnc_000048 to PKR.Immunofluorescence(IF)-RNA fluorescence in situ hybridization(FISH)double labeling was performed to verify the subcellular colocalization of lnc_000048 and PKR in the cytoplasm of M1 macrophage.We speculate that lnc_000048 may form stem-loop structure-specific binding and activate PKR by inducing its phosphorylation,leading to activation of STAT1 phosphorylation and thereby enhancing STAT1 pathway-mediated polarization of THP-1 macrophages to M1 and inflammatory factor expression.Taken together,these results reveal that the lnc_000048/PKR/STAT1 axis plays a crucial role in the polarization of M1 macrophages and may be a novel therapeutic target for atherosclerosis alleviation in stroke.
基金supported by the National Natural Science Foundation of China,No.32371048(to YK)the Peking University People’s Hospital Research and Development Funds,No.RDX2021-01(to YK)the Natural Science Foundation of Beijing,No.7222198(to NH)。
文摘Macrophages play an important role in peripheral nerve regeneration,but the specific mechanism of regeneration is still unclear.Our preliminary findings indicated that neutrophil peptide 1 is an innate immune peptide closely involved in peripheral nerve regeneration.However,the mechanism by which neutrophil peptide 1 enhances nerve regeneration remains unclear.This study was designed to investigate the relationship between neutrophil peptide 1 and macrophages in vivo and in vitro in peripheral nerve crush injury.The functions of RAW 264.7 cells we re elucidated by Cell Counting Kit-8 assay,flow cytometry,migration assays,phagocytosis assays,immunohistochemistry and enzyme-linked immunosorbent assay.Axonal debris phagocytosis was observed using the CUBIC(Clear,Unobstructed Brain/Body Imaging Cocktails and Computational analysis)optical clearing technique during Wallerian degeneration.Macrophage inflammatory factor expression in different polarization states was detected using a protein chip.The results showed that neutrophil peptide 1 promoted the prolife ration,migration and phagocytosis of macrophages,and CD206 expression on the surfa ce of macrophages,indicating M2 polarization.The axonal debris clearance rate during Wallerian degeneration was enhanced after neutrophil peptide 1 intervention.Neutrophil peptide 1 also downregulated inflammatory factors interleukin-1α,-6,-12,and tumor necrosis factor-αin invo and in vitro.Thus,the results suggest that neutrophil peptide 1 activates macrophages and accelerates Wallerian degeneration,which may be one mechanism by which neutrophil peptide 1 enhances peripheral nerve regeneration.
文摘BACKGROUND Bone healing is a complex process involving early inflammatory immune regu-lation,angiogenesis,osteogenic differentiation,and biomineralization.Fracture repair poses challenges for orthopedic surgeons,necessitating the search for efficient healing methods.AIM To investigate the underlying mechanism by which hydrogel-loaded exosomes derived from bone marrow mesenchymal stem cells(BMSCs)facilitate the process of fracture healing.METHODS Hydrogels and loaded BMSC-derived exosome(BMSC-exo)gels were charac-terized to validate their properties.In vitro evaluations were conducted to assess the impact of hydrogels on various stages of the healing process.Hydrogels could recruit macrophages and inhibit inflammatory responses,enhance of human umbilical vein endothelial cell angiogenesis,and promote the osteogenic differen-tiation of primary cranial osteoblasts.Furthermore,the effect of hydrogel on fracture healing was confirmed using a mouse fracture model.RESULTS The hydrogel effectively attenuated the inflammatory response during the initial repair stage and subsequently facilitated vascular migration,promoted the formation of large vessels,and enabled functional vascularization during bone repair.These effects were further validated in fracture models.CONCLUSION We successfully fabricated a hydrogel loaded with BMSC-exo that modulates macrophage polarization and angiogenesis to influence bone regeneration.
基金The National Key R&D Program(2018YFC1311300)Scientific Research Project of Hubei Health Commission(WJ2021Q035)。
文摘Objective:To investigate the effect of mitogen-activated protein kinase interaction serine kinase 1(Mnk1)gene deletion on lipopolysaccharide(LPS)-induced inflammatory response in mouse macrophages(Mφ)and the possible mechanism.Methods:Healthy male wildtype C57BL/6J(WT)and Mnk1 knockout(KO)mice were selected at 8-10 weeks of age and divided into WT+PBS,KO+PBS,WT+LPS and KO+LPS groups,and the serum levels of IL-1βwere measured by ELISA after 24 h intraperitoneal injection of PBS or LPS.The mRNA expression levels of IL-1βand Sprouty2(Spry2)in the spleen Mφwere measured by qRTPCR.Mφwas also extracted from the peritoneal cavity of two strains of mice for in vitro experiments to detect macrophage adhesion function and stimulated with equal volumes of LPS or PBS solution for 24 h,divided into WT+PBS group,KO+PBS group,WT+LPS group and KO+LPS group,and transfected with adenovirus expressing Spry2.qRT-PCR was used to detect the mRNA expression levels of LFA-1α,IL-1β,iNOS,CD206,Arg1 and Spry2 in Mφ.Mnk1,ERK1/2,P-ERK1/2,P-p38,P-JNK and Spry2 protein levels in Mφwere detected by western blot.Results:In the in vivo experiments,the concentration of IL-1βin the serum of the KO+LPS group was more significantly elevated than that of the WT+LPS group in mice injected intraperitoneally with LPS.The expression level of splenic MφIL-1βwas higher and the mRNA expression level of Spry2 was decreased in the KO+LPS group compared to the WT+LPS group.In the in vitro experiments,the mRNA expression levels of IL-1βand iNOS were elevated and those of CD206,Arg1 and Spry2 were decreased in the KO+LPS group compared with the WT+LPS group;the expression of LFA-1αwas not significantly different in the WT+PBS and WT+LPS groups,while the expression level of LFA-1αwas significantly increased in the KO+LPS group compared with the WT+LPS group.The results of the macrophage adhesion function assay showed that the adhesion rate of Mφin the KO group was increased at several time points compared to the WT group.After LPS stimulation,the expression of MφSpry2 decreased in Mnk1 KO group compared to WT group,while the expression of P-ERK1/2 increased compared to WT group.After Mφwas transfected with adenovirus overexpressing Spry2 and stimulated with LPS,MφSpry2 expression increased in the KO+AdSpry2 group and P-ERK1/2 expression decreased significantly compared to KO+AdGFP.Conclusion:Mnk1 knockdown enhances LPS-induced inflammatory responses in macrophages,and the mechanism may be related to the involvement of Spry2,a substrate of Mnk1,in regulating macrophage function.
基金supported by the National Natural Science Foundation of China,No.81971097(to JY)。
文摘Preclinical and clinical studies have shown that microglia and macrophages participate in a multiphasic brain damage repair process following intracerebral hemorrhage.The E26 transformation-specific sequence-related transcription factor Spi1 regulates microglial/macrophage commitment and maturation.However,the effect of Spi1 on intracerebral hemorrhage remains unclear.In this study,we found that Spi1 may regulate recovery from the neuroinflammation and neurofunctional damage caused by intracerebral hemorrhage by modulating the microglial/macrophage transcriptome.We showed that high Spi1expression in microglia/macrophages after intracerebral hemorrhage is associated with the activation of many pathways that promote phagocytosis,glycolysis,and autophagy,as well as debris clearance and sustained remyelination.Notably,microglia with higher levels of Soil expression were chara cterized by activation of pathways associated with a variety of hemorrhage-related cellular processes,such as complement activation,angiogenesis,and coagulation.In conclusion,our results suggest that Spi1 plays a vital role in the microglial/macrophage inflammatory response following intracerebral hemorrhage.This new insight into the regulation of Spi1 and its target genes may advance our understanding of neuroinflammation in intracerebral hemorrhage and provide therapeutic targets for patients with intracerebral hemorrhage.
基金Hainan Provincial Natural Science Foundation Project(821MS128,822MS164)Hainan Provincial People's Hospital National Natural Science Foundation Cultivation Project(530)(2021MSXM04)。
文摘Objective:To investigate the effect of exosomes secreted by decidual macrophages on trophoblast cells and their molecular mechanism.Methods:The decidual tissues of patients with preeclampsia(PE)and normal-term pregnant women were collected.Macrophages were obtained by the density gradient method and then flow cell sorting,then the exosomes were extracted.The structure of the exosomes was observed by transmission electron microscope.The expression of CD63,a marker protein of the exocrine body,was detected by western blot,and the exosomes were identified.CCK-8 was used to detect the effect of exosomes on trophoblast cell viability.Transwell migration experiment was used to detect the influence on migration ability.The expression of miR-146a-5p in exosomes was detected by qPCR.The effect of exosomes on the expression of HIF1αprotein in trophoblasts was detected by western blot and detection of the binding site between miR-146a-5p and HIF1αby double luciferase reporter gene was conducted.Results:The exosomes of macrophages present a"cake"structure with a middle depression about 30-130 nm in diameter,and CD63 is highly expressed,which conforms to the characteristics of exosomes.Compared with the normal group,the exosomes of decidual macrophages in the PE group inhibited the activity and migration of trophoblast cells(P<0.001).The expression of miR-146a-5p in the exosomes of decidual macrophages in the PE decreased significantly,and after exosomes of PE decidual macrophages treating trophoblast cells,the protein expression of HIF1αin trophoblast cells was significantly increased.There are targeted binding sites between miR-146a-5p and HIF1α.Conclusion:PE decidual macrophage exosomes can inhibit the viability and migration of trophoblast cells,which may be related to the decreased expression of miR-146a-5p in exosomes,thus promoting HIF1αprotein expression of trophoblast cells.