An innovative multi-layer composite explosion containment vessel(CECV)utilizing a sliding steel platealuminum honeycomb-fiber cloth sandwich is put forward to improve the anti-explosion capacity of a conventional sing...An innovative multi-layer composite explosion containment vessel(CECV)utilizing a sliding steel platealuminum honeycomb-fiber cloth sandwich is put forward to improve the anti-explosion capacity of a conventional single-layer explosion containment vessel(SECV).Firstly,a series of experiments and finite element(FE)simulations of internal explosions are implemented to understand the basic anti-explosion characteristics of a SECV and the rationality of the computational models and methods is verified by the comparison between the experimental results and simulation results.Based on this,the CECV is designed in detail and a variety of FE simulations are carried out to investigate effects of the sandwich structure,the explosive quantity and the laying mode of the fiber cloth on anti-explosion performance and dynamic response of the CECV under internal explosions.Simulation results indicate that the end cover is the critical position for both the SECV and CECV.The maximum pressure of the explosion shock wave and the maximum strain of the CECV can be extremely declined compared to those of the SECV.As a result,the explosive quantity the CECV can sustain is up to 20 times of that the SECV can sustain.Besides,as the explosive quantity increases,the internal pressure of the CECV keeps growing and the plastic deformation and failure of the sandwich structure become more and more severe,yielding plastic strain of the CECV in addition to elastic strain.The results also reveal that the laying angles of the fiber cloth's five layers have an impact on the anti-explosion performance of the CECV.For example,the CECV with fiber cloth layered in 0°/45°/90°/45°/0°mode has the optimal anti-capacity,compared to 0°/0°/0°/0°/0°and 0°/30°/60°/30°/0°modes.Overall,owing to remarkable anti-explosion capacity,this CECV can be regarded as a promising candidate for explosion resistance.展开更多
In order to improve the anti-explosion performance ofρ-Al_(2)O_(3) bonded corundum castables,H_(2)O_(2) was added(0,0.025%,0.050%,0.075%,0.100%and 0.125%,by mass)as the anti-explosion agent.After mixing and casting,s...In order to improve the anti-explosion performance ofρ-Al_(2)O_(3) bonded corundum castables,H_(2)O_(2) was added(0,0.025%,0.050%,0.075%,0.100%and 0.125%,by mass)as the anti-explosion agent.After mixing and casting,specimens were prepared.Some specimens were cured at room temperature for 12 h and demoulded for the anti-explosion performance test at different temperatures(450,500,550,600,650,700,750 and 800℃);the other specimens were cured,dried and fired,and tested in terms of the apparent porosity,the density,the cold mechanical properties,the air permeability and the pore size distribution.The results show that:(1)with the increase of the H_(2)O_(2) addition,the anti-explosion performance of castables increases gradually,the average pore size increases gradually,and the density and the strength decrease gradually;(2)by comprehensive consideration,the appropriate addition of H_(2)O_(2) shall be within 0.075%.展开更多
Free-standing covalent organic framework(COFs)nanofilms exhibit a remarkable ability to rapidly intercalate/de-intercalate Li^(+) in lithium-ion batteries,while simultaneously exposing affluent active sites in superca...Free-standing covalent organic framework(COFs)nanofilms exhibit a remarkable ability to rapidly intercalate/de-intercalate Li^(+) in lithium-ion batteries,while simultaneously exposing affluent active sites in supercapacitors.The development of these nanofilms offers a promising solution to address the persistent challenge of imbalanced charge storage kinetics between battery-type anode and capacitor-type cathode in lithium-ion capacitors(LICs).Herein,for the first time,custom-made COFBTMB-TP and COFTAPB-BPY nanofilms are synthesized as the anode and cathode,respectively,for an all-COF nanofilm-structured LIC.The COFBTMB-TP nanofilm with strong electronegative–CF3 groups enables tuning the partial electron cloud density for Li^(+) migration to ensure the rapid anode kinetic process.The thickness-regulated cathodic COFTAPB-BPY nanofilm can fit the anodic COF nanofilm in the capacity.Due to the aligned 1D channel,2D aromatic skeleton and accessible active sites of COF nanofilms,the whole COFTAPB-BPY//COFBTMB-TP LIC demonstrates a high energy density of 318 mWh cm^(−3) at a high-power density of 6 W cm^(−3),excellent rate capability,good cycle stability with the capacity retention rate of 77%after 5000-cycle.The COFTAPB-BPY//COFBTMB-TP LIC represents a new benchmark for currently reported film-type LICs and even film-type supercapacitors.After being comprehensively explored via ex situ XPS,7Li solid-state NMR analyses,and DFT calculation,it is found that the COFBTMB-TP nanofilm facilitates the reversible conversion of semi-ionic to ionic C–F bonds during lithium storage.COFBTMB-TP exhibits a strong interaction with Li^(+) due to the C–F,C=O,and C–N bonds,facilitating Li^(+) desolation and absorption from the electrolyte.This work addresses the challenge of imbalanced charge storage kinetics and capacity between the anode and cathode and also pave the way for future miniaturized and wearable LIC devices.展开更多
Lithium-ion capacitors(LICs) combining the advantages of lithium-ion batteries and supercapacitors are considered a promising nextgeneration energy storage device. However, the sluggish kinetics of battery-type anode ...Lithium-ion capacitors(LICs) combining the advantages of lithium-ion batteries and supercapacitors are considered a promising nextgeneration energy storage device. However, the sluggish kinetics of battery-type anode cannot match the capacitor-type cathode, restricting the development of LICs. Herein, hierarchical carbon framework(HCF) anode material composed of 0D carbon nanocage bridged with 2D graphene network are developed via a template-confined synthesis process. The HCF with nanocage structure reduces the Li^(+) transport path and benefits the rapid Li^(+) migration, while 2D graphene network can promote the electron interconnecting of carbon nanocages. In addition, the doped N atoms in HCF facilitate to the adsorption of ions and enhance the pseudo contribution, thus accelerate the kinetics of the anode. The HCF anode delivers high specific capacity, remarkable rate capability. The LIC pouch-cell based on HCF anode and active HCF(a-HCF) cathode can provide a high energy density of 162 Wh kg^(-1) and a superior power density of 15.8 kW kg^(-1), as well as a long cycling life exceeding 15,000cycles. This study demonstrates that the well-defined design of hierarchical carbon framework by incorporating 0D carbon nanocages and 2D graphene network is an effective strategy to promote LIC anode kinetics and hence boost the LIC electrochemical performance.展开更多
Metal-organic framework(MOF)-derived carbon composites have been considered as the promising materials for energy storage.However,the construction of MOF-based composites with highly controllable mode via the liquid-l...Metal-organic framework(MOF)-derived carbon composites have been considered as the promising materials for energy storage.However,the construction of MOF-based composites with highly controllable mode via the liquid-liquid synthesis method has a great challenge because of the simultaneous heterogeneous nucleation on substrates and the self-nucleation of individual MOF nanocrystals in the liquid phase.Herein,we report a bidirectional electrostatic generated self-assembly strategy to achieve the precisely controlled coatings of single-layer nanoscale MOFs on a range of substrates,including carbon nanotubes(CNTs),graphene oxide(GO),MXene,layered double hydroxides(LDHs),MOFs,and SiO_(2).The obtained MOF-based nanostructured carbon composite exhibits the hierarchical porosity(V_(meso)/V_(micro)∶2.4),ultrahigh N content of 12.4 at.%and"dual electrical conductive networks."The assembled aqueous zinc-ion hybrid capacitor(ZIC)with the prepared nanocarbon composite as a cathode shows a high specific capacitance of 236 F g^(-1)at 0.5 A g^(-1),great rate performance of 98 F g^(-1)at 100 A g^(-1),and especially,an ultralong cycling stability up to 230000 cycles with the capacitance retention of 90.1%.This work develops a repeatable and general method for the controlled construction of MOF coatings on various functional substrates and further fabricates carbon composites for ZICs with ultrastability.展开更多
Electric double-layer capacitors(EDLCs)with fast frequency response are regarded as small-scale alternatives to the commercial bulky aluminum electrolytic capacitors.Creating carbon-based nanoarray electrodes with pre...Electric double-layer capacitors(EDLCs)with fast frequency response are regarded as small-scale alternatives to the commercial bulky aluminum electrolytic capacitors.Creating carbon-based nanoarray electrodes with precise alignment and smooth ion channels is crucial for enhancing EDLCs’performance.However,controlling the density of macropore-dominated nanoarray electrodes poses challenges in boosting the capacitance of line-filtering EDLCs.Herein,a simple technique to finely adjust the vertical-pore diameter and inter-spacing in three-dimensional nanoporous anodic aluminum oxide(3D-AAO)template is achieved,and 3D compactly arranged carbon tube(3D-CACT)nanoarrays are created as electrodes for symmetrical EDLCs using nanoporous 3D-AAO template-assisted chemical vapor deposition of carbon.The 3D-CACT electrodes demonstrate a high surface area of 253.0 m^(2) g^(−1),a D/G band intensity ratio of 0.94,and a C/O atomic ratio of 8.As a result,the high-density 3D-CT nanoarray-based sandwich-type EDLCs demonstrate a record high specific areal capacitance of 3.23 mF cm^(-2) at 120 Hz and exceptional fast frequency response due to the vertically aligned and highly ordered nanoarray of closely packed CT units.The 3D-CT nanoarray electrode-based EDLCs could serve as line filters in integrated circuits,aiding power system miniaturization.展开更多
Solid-state zinc-ion capacitors are emerging as promising candidates for large-scale energy storage owing to improved safety,mechanical and thermal stability and easy-to-direct stacking.Hydrogel electrolytes are appea...Solid-state zinc-ion capacitors are emerging as promising candidates for large-scale energy storage owing to improved safety,mechanical and thermal stability and easy-to-direct stacking.Hydrogel electrolytes are appealing solid-state electrolytes because of eco-friendliness,high conductivity and intrinsic flexibility.However,the electrolyte/electrode interfacial contact and anti-freezing properties of current hydrogel electrolytes are still challenging for practical applications of zinc-ion capacitors.Here,we report a class of hydrogel electrolytes that couple high interfacial adhesion and anti-freezing performance.The synergy of tough hydrogel matrix and chemical anchorage enables a well-adhered interface between hydrogel electrolyte and electrode.Meanwhile,the cooperative solvation of ZnCl2 and LiCl hybrid salts renders the hydrogel electrolyte high ionic conductivity and mechanical elasticity simultaneously at low temperatures.More significantly,the Zn||carbon nanotubes hybrid capacitor based on this hydrogel electrolyte exhibits low-temperature capacitive performance,delivering high-energy density of 39 Wh kg^(-1)at-60°C with capacity retention of 98.7%over 10,000 cycles.With the benefits of the well-adhered electrolyte/electrode interface and the anti-freezing hydrogel electrolyte,the Zn/Li hybrid capacitor is able to accommodate dynamic deformations and function well under 1000 tension cycles even at-60°C.This work provides a powerful strategy for enabling stable operation of low-temperature zinc-ion capacitors.展开更多
Sodium with low cost and high abundance is considered as a substitute element of lithium for batteries and supercapacitors,which need the appropriate host materials to accommodate the relatively large Na^(+) ions.Comp...Sodium with low cost and high abundance is considered as a substitute element of lithium for batteries and supercapacitors,which need the appropriate host materials to accommodate the relatively large Na^(+) ions.Compared to Li^(+) storage,Na^(+) storage makes higher demands on the structural optimization of perovskite bismuth ferrite(BiFeO_(3)).We propose a novel strategy of defect engineering on BiFeO_(3) through Na and V codoping for high-efficiency Na^(+) storage,to reveal the roles of oxygen vacancies and V ions played in the enhanced electrochemical energy storage performances of Na-ion capacitors.The formation of the oxygen vacancies in the Na and V codoped BiFeO_(3)(denoted as NV-BFO),is promoted by Na doping and suppressed by V doping,which can be demonstrated by XPS and EPR spectra.By the first-principles calculations,the oxygen vacancies and V ions in NV-BFO are confirmed to substantially lower the Na^(+)migration energy barriers through the space and electric field effects,to effectively promote the Na^(+) transport in the crystals.Electrochemical kinetic analysis of the NV-BFO//NV-BFO capacitors indicates the dominant capacitive-controlled capacity,which depends on fast Na^(+) deintercalation-intercalation process in the NV-BFO electrode.The NV-BFO//NV-BFO capacitors open up a new avenue for developing highperformance Na-ion capacitors.展开更多
The state-of-the-art lithium-ion capacitors (LICs),consisting of high-capacity battery-type anode and high-rate capacitor-type cathode,can deliver high energy density and large power density when comparing with tradit...The state-of-the-art lithium-ion capacitors (LICs),consisting of high-capacity battery-type anode and high-rate capacitor-type cathode,can deliver high energy density and large power density when comparing with traditional supercapacitors and lithium-ion batteries,respectively.However,the ion kinetics mismatch between cathode and anode leads to unsatisfied cycling lifetime and anode degradation.Tremendous efforts have been devoted to solving the abovementioned issue.One promising strategy is altering high conductive hard carbon anode with excellent structural stability to match with activated carbon cathode,assembling dual-carbon LIC.In this contribution,one-pot in-situ expansion and heteroatom doping strategy was adopted to prepare sheet-like hard carbon,while activated carbon was obtained involving activation.Ammonium persulfate was used as expanding and doping agent simultaneously.While furfural residues (FR) were served as carbon precursor.The resulting hard carbon (FRNS-HC) and activated carbon (FRNS-AC)show excellent electrochemical performance as negative and positive electrodes in a lithium-ion battery (LIB).To be specific,374.2 m Ah g^(-1)and 123.1 m Ah g^(-1)can be achieved at 0.1 A g^(-1)and 5 A g^(-1)when FRNS-HC was tested as anode.When combined with a highly porous carbon cathode (S_(BET)=2961 m^(2)g^(-1)) synthesized from the same precursor,the LIC showed high specific energy of147.67 Wh kg^(-1)at approximately 199.93 W kg^(-1),and outstanding cycling life with negligible capacitance fading over 1000 cycles.This study could lead the way for the development of heteroatom-doped porous carbon nanomaterials applied to Li-based energy storage applications.展开更多
There is an urgent need for lithium-ion capacitors(LICs)that have both high energy and high power densities to meet the continuously growing energy storage demands.LICs effectively balance the high energy density of t...There is an urgent need for lithium-ion capacitors(LICs)that have both high energy and high power densities to meet the continuously growing energy storage demands.LICs effectively balance the high energy density of traditional rechargeable batteries with the superior power density and long life of supercapacitors(SCs).Nevertheless,the development of LICs is still hampered by limited kinetic processes and capacity mismatch between the cathode and anode.Metal-organic frameworks(MOFs)and their derivatives have received significant attention because of their extensive specific surface area,different pore structures and topologies,and customizable functional sites,making them compelling candidate materials for achieving high-performance LICs.MOF-derived carbons,known for their exceptional electronic conductivity and large surface area,provide improved charge storage and rapid ion transport.MOF-derived transition metal oxides contribute to high specific capacities and improved electrochemical stability.Additionally,MOF-derived metal compounds/carbons provide combined effects that increase both the capacitive and Faradaic reactions,leading to a superior overall performance.The review begins with an overview of the fundamental principles of LICs,followed by an exploration of synthesis strategies and ligand selection for MOF-based composite materials.It then analyzes the advantages of original MOFs and their derived materials,such as carbon materials and metal compounds,in enhancing LIC performance.Finally,the review discusses the major challenges faced by MOFs and their derivatives in LIC applications and offers future research directions and recommendations.展开更多
Cation additives can efficiently enhance the total electrochemical capabilities of zinc-ion hybrid capacitors (ZHCs).However their energy storage mechanisms in zinc-based systems are still under debate.Herein,we modul...Cation additives can efficiently enhance the total electrochemical capabilities of zinc-ion hybrid capacitors (ZHCs).However their energy storage mechanisms in zinc-based systems are still under debate.Herein,we modulate the electrolyte and achieve dual-ion storage by adding magnesium ions.And we assemble several Zn//activated carbon devices with different electrolyte concentrations and investigate their electrochemical reaction dynamic behaviors.The zinc-ion capacitor with Mg^(2+)mixed solution delivers 82 mAh·g^(-1)capacity at 1 A·g^(-1) and maintains 91%of the original capacitance after 10000 cycling.It is superior to the other assembled zinc-ion devices in single-component electrolytes.The finding demonstrates that the double-ion storage mechanism enables the superior rate performance and long cycle lifetime of ZHCs.展开更多
Zinc-ion capacitors(ZICs),which consist of a capacitor-type electrode and a battery-type electrode,not only possess the high power density of supercapacitors and the high energy density of batteries,but also have othe...Zinc-ion capacitors(ZICs),which consist of a capacitor-type electrode and a battery-type electrode,not only possess the high power density of supercapacitors and the high energy density of batteries,but also have other advantages such as abundant resources,high safety and environmental friendliness.However,they still face problems such as insufficient specific capacitance,a short cycling life,and narrow operating voltage and temperature ranges,which are hindering their practical use.We provide a comprehensive overview of the fundamental theory of carbon-based ZICs and summarize recent research progress from three perspectives:the carbon cathode,electrolyte and zinc anode.The influence of the structure and surface chemical properties of the carbon materials on the capacitive performance of ZICs is considered together with theoretical guidance for advancing their development and practical use.展开更多
The development of anode materials with high rate capability and long charge-discharge plateau is the key to improve per-formance of lithium-ion capacitors(LICs).Herein,the porous graphitic carbon(PGC-1300)derived fro...The development of anode materials with high rate capability and long charge-discharge plateau is the key to improve per-formance of lithium-ion capacitors(LICs).Herein,the porous graphitic carbon(PGC-1300)derived from a new triply interpenetrated co-balt metal-organic framework(Co-MOF)was prepared through the facile and robust carbonization at 1300°C and washing by HCl solu-tion.The as-prepared PGC-1300 featured an optimized graphitization degree and porous framework,which not only contributes to high plateau capacity(105.0 mAh·g^(−1)below 0.2 V at 0.05 A·g^(−1)),but also supplies more convenient pathways for ions and increases the rate capability(128.5 mAh·g^(−1)at 3.2 A·g^(−1)).According to the kinetics analyses,it can be found that diffusion regulated surface induced capa-citive process and Li-ions intercalation process are coexisted for lithium-ion storage.Additionally,LIC PGC-1300//AC constructed with pre-lithiated PGC-1300 anode and activated carbon(AC)cathode exhibited an increased energy density of 102.8 Wh·kg^(−1),a power dens-ity of 6017.1 W·kg^(−1),together with the excellent cyclic stability(91.6%retention after 10000 cycles at 1.0 A·g^(−1)).展开更多
Zn based electrochemical energy storage systems(EES)have attracted tremendous interests owing to their low cost and high intrinsic safety.Nevertheless,the uncontrolled growth of Zn dendrites and the side reactions of ...Zn based electrochemical energy storage systems(EES)have attracted tremendous interests owing to their low cost and high intrinsic safety.Nevertheless,the uncontrolled growth of Zn dendrites and the side reactions of Zn metal anodes(ZMAs)severely restrict their applications.To address these issues,we design the asymmetric Zn-N_(4) atomic sites embedded hollow fibers(AS-IHF)as the flexible host for stable ZMAs.Through introducing different nitrogen resources in the synthesis,two kinds of coordination,i,e.Zn-N(pyridinic)and Zn-N(pyrrolic),are introduced in the Zn-N_(4) atomic module synchronously.The asymmetric Zn-N_(4) module with regulated micro-environment facilitates the superior zincophilic features and promotes the Zn adsorption.Meanwhile,the highly porous structure of the hollow fiber effectively reduces local current density,homogenize Zn ion flux,and alleviate structure stress.All the advantages endow the high efficiency and good stability for Zn plating/stripping.Both theoretical and experimental results demonstrate the high reversibility,low nucleation overpotential,and dendritefree behavior of the AS-IHF@Zn anode,which afford the high stability in high-rate and long-term cycling.Moreover,the solid-state Zn-ion hybrid capacitor(ZIHC)based on AS-IHF@Zn anode shows the high flexibility,reliability,and superior long-term cycling capability in a wide-range of temperatures(-20-25℃).Therefore,the present work not only gives a new strategy for modulating local environments of single atomic sites,but also propels the development of flexible power sources for diverse electronics.展开更多
Capacitors are widely used in pulsed magnet power supplies to reduce ripple voltage,store energy,and decrease power variation.In this study,DC-link capacitors in pulsed power supplies were investigated.By deriving an ...Capacitors are widely used in pulsed magnet power supplies to reduce ripple voltage,store energy,and decrease power variation.In this study,DC-link capacitors in pulsed power supplies were investigated.By deriving an analytical method for the capacitor current on the H-bridge topology side,the root-mean-square value of the capacitor current was calculated,which helps in selecting the DC-link capacitors.The proposed method solves this problem quickly and with high accuracy.The current reconstruction of the DC-link capacitor is proposed to avoid structural damage in the capacitor’s current measurement,and the capacitor’s hotspot temperature and temperature rise are calculated using the FFT transform.The test results showed that the error between the calculated and measured temperature increases was within 1.5℃.Finally,the lifetime of DC-link capacitors was predicted based on Monte Carlo analysis.The proposed method can evaluate the reliability of DC-link capacitors in a non-isolated switching pulsed power supply for accelerators and is also applicable to film capacitors.展开更多
Sodium-ion batteries(SIBs) and hybrid capacitors(SIHCs) have garnered significant attention in energy storage due to their inherent advantages,including high energy density,cost-effectiveness,and enhanced safety.Howev...Sodium-ion batteries(SIBs) and hybrid capacitors(SIHCs) have garnered significant attention in energy storage due to their inherent advantages,including high energy density,cost-effectiveness,and enhanced safety.However,developing high-performance anode materials to improve sodium storage performa nce still remains a major challenge.Here,a facile one-pot method has been developed to fabricate a hybrid of MoSeTe nanosheets implanted within the N,F co-doped honeycomb carbon skeleton(MoSeTe/N,F@C).Experimental results demonstrate that the incorporation of large-sized Te atoms into MoSeTe nanosheets enlarges the layer spacing and creates abundant anion vacancies,which effectively facilitate the insertion/extraction of Na^(+) and provide numerous ion adsorption sites for rapid surface capacitive behavior.Additionally,the heteroatoms N,F co-doped honeycomb carbon skeleton with a highly conductive network can restrain the volume expansion and boost reaction kinetics within the electrode.As anticipated,the MoSeTe/N,F@C anode exhibits high reversible capacities along with exceptional cycle stability.When coupled with Na_(3)V_(2)(PO_(4))_(3)@C(NVPF@C) to form SIB full cells,the anode delivers a reversible specific capacity of 126 mA h g^(-1) after 100 cycles at 0.1 A g^(-1).Furthermore,when combined with AC to form SIHC full cells,the anode demonstrates excellent cycling stability with a reversible specific capacity of50 mA h g^(-1) keeping over 3700 cycles at 1.0 A g^(-1).In situ XRD,ex situ TEM characterization,and theoretical calculations(DFT) further confirm the reversibility of sodium storage in MoSeTe/N,F@C anode materials during electrochemical reactions,highlighting their potential for widespread practical application.This work provides new insights into the promising utilization of advanced transition metal dichalcogenides as anode materials for Na^(+)-based energy storage devices.展开更多
Aqueous zinc ion hybrid capacitors(ZIHCs)are considered one of the most promising electrochemical energy storage systems due to their high safety,environmental friendliness,low cost,and high power density.However,the ...Aqueous zinc ion hybrid capacitors(ZIHCs)are considered one of the most promising electrochemical energy storage systems due to their high safety,environmental friendliness,low cost,and high power density.However,the low energy density and the lack of sustainable design strategies for the cathodes hinder the practical application of ZIHCs.Herein,we design the N and O co-doped porous carbon cathode by annealing metal-organic framework(ZIF-8).ZIF-8 retains the original dodecahedral structure with a high specific surface(2814.67 m^(2)/g)and I_(G)/I_(D) ratio of 1.0 during carbonization and achieves self-doping of N and O heteroatoms.Abundant defect sites are introduced into the porous carbon to provide additional active sites for ion adsorption after the activation of carbonized ZIF-8 by KOH treatment.The ZIHCs assembled with modified ZIF-8 as the cathode and commercial zinc foil as the anode show an energy density of 125 W∙h/kg and a power density of 79 W/kg.In addition,this ZIHCs device achieves capacity retention of 77.8%after 9000 electrochemical cycles,which is attributed to the diverse pore structure and plentiful defect sites of ZIF-8-800(KOH).The proposed strategy may be useful in developing high-performance metal-ion hybrid capacitors for large-scale energy storage.展开更多
The orthorhombic CuNb_(2)O_(6)(O-CNO)is established as a competitive anode for lithium-ion capacitors(LICs)owing to its attractive compositional/structural merits.However,the high-temperature synthesis(>900℃)and c...The orthorhombic CuNb_(2)O_(6)(O-CNO)is established as a competitive anode for lithium-ion capacitors(LICs)owing to its attractive compositional/structural merits.However,the high-temperature synthesis(>900℃)and controversial charge-storage mechanism always limit its applications.Herein,we develop a low-temperature strategy to fabricate a nano-blocks-constructed hierarchical accordional O-CNO framework by employing multilayered Nb_(2)CT_(x)as the niobium source.The intrinsic stress-induced formation/transformation mechanism of the monoclinic CuNb_(2)O_(6)to O-CNO is tentatively put forward.Furthermore,the integrated phase conversion and solid solution lithium-storage mechanism is reasonably unveiled with comprehensive in(ex)situ characterizations.Thanks to its unique structural merits and lithium-storage process,the resulted O-CNO anode is endowed with a large capacity of 150.3 mAh g^(-1)at 2.0 A g^(-1),along with long-duration cycling behaviors.Furthermore,the constructed O-CNO-based LICs exhibit a high energy(138.9 Wh kg^(-1))and power(4.0 kW kg^(-1))densities with a modest cycling stability(15.8%capacity degradation after 3000 consecutive cycles).More meaningfully,the in-depth insights into the formation and charge-storage process here can promote the extensive development of binary metal Nb-based oxides for advanced LICs.展开更多
This article presents an extensive examination and modeling of Capacitor Coupled Substations (CCS), noting some of their inherent constraints. The underlying implementation of a CCS is to supply electricity directly f...This article presents an extensive examination and modeling of Capacitor Coupled Substations (CCS), noting some of their inherent constraints. The underlying implementation of a CCS is to supply electricity directly from high-voltage (HV) transmission lines to low-voltage (LV) consumers through coupling capacitors and is said to be cost-effective as compared to conventional distribution networks. However, the functionality of such substations is susceptible to various transient phenomena, including ferroresonance and overvoltage occurrences. To address these challenges, the study uses simulations to evaluate the effectiveness of conventional resistor-inductor-capacitor (RLC) filter in mitigating hazardous overvoltage resulting from transients. The proposed methodology entails using standard RLC filter to suppress transients and its associated overvoltage risks. Through a series of MATLAB/Simulink simulations, the research emphasizes the practical effectiveness of this technique. The study examines the impact of transients under varied operational scenarios, including no-load switching conditions, temporary short-circuits, and load on/off events. The primary aim of the article is to assess the viability of using an established technology to manage system instabilities upon the energization of a CCS under no-load circumstances or in case of a short-circuit fault occurring on the primary side of the CCS distribution transformer. The findings underscore the effectiveness of conventional RLC filters in suppressing transients induced by the CCS no-load switching.展开更多
Converters rely on passive filtering as a crucial element due to the high-frequency operational characteristics of power electronics.Traditional filtering methods involve a dual inductor-capacitor(LC)cell or an induct...Converters rely on passive filtering as a crucial element due to the high-frequency operational characteristics of power electronics.Traditional filtering methods involve a dual inductor-capacitor(LC)cell or an inductor-capacitor-inductor(LCL)T-circuit.However,capacitors are susceptible to wear-out mechanisms and failure modes.Nevertheless,the necessity for monitoring and regular replacement adds to an elevated cost of ownership for such systems.The utilization of an active output power filter can be used to diminish the dimensions of the LC filter and the electrolytic dc-link capacitor,even though the inclusion of capacitors remains an indispensable part of the system.This paper introduces capacitorless solid-state power filter(SSPF)for single-phase dc-ac converters.The proposed configuration is capable of generating a sinusoidal ac voltage without relying on capacitors.The proposed filter,composed of a planar transformer and an H-bridge converter operating at high frequency,injects voltage harmonics to attain a sinusoidal output voltage.The design parameters of the planar transformer are incorporated,and the impact of magnetizing and leakage inductances on the operation of the SSPF is illustrated.Theoretical analysis,supported by simulation and experimental results,are provided for a design example for a single-phase system.The total harmonic distortion observed in the output voltage is well below the IEEE 519 standard.The system operation is experimentally tested under both steady-state and dynamic conditions.A comparison with existing technology is presented,demonstrating that the proposed topology reduces the passive components used for filtering.展开更多
基金supported by the National Natural Science Foundation of China (Grant No.11902157)Natural Science Foundation of Jiangsu Province (Grant No.BK20180417)the Scientific and Technological Innovation Project of Army Engineering Univeristy of PLA (Grant No.KYGYZXJK150025)。
文摘An innovative multi-layer composite explosion containment vessel(CECV)utilizing a sliding steel platealuminum honeycomb-fiber cloth sandwich is put forward to improve the anti-explosion capacity of a conventional single-layer explosion containment vessel(SECV).Firstly,a series of experiments and finite element(FE)simulations of internal explosions are implemented to understand the basic anti-explosion characteristics of a SECV and the rationality of the computational models and methods is verified by the comparison between the experimental results and simulation results.Based on this,the CECV is designed in detail and a variety of FE simulations are carried out to investigate effects of the sandwich structure,the explosive quantity and the laying mode of the fiber cloth on anti-explosion performance and dynamic response of the CECV under internal explosions.Simulation results indicate that the end cover is the critical position for both the SECV and CECV.The maximum pressure of the explosion shock wave and the maximum strain of the CECV can be extremely declined compared to those of the SECV.As a result,the explosive quantity the CECV can sustain is up to 20 times of that the SECV can sustain.Besides,as the explosive quantity increases,the internal pressure of the CECV keeps growing and the plastic deformation and failure of the sandwich structure become more and more severe,yielding plastic strain of the CECV in addition to elastic strain.The results also reveal that the laying angles of the fiber cloth's five layers have an impact on the anti-explosion performance of the CECV.For example,the CECV with fiber cloth layered in 0°/45°/90°/45°/0°mode has the optimal anti-capacity,compared to 0°/0°/0°/0°/0°and 0°/30°/60°/30°/0°modes.Overall,owing to remarkable anti-explosion capacity,this CECV can be regarded as a promising candidate for explosion resistance.
文摘In order to improve the anti-explosion performance ofρ-Al_(2)O_(3) bonded corundum castables,H_(2)O_(2) was added(0,0.025%,0.050%,0.075%,0.100%and 0.125%,by mass)as the anti-explosion agent.After mixing and casting,specimens were prepared.Some specimens were cured at room temperature for 12 h and demoulded for the anti-explosion performance test at different temperatures(450,500,550,600,650,700,750 and 800℃);the other specimens were cured,dried and fired,and tested in terms of the apparent porosity,the density,the cold mechanical properties,the air permeability and the pore size distribution.The results show that:(1)with the increase of the H_(2)O_(2) addition,the anti-explosion performance of castables increases gradually,the average pore size increases gradually,and the density and the strength decrease gradually;(2)by comprehensive consideration,the appropriate addition of H_(2)O_(2) shall be within 0.075%.
基金We are grateful to National Natural Science Foundation of China(Grant No.22375056,52272163)the Key R&D Program of Hebei(Grant No.216Z1201G)+1 种基金Natural Science Foundation of Hebei Province(Grant No.E2022208066,B2021208014)Key R&D Program of Hebei Technological Innovation Center of Chiral Medicine(Grant No.ZXJJ20220105).
文摘Free-standing covalent organic framework(COFs)nanofilms exhibit a remarkable ability to rapidly intercalate/de-intercalate Li^(+) in lithium-ion batteries,while simultaneously exposing affluent active sites in supercapacitors.The development of these nanofilms offers a promising solution to address the persistent challenge of imbalanced charge storage kinetics between battery-type anode and capacitor-type cathode in lithium-ion capacitors(LICs).Herein,for the first time,custom-made COFBTMB-TP and COFTAPB-BPY nanofilms are synthesized as the anode and cathode,respectively,for an all-COF nanofilm-structured LIC.The COFBTMB-TP nanofilm with strong electronegative–CF3 groups enables tuning the partial electron cloud density for Li^(+) migration to ensure the rapid anode kinetic process.The thickness-regulated cathodic COFTAPB-BPY nanofilm can fit the anodic COF nanofilm in the capacity.Due to the aligned 1D channel,2D aromatic skeleton and accessible active sites of COF nanofilms,the whole COFTAPB-BPY//COFBTMB-TP LIC demonstrates a high energy density of 318 mWh cm^(−3) at a high-power density of 6 W cm^(−3),excellent rate capability,good cycle stability with the capacity retention rate of 77%after 5000-cycle.The COFTAPB-BPY//COFBTMB-TP LIC represents a new benchmark for currently reported film-type LICs and even film-type supercapacitors.After being comprehensively explored via ex situ XPS,7Li solid-state NMR analyses,and DFT calculation,it is found that the COFBTMB-TP nanofilm facilitates the reversible conversion of semi-ionic to ionic C–F bonds during lithium storage.COFBTMB-TP exhibits a strong interaction with Li^(+) due to the C–F,C=O,and C–N bonds,facilitating Li^(+) desolation and absorption from the electrolyte.This work addresses the challenge of imbalanced charge storage kinetics and capacity between the anode and cathode and also pave the way for future miniaturized and wearable LIC devices.
基金the financial support by the National Science Foundation of China(51822706 and 52107234)Beijing Natural Science Foundation(JQ19012)+2 种基金the DNL Cooperation Fund,CAS(DNL201912 and DNL201915)Innovation Academy for Green Manufacture Fund(IAGM2020C02)Youth Innovation Promotion Association,CAS(Y2021052).
文摘Lithium-ion capacitors(LICs) combining the advantages of lithium-ion batteries and supercapacitors are considered a promising nextgeneration energy storage device. However, the sluggish kinetics of battery-type anode cannot match the capacitor-type cathode, restricting the development of LICs. Herein, hierarchical carbon framework(HCF) anode material composed of 0D carbon nanocage bridged with 2D graphene network are developed via a template-confined synthesis process. The HCF with nanocage structure reduces the Li^(+) transport path and benefits the rapid Li^(+) migration, while 2D graphene network can promote the electron interconnecting of carbon nanocages. In addition, the doped N atoms in HCF facilitate to the adsorption of ions and enhance the pseudo contribution, thus accelerate the kinetics of the anode. The HCF anode delivers high specific capacity, remarkable rate capability. The LIC pouch-cell based on HCF anode and active HCF(a-HCF) cathode can provide a high energy density of 162 Wh kg^(-1) and a superior power density of 15.8 kW kg^(-1), as well as a long cycling life exceeding 15,000cycles. This study demonstrates that the well-defined design of hierarchical carbon framework by incorporating 0D carbon nanocages and 2D graphene network is an effective strategy to promote LIC anode kinetics and hence boost the LIC electrochemical performance.
基金financial support from Project funded by National Natural Science Foundation of China(52172038,22179017)funding from Dalian University of Technology Open Fund for Large Scale Instrument Equipment
文摘Metal-organic framework(MOF)-derived carbon composites have been considered as the promising materials for energy storage.However,the construction of MOF-based composites with highly controllable mode via the liquid-liquid synthesis method has a great challenge because of the simultaneous heterogeneous nucleation on substrates and the self-nucleation of individual MOF nanocrystals in the liquid phase.Herein,we report a bidirectional electrostatic generated self-assembly strategy to achieve the precisely controlled coatings of single-layer nanoscale MOFs on a range of substrates,including carbon nanotubes(CNTs),graphene oxide(GO),MXene,layered double hydroxides(LDHs),MOFs,and SiO_(2).The obtained MOF-based nanostructured carbon composite exhibits the hierarchical porosity(V_(meso)/V_(micro)∶2.4),ultrahigh N content of 12.4 at.%and"dual electrical conductive networks."The assembled aqueous zinc-ion hybrid capacitor(ZIC)with the prepared nanocarbon composite as a cathode shows a high specific capacitance of 236 F g^(-1)at 0.5 A g^(-1),great rate performance of 98 F g^(-1)at 100 A g^(-1),and especially,an ultralong cycling stability up to 230000 cycles with the capacitance retention of 90.1%.This work develops a repeatable and general method for the controlled construction of MOF coatings on various functional substrates and further fabricates carbon composites for ZICs with ultrastability.
基金supported by the National Natural Science Foundation of China(91963202,52072372,52372241,52232007,12325203)HFIPS Director’s Fund(BJPY2023A07,YZJJ-GGZX-2022-01).
文摘Electric double-layer capacitors(EDLCs)with fast frequency response are regarded as small-scale alternatives to the commercial bulky aluminum electrolytic capacitors.Creating carbon-based nanoarray electrodes with precise alignment and smooth ion channels is crucial for enhancing EDLCs’performance.However,controlling the density of macropore-dominated nanoarray electrodes poses challenges in boosting the capacitance of line-filtering EDLCs.Herein,a simple technique to finely adjust the vertical-pore diameter and inter-spacing in three-dimensional nanoporous anodic aluminum oxide(3D-AAO)template is achieved,and 3D compactly arranged carbon tube(3D-CACT)nanoarrays are created as electrodes for symmetrical EDLCs using nanoporous 3D-AAO template-assisted chemical vapor deposition of carbon.The 3D-CACT electrodes demonstrate a high surface area of 253.0 m^(2) g^(−1),a D/G band intensity ratio of 0.94,and a C/O atomic ratio of 8.As a result,the high-density 3D-CT nanoarray-based sandwich-type EDLCs demonstrate a record high specific areal capacitance of 3.23 mF cm^(-2) at 120 Hz and exceptional fast frequency response due to the vertically aligned and highly ordered nanoarray of closely packed CT units.The 3D-CT nanoarray electrode-based EDLCs could serve as line filters in integrated circuits,aiding power system miniaturization.
基金This work was supported by the Natural Science Foundation of Jiangsu Province(BK20220213)the Fundamental Research Funds of Jiangsu Key Laboratory of Biomass Energy and Material(JSBEM-S-202210 and JSBEM-S-202102).
文摘Solid-state zinc-ion capacitors are emerging as promising candidates for large-scale energy storage owing to improved safety,mechanical and thermal stability and easy-to-direct stacking.Hydrogel electrolytes are appealing solid-state electrolytes because of eco-friendliness,high conductivity and intrinsic flexibility.However,the electrolyte/electrode interfacial contact and anti-freezing properties of current hydrogel electrolytes are still challenging for practical applications of zinc-ion capacitors.Here,we report a class of hydrogel electrolytes that couple high interfacial adhesion and anti-freezing performance.The synergy of tough hydrogel matrix and chemical anchorage enables a well-adhered interface between hydrogel electrolyte and electrode.Meanwhile,the cooperative solvation of ZnCl2 and LiCl hybrid salts renders the hydrogel electrolyte high ionic conductivity and mechanical elasticity simultaneously at low temperatures.More significantly,the Zn||carbon nanotubes hybrid capacitor based on this hydrogel electrolyte exhibits low-temperature capacitive performance,delivering high-energy density of 39 Wh kg^(-1)at-60°C with capacity retention of 98.7%over 10,000 cycles.With the benefits of the well-adhered electrolyte/electrode interface and the anti-freezing hydrogel electrolyte,the Zn/Li hybrid capacitor is able to accommodate dynamic deformations and function well under 1000 tension cycles even at-60°C.This work provides a powerful strategy for enabling stable operation of low-temperature zinc-ion capacitors.
基金financial supports from National Natural Science Foundation of China(22005174 and 52271133)。
文摘Sodium with low cost and high abundance is considered as a substitute element of lithium for batteries and supercapacitors,which need the appropriate host materials to accommodate the relatively large Na^(+) ions.Compared to Li^(+) storage,Na^(+) storage makes higher demands on the structural optimization of perovskite bismuth ferrite(BiFeO_(3)).We propose a novel strategy of defect engineering on BiFeO_(3) through Na and V codoping for high-efficiency Na^(+) storage,to reveal the roles of oxygen vacancies and V ions played in the enhanced electrochemical energy storage performances of Na-ion capacitors.The formation of the oxygen vacancies in the Na and V codoped BiFeO_(3)(denoted as NV-BFO),is promoted by Na doping and suppressed by V doping,which can be demonstrated by XPS and EPR spectra.By the first-principles calculations,the oxygen vacancies and V ions in NV-BFO are confirmed to substantially lower the Na^(+)migration energy barriers through the space and electric field effects,to effectively promote the Na^(+) transport in the crystals.Electrochemical kinetic analysis of the NV-BFO//NV-BFO capacitors indicates the dominant capacitive-controlled capacity,which depends on fast Na^(+) deintercalation-intercalation process in the NV-BFO electrode.The NV-BFO//NV-BFO capacitors open up a new avenue for developing highperformance Na-ion capacitors.
基金financially supported by the National Natural Science Foundation of China (22075308, 22209197)Natural Science Foundation of Shanxi Province (20210302 1224439, 202203021211002)Shanxi Province Science Foundation for Youths (No: SQ2019001)。
文摘The state-of-the-art lithium-ion capacitors (LICs),consisting of high-capacity battery-type anode and high-rate capacitor-type cathode,can deliver high energy density and large power density when comparing with traditional supercapacitors and lithium-ion batteries,respectively.However,the ion kinetics mismatch between cathode and anode leads to unsatisfied cycling lifetime and anode degradation.Tremendous efforts have been devoted to solving the abovementioned issue.One promising strategy is altering high conductive hard carbon anode with excellent structural stability to match with activated carbon cathode,assembling dual-carbon LIC.In this contribution,one-pot in-situ expansion and heteroatom doping strategy was adopted to prepare sheet-like hard carbon,while activated carbon was obtained involving activation.Ammonium persulfate was used as expanding and doping agent simultaneously.While furfural residues (FR) were served as carbon precursor.The resulting hard carbon (FRNS-HC) and activated carbon (FRNS-AC)show excellent electrochemical performance as negative and positive electrodes in a lithium-ion battery (LIB).To be specific,374.2 m Ah g^(-1)and 123.1 m Ah g^(-1)can be achieved at 0.1 A g^(-1)and 5 A g^(-1)when FRNS-HC was tested as anode.When combined with a highly porous carbon cathode (S_(BET)=2961 m^(2)g^(-1)) synthesized from the same precursor,the LIC showed high specific energy of147.67 Wh kg^(-1)at approximately 199.93 W kg^(-1),and outstanding cycling life with negligible capacitance fading over 1000 cycles.This study could lead the way for the development of heteroatom-doped porous carbon nanomaterials applied to Li-based energy storage applications.
文摘There is an urgent need for lithium-ion capacitors(LICs)that have both high energy and high power densities to meet the continuously growing energy storage demands.LICs effectively balance the high energy density of traditional rechargeable batteries with the superior power density and long life of supercapacitors(SCs).Nevertheless,the development of LICs is still hampered by limited kinetic processes and capacity mismatch between the cathode and anode.Metal-organic frameworks(MOFs)and their derivatives have received significant attention because of their extensive specific surface area,different pore structures and topologies,and customizable functional sites,making them compelling candidate materials for achieving high-performance LICs.MOF-derived carbons,known for their exceptional electronic conductivity and large surface area,provide improved charge storage and rapid ion transport.MOF-derived transition metal oxides contribute to high specific capacities and improved electrochemical stability.Additionally,MOF-derived metal compounds/carbons provide combined effects that increase both the capacitive and Faradaic reactions,leading to a superior overall performance.The review begins with an overview of the fundamental principles of LICs,followed by an exploration of synthesis strategies and ligand selection for MOF-based composite materials.It then analyzes the advantages of original MOFs and their derived materials,such as carbon materials and metal compounds,in enhancing LIC performance.Finally,the review discusses the major challenges faced by MOFs and their derivatives in LIC applications and offers future research directions and recommendations.
基金financially supported by the National Natural Science Foundation of China (No.52172218)。
文摘Cation additives can efficiently enhance the total electrochemical capabilities of zinc-ion hybrid capacitors (ZHCs).However their energy storage mechanisms in zinc-based systems are still under debate.Herein,we modulate the electrolyte and achieve dual-ion storage by adding magnesium ions.And we assemble several Zn//activated carbon devices with different electrolyte concentrations and investigate their electrochemical reaction dynamic behaviors.The zinc-ion capacitor with Mg^(2+)mixed solution delivers 82 mAh·g^(-1)capacity at 1 A·g^(-1) and maintains 91%of the original capacitance after 10000 cycling.It is superior to the other assembled zinc-ion devices in single-component electrolytes.The finding demonstrates that the double-ion storage mechanism enables the superior rate performance and long cycle lifetime of ZHCs.
文摘Zinc-ion capacitors(ZICs),which consist of a capacitor-type electrode and a battery-type electrode,not only possess the high power density of supercapacitors and the high energy density of batteries,but also have other advantages such as abundant resources,high safety and environmental friendliness.However,they still face problems such as insufficient specific capacitance,a short cycling life,and narrow operating voltage and temperature ranges,which are hindering their practical use.We provide a comprehensive overview of the fundamental theory of carbon-based ZICs and summarize recent research progress from three perspectives:the carbon cathode,electrolyte and zinc anode.The influence of the structure and surface chemical properties of the carbon materials on the capacitive performance of ZICs is considered together with theoretical guidance for advancing their development and practical use.
基金the National Natural Science Foundation of China(No.52004179)the Natural Nat-ural Science Foundation of Guangxi Province,China(No.2020GXNSFAA159015)Shanxi Water and Wood New Carbon Materials Technology Co.,Ltd.,China,and Shanxi Wote Haimer New Materials Technology Co.,Ltd,China.
文摘The development of anode materials with high rate capability and long charge-discharge plateau is the key to improve per-formance of lithium-ion capacitors(LICs).Herein,the porous graphitic carbon(PGC-1300)derived from a new triply interpenetrated co-balt metal-organic framework(Co-MOF)was prepared through the facile and robust carbonization at 1300°C and washing by HCl solu-tion.The as-prepared PGC-1300 featured an optimized graphitization degree and porous framework,which not only contributes to high plateau capacity(105.0 mAh·g^(−1)below 0.2 V at 0.05 A·g^(−1)),but also supplies more convenient pathways for ions and increases the rate capability(128.5 mAh·g^(−1)at 3.2 A·g^(−1)).According to the kinetics analyses,it can be found that diffusion regulated surface induced capa-citive process and Li-ions intercalation process are coexisted for lithium-ion storage.Additionally,LIC PGC-1300//AC constructed with pre-lithiated PGC-1300 anode and activated carbon(AC)cathode exhibited an increased energy density of 102.8 Wh·kg^(−1),a power dens-ity of 6017.1 W·kg^(−1),together with the excellent cyclic stability(91.6%retention after 10000 cycles at 1.0 A·g^(−1)).
基金supported by the Innovation Foundation of Graduate Student of Harbin Normal University (No.HSDBSCX2023-3),China。
文摘Zn based electrochemical energy storage systems(EES)have attracted tremendous interests owing to their low cost and high intrinsic safety.Nevertheless,the uncontrolled growth of Zn dendrites and the side reactions of Zn metal anodes(ZMAs)severely restrict their applications.To address these issues,we design the asymmetric Zn-N_(4) atomic sites embedded hollow fibers(AS-IHF)as the flexible host for stable ZMAs.Through introducing different nitrogen resources in the synthesis,two kinds of coordination,i,e.Zn-N(pyridinic)and Zn-N(pyrrolic),are introduced in the Zn-N_(4) atomic module synchronously.The asymmetric Zn-N_(4) module with regulated micro-environment facilitates the superior zincophilic features and promotes the Zn adsorption.Meanwhile,the highly porous structure of the hollow fiber effectively reduces local current density,homogenize Zn ion flux,and alleviate structure stress.All the advantages endow the high efficiency and good stability for Zn plating/stripping.Both theoretical and experimental results demonstrate the high reversibility,low nucleation overpotential,and dendritefree behavior of the AS-IHF@Zn anode,which afford the high stability in high-rate and long-term cycling.Moreover,the solid-state Zn-ion hybrid capacitor(ZIHC)based on AS-IHF@Zn anode shows the high flexibility,reliability,and superior long-term cycling capability in a wide-range of temperatures(-20-25℃).Therefore,the present work not only gives a new strategy for modulating local environments of single atomic sites,but also propels the development of flexible power sources for diverse electronics.
基金supported by the National Key Research and Development Program of China(No.2019YFA0405402).
文摘Capacitors are widely used in pulsed magnet power supplies to reduce ripple voltage,store energy,and decrease power variation.In this study,DC-link capacitors in pulsed power supplies were investigated.By deriving an analytical method for the capacitor current on the H-bridge topology side,the root-mean-square value of the capacitor current was calculated,which helps in selecting the DC-link capacitors.The proposed method solves this problem quickly and with high accuracy.The current reconstruction of the DC-link capacitor is proposed to avoid structural damage in the capacitor’s current measurement,and the capacitor’s hotspot temperature and temperature rise are calculated using the FFT transform.The test results showed that the error between the calculated and measured temperature increases was within 1.5℃.Finally,the lifetime of DC-link capacitors was predicted based on Monte Carlo analysis.The proposed method can evaluate the reliability of DC-link capacitors in a non-isolated switching pulsed power supply for accelerators and is also applicable to film capacitors.
基金supported by the National Natural Science Foundation of China(No.52002320,and 51972267)the China Postdoctoral Science Foundation(No.2022M712574)+3 种基金the Science Foundation of Shaanxi Province(2022GD-TSLD-18,No.2023-JCZD-03)Natural Science Foundation of Shaanxi Province(No.2022GY-372,2021GY-153)Industrial Projects Foundation of Ankang Science and Technology Bureau(No.AK2020-GY02-2)the Platform Construction Projects and Technology Service Teams of Ankang University(No.2021AYPT12 and 2022TD07)。
文摘Sodium-ion batteries(SIBs) and hybrid capacitors(SIHCs) have garnered significant attention in energy storage due to their inherent advantages,including high energy density,cost-effectiveness,and enhanced safety.However,developing high-performance anode materials to improve sodium storage performa nce still remains a major challenge.Here,a facile one-pot method has been developed to fabricate a hybrid of MoSeTe nanosheets implanted within the N,F co-doped honeycomb carbon skeleton(MoSeTe/N,F@C).Experimental results demonstrate that the incorporation of large-sized Te atoms into MoSeTe nanosheets enlarges the layer spacing and creates abundant anion vacancies,which effectively facilitate the insertion/extraction of Na^(+) and provide numerous ion adsorption sites for rapid surface capacitive behavior.Additionally,the heteroatoms N,F co-doped honeycomb carbon skeleton with a highly conductive network can restrain the volume expansion and boost reaction kinetics within the electrode.As anticipated,the MoSeTe/N,F@C anode exhibits high reversible capacities along with exceptional cycle stability.When coupled with Na_(3)V_(2)(PO_(4))_(3)@C(NVPF@C) to form SIB full cells,the anode delivers a reversible specific capacity of 126 mA h g^(-1) after 100 cycles at 0.1 A g^(-1).Furthermore,when combined with AC to form SIHC full cells,the anode demonstrates excellent cycling stability with a reversible specific capacity of50 mA h g^(-1) keeping over 3700 cycles at 1.0 A g^(-1).In situ XRD,ex situ TEM characterization,and theoretical calculations(DFT) further confirm the reversibility of sodium storage in MoSeTe/N,F@C anode materials during electrochemical reactions,highlighting their potential for widespread practical application.This work provides new insights into the promising utilization of advanced transition metal dichalcogenides as anode materials for Na^(+)-based energy storage devices.
基金Project(22109181)supported by the National Natural Science Foundation of ChinaProject(2022JJ40576)supported by the Hunan Provincial Natural Science Foundation of China。
文摘Aqueous zinc ion hybrid capacitors(ZIHCs)are considered one of the most promising electrochemical energy storage systems due to their high safety,environmental friendliness,low cost,and high power density.However,the low energy density and the lack of sustainable design strategies for the cathodes hinder the practical application of ZIHCs.Herein,we design the N and O co-doped porous carbon cathode by annealing metal-organic framework(ZIF-8).ZIF-8 retains the original dodecahedral structure with a high specific surface(2814.67 m^(2)/g)and I_(G)/I_(D) ratio of 1.0 during carbonization and achieves self-doping of N and O heteroatoms.Abundant defect sites are introduced into the porous carbon to provide additional active sites for ion adsorption after the activation of carbonized ZIF-8 by KOH treatment.The ZIHCs assembled with modified ZIF-8 as the cathode and commercial zinc foil as the anode show an energy density of 125 W∙h/kg and a power density of 79 W/kg.In addition,this ZIHCs device achieves capacity retention of 77.8%after 9000 electrochemical cycles,which is attributed to the diverse pore structure and plentiful defect sites of ZIF-8-800(KOH).The proposed strategy may be useful in developing high-performance metal-ion hybrid capacitors for large-scale energy storage.
基金financially supported by the National Natural Science Foundation of China(No.52072151,52171211,52102253,52271218,and U22A20145)Taishan Scholars(No.ts201712050)+1 种基金Jinan Independent Innovative Team(2020GXRC015)Major Program of Shandong Province Natural Science Foundation(ZR2021ZD05)
文摘The orthorhombic CuNb_(2)O_(6)(O-CNO)is established as a competitive anode for lithium-ion capacitors(LICs)owing to its attractive compositional/structural merits.However,the high-temperature synthesis(>900℃)and controversial charge-storage mechanism always limit its applications.Herein,we develop a low-temperature strategy to fabricate a nano-blocks-constructed hierarchical accordional O-CNO framework by employing multilayered Nb_(2)CT_(x)as the niobium source.The intrinsic stress-induced formation/transformation mechanism of the monoclinic CuNb_(2)O_(6)to O-CNO is tentatively put forward.Furthermore,the integrated phase conversion and solid solution lithium-storage mechanism is reasonably unveiled with comprehensive in(ex)situ characterizations.Thanks to its unique structural merits and lithium-storage process,the resulted O-CNO anode is endowed with a large capacity of 150.3 mAh g^(-1)at 2.0 A g^(-1),along with long-duration cycling behaviors.Furthermore,the constructed O-CNO-based LICs exhibit a high energy(138.9 Wh kg^(-1))and power(4.0 kW kg^(-1))densities with a modest cycling stability(15.8%capacity degradation after 3000 consecutive cycles).More meaningfully,the in-depth insights into the formation and charge-storage process here can promote the extensive development of binary metal Nb-based oxides for advanced LICs.
文摘This article presents an extensive examination and modeling of Capacitor Coupled Substations (CCS), noting some of their inherent constraints. The underlying implementation of a CCS is to supply electricity directly from high-voltage (HV) transmission lines to low-voltage (LV) consumers through coupling capacitors and is said to be cost-effective as compared to conventional distribution networks. However, the functionality of such substations is susceptible to various transient phenomena, including ferroresonance and overvoltage occurrences. To address these challenges, the study uses simulations to evaluate the effectiveness of conventional resistor-inductor-capacitor (RLC) filter in mitigating hazardous overvoltage resulting from transients. The proposed methodology entails using standard RLC filter to suppress transients and its associated overvoltage risks. Through a series of MATLAB/Simulink simulations, the research emphasizes the practical effectiveness of this technique. The study examines the impact of transients under varied operational scenarios, including no-load switching conditions, temporary short-circuits, and load on/off events. The primary aim of the article is to assess the viability of using an established technology to manage system instabilities upon the energization of a CCS under no-load circumstances or in case of a short-circuit fault occurring on the primary side of the CCS distribution transformer. The findings underscore the effectiveness of conventional RLC filters in suppressing transients induced by the CCS no-load switching.
文摘Converters rely on passive filtering as a crucial element due to the high-frequency operational characteristics of power electronics.Traditional filtering methods involve a dual inductor-capacitor(LC)cell or an inductor-capacitor-inductor(LCL)T-circuit.However,capacitors are susceptible to wear-out mechanisms and failure modes.Nevertheless,the necessity for monitoring and regular replacement adds to an elevated cost of ownership for such systems.The utilization of an active output power filter can be used to diminish the dimensions of the LC filter and the electrolytic dc-link capacitor,even though the inclusion of capacitors remains an indispensable part of the system.This paper introduces capacitorless solid-state power filter(SSPF)for single-phase dc-ac converters.The proposed configuration is capable of generating a sinusoidal ac voltage without relying on capacitors.The proposed filter,composed of a planar transformer and an H-bridge converter operating at high frequency,injects voltage harmonics to attain a sinusoidal output voltage.The design parameters of the planar transformer are incorporated,and the impact of magnetizing and leakage inductances on the operation of the SSPF is illustrated.Theoretical analysis,supported by simulation and experimental results,are provided for a design example for a single-phase system.The total harmonic distortion observed in the output voltage is well below the IEEE 519 standard.The system operation is experimentally tested under both steady-state and dynamic conditions.A comparison with existing technology is presented,demonstrating that the proposed topology reduces the passive components used for filtering.