The subthalamic nucleus(STN)is considered the best target for deep brain stimulation treatments of Parkinson’s disease(PD).It is difficult to localize the STN due to its small size and deep location.Multichannel micr...The subthalamic nucleus(STN)is considered the best target for deep brain stimulation treatments of Parkinson’s disease(PD).It is difficult to localize the STN due to its small size and deep location.Multichannel microelectrode arrays(MEAs)can rapidly and precisely locate the STN,which is important for precise stimulation.In this paper,16-channel MEAs modified with multiwalled carbon nanotube/poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(MWCNT/PEDOT:PSS)nanocomposites were designed and fabricated,and the accurate and rapid identification of the STN in PD rats was performed using detection sites distributed at different brain depths.These results showed that nuclei in 6-hydroxydopamine hydrobromide(6-OHDA)-lesioned brains discharged more intensely than those in unlesioned brains.In addition,the MEA simultaneously acquired neural signals from both the STN and the upper or lower boundary nuclei of the STN.Moreover,higher values of spike firing rate,spike amplitude,local field potential(LFP)power,and beta oscillations were detected in the STN of the 6-OHDA-lesioned brain,and may therefore be biomarkers of STN localization.Compared with the STNs of unlesioned brains,the power spectral density of spikes and LFPs synchronously decreased in the delta band and increased in the beta band of 6-OHDA-lesioned brains.This may be a cause of sleep and motor disorders associated with PD.Overall,this work describes a new cellular-level localization and detection method and provides a tool for future studies of deep brain nuclei.展开更多
Silicon(Si)diffraction microlens arrays are usually used to integrating with infrared focal plane arrays(IRFPAs)to improve their performance.The errors of lithography are unavoidable in the process of the Si diffrac-t...Silicon(Si)diffraction microlens arrays are usually used to integrating with infrared focal plane arrays(IRFPAs)to improve their performance.The errors of lithography are unavoidable in the process of the Si diffrac-tion microlens arrays preparation in the conventional engraving method.It has a serious impact on its performance and subsequent applications.In response to the problem of errors of Si diffraction microlens arrays in the conven-tional method,a novel self-alignment method for high precision Si diffraction microlens arrays preparation is pro-posed.The accuracy of the Si diffractive microlens arrays preparation is determined by the accuracy of the first li-thography mask in the novel self-alignment method.In the subsequent etching,the etched area will be protected by the mask layer and the sacrifice layer or the protective layer.The unprotection area is carved to effectively block the non-etching areas,accurately etch the etching area required,and solve the problem of errors.The high precision Si diffraction microlens arrays are obtained by the novel self-alignment method and the diffraction effi-ciency could reach 92.6%.After integrating with IRFPAs,the average blackbody responsity increased by 8.3%,and the average blackbody detectivity increased by 10.3%.It indicates that the Si diffraction microlens arrays can improve the filling factor and reduce crosstalk of IRFPAs through convergence,thereby improving the perfor-mance of the IRFPAs.The results are of great reference significance for improving their performance through opti-mizing the preparation level of micro nano devices.展开更多
Precisely refining the electronic structure of electrocatalysts represents a powerful approach to further optimize the electrocatalytic performance.Herein,we demonstrate an ingenious d-d orbital hybridization concept ...Precisely refining the electronic structure of electrocatalysts represents a powerful approach to further optimize the electrocatalytic performance.Herein,we demonstrate an ingenious d-d orbital hybridization concept to construct Mo-doped Co_(9)S_(8) nanorod arrays aligned on carbon cloth(CC)substrate(abbreviated as Mo-Co_(9)S_(8)@CC hereafter)as a high-efficiency bifunctional electrocatalyst toward water electrolysis.It has experimentally and theoretically validated that the 4d-3d orbital coupling between Mo dopant and Co site can effectively optimize the H_(2)O activation energy and lower H^(*)adsorption energy barrier,thereby leading to enhanced hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)activities.Thanks to the unique electronic and geometrical advantages,the optimized Mo-Co_(9)S_(8)@CC with appropriate Mo content exhibits outstanding bifunctional performance in alkaline solution,with the overpotentials of 75 and 234 mV for the delivery of a current density of 10 mA cm^(-2),small Tafel slopes of 53.8 and 39.9 mV dec~(-1)and long-term stabilities for at least 32 and 30 h for HER and OER,respectively.More impressively,a water splitting electrolylzer assembled by the self-supported Mo-Co_(9)S_(8)@CC electrode requires a low cell voltage of 1.53 V at 10 mA cm^(-2)and shows excellent stability and splendid reversibility,demonstrating a huge potential for affordable and scalable electrochemical H_(2) production.The innovational orbital hybridization strategy for electronic regulation herein provides an inspirable avenue for developing progressive electrocatalysts toward new energy systems.展开更多
ZnO nanorod arrays (NRs) were synthesized on the fluorine-doped SnO2 transparent conductive glass (FTO) by a simple chemical bath deposition (CBD) method combined with alkali-etched method in potassium hydroxide...ZnO nanorod arrays (NRs) were synthesized on the fluorine-doped SnO2 transparent conductive glass (FTO) by a simple chemical bath deposition (CBD) method combined with alkali-etched method in potassium hydroxide (KOH) solution. X-ray diffraction (XRD), scanning electron microscopy (SEM) and current-voltage (I-V) curve were used to characterize the structure, morphologies and optoelectronic properties. The results demonstrated that ZnO NRs had wurtzite structures, the morphologies and photovoltaic properties of ZnO NRs were closely related to the concentration of KOH and etching time, well-aligned and uniformly distributed ZnO NRs were obtained after etching with 0.1 mol/L KOH for 1 h. ZnO NRs treated by KOH had been proved to have superior photovoltaic properties compared with high density ZnO NRs. When using ZnO NRs etched with 0.1 mol/L KOH for 1 h as the anode of solar cell, the conversion efficiency, short circuit current and open circuit voltage, compared with the unetched ZnO NRs, increased by 0.71%, 2.79 mA and 0.03 V, respectively.展开更多
The influence of DBR in resonant cavity on the characteristics of the reflectivity of InGaAs/GaAs MQW SEED arrays has been discussed. InGaAs/GaAs acting as the active region of MQW SEED to gain 980nm work wavele...The influence of DBR in resonant cavity on the characteristics of the reflectivity of InGaAs/GaAs MQW SEED arrays has been discussed. InGaAs/GaAs acting as the active region of MQW SEED to gain 980nm work wavelergth has been introduced. A new resonant cavity structure of the InGaAs/GaAs MQW SEED arrays has been designed and analyzed. The MQW materials grown by MOCVD system have also been measured and analyzed with micro optical spot reflection spectra, PL measurement and X ray measurement. The results of measurement prove the good quality of the wafer and the accuracy of our design and analysis of the structure of the device.展开更多
Surface plasmon resonance of noble metal nanoparticles leads to the optical absorption enhancement effects,which have great potential applications in solar cell.By using the general numerical method of discrete dipole...Surface plasmon resonance of noble metal nanoparticles leads to the optical absorption enhancement effects,which have great potential applications in solar cell.By using the general numerical method of discrete dipole approximation (DDA),we study the absorption and scattering properties of two-dimensional square silver nanodisks (2D SSN) arrays on the single crystal silicon solar cell.Based on the effective reflective index model of the single crystal silicon solar cell,we investigate the optical enhancement absorption of light energy by varying the light incident direction,particle size,aspect ratio,and interparticle spacing of the silver nanodisks.The peak values and position of the optical extinction spectra of the 2D square arrays of noble metal nanodisks are obtained with the different array structures.展开更多
A photocatalyst composed of TiO 2 nanotube arrays(TNTs) and octahedral Cu2 O nanoparticles was fabricated,and its performance in the photocatalytic reduction of CO2 under visible and simulated solar irradiation was ...A photocatalyst composed of TiO 2 nanotube arrays(TNTs) and octahedral Cu2 O nanoparticles was fabricated,and its performance in the photocatalytic reduction of CO2 under visible and simulated solar irradiation was studied. The average nanotube diameter and length was 100 nm and 5 μm,respectively. The different amount of octahedral Cu2 O modified TNTs were obtained by varying electrochemical deposition time. TNTs modified with an optimized amount of Cu2 O nanoparticles exhibited high efficiency in the photocatalysis,and the predominant hydrocarbon product was methane. The methane yield increased with increasing Cu2 O content of the catalyst up to a certain deposition time,and decreased with further increase in Cu2 O deposition time. Insufficient deposition time(5 min) resulted in a small amount of Cu2 O nanoparticles on the TNTs,leading to the disadvantage of harvesting light. However,excess deposition time(45 min) gave rise to entire TNT surface being most covered with Cu2 O nanoparticles with large sizes,inconvenient for the transport of photo-generated carriers. The highest methane yield under simulated solar and visible light irradiation was observed for the catalysts prepared at a Cu2 O deposition time of 15 and 30 min respectively. The morphology,crystallization,photoresponse and electrochemical properties of the catalyst were characterized to understand the mechanism of its high photocatalytic activity. The TNT structure provided abundant active sites for the adsorption of reactants,and promoted the transport of photogenerated carriers that improved charge separation. Modifying the TNTs with octahedral Cu2 O nanoparticles promoted light absorption,and prevented the hydrocarbon product from oxidation. These factors provided the Cu2O-modified TNT photocatalyst with high efficiency in the reduction of CO2,without requiring co-catalysts or sacrificial agents.展开更多
Fabrication of novel electrode architectures with nanostructured ultrathin catalyst layers is an effective strategy to improve catalyst utilization and enhance mass transport for polymer electrolyte membrane fuel cell...Fabrication of novel electrode architectures with nanostructured ultrathin catalyst layers is an effective strategy to improve catalyst utilization and enhance mass transport for polymer electrolyte membrane fuel cells (PEMFCs).Herein,we report the design and construction of a nanostructured ultrathin catalyst layer with ordered Pt nanotube arrays,which were obtained by a hard-template strategy based on ZnO,via hydrothermal synthesis and magnetron sputtering for PEMFC application.Because of the crystallographically preferential growth of Pt (111) facets,which was attributed to the structural effects of ZnO nanoarrays on the Pt nanotubes,the catalyst layers exhibit obviously higher electrochemical activity with remarkable enhancement of specific activity and mass transport compared with the state-of-the-art randomly distributed Pt/C catalyst layer.The PEMFC fabricated with the as-prepared catalyst layer composed of optimized Pt nanotubes with an average diameter of 90(±10) nm shows excellent performance with a peak power density of 6.0W/mgPt at 1 A/cm^2,which is 11.6%greater than that of the conventional Pt/C electrode.展开更多
When a shock wave interacts with a group of solid spheres,non-linear aerodynamic behaviors come into effect.The complicated wave reflections such as the Mach reflection occur in the wave propagation process.The wave i...When a shock wave interacts with a group of solid spheres,non-linear aerodynamic behaviors come into effect.The complicated wave reflections such as the Mach reflection occur in the wave propagation process.The wave interactions with vortices behind each sphere's wake cause fluctuation in the pressure profiles of shock waves.This paper reports an experimental study for the aerodynamic processes involved in the interaction between shock waves and solid spheres.A schlieren photography was applied to visualize the various shock waves passing through solid spheres.Pressure measurements were performed along different downstream positions.The experiments were conducted in both rectangular and circular shock tubes.The data with respect to the effect of the sphere array, size,interval distance,incident Mach number,etc.,on the shock wave attenuation were obtained.展开更多
The rapid improvement in the gel polymer electrolytes(GPEs)with high ionic conductivity brought it closer to practical applications in solid-state Li-metal batteries.The combination of solvent and polymer enables quas...The rapid improvement in the gel polymer electrolytes(GPEs)with high ionic conductivity brought it closer to practical applications in solid-state Li-metal batteries.The combination of solvent and polymer enables quasi-liquid fast ion transport in the GPEs.However,different ion transport capacity between solvent and polymer will cause local nonuniform Li+distribution,leading to severe dendrite growth.In addition,the poor thermal stability of the solvent also limits the operating-temperature window of the electrolytes.Optimizing the ion transport environment and enhancing the thermal stability are two major challenges that hinder the application of GPEs.Here,a strategy by introducing ion-conducting arrays(ICA)is created by vertical-aligned montmorillonite into GPE.Rapid ion transport on the ICA was demonstrated by 6Li solid-state nuclear magnetic resonance and synchrotron X-ray diffraction,combined with computer simulations to visualize the transport process.Compared with conventional randomly dispersed fillers,ICA provides continuous interfaces to regulate the ion transport environment and enhances the tolerance of GPEs to extreme temperatures.Therefore,GPE/ICA exhibits high room-temperature ionic conductivity(1.08 mS cm^(−1))and long-term stable Li deposition/stripping cycles(>1000 h).As a final proof,Li||GPE/ICA||LiFePO_(4) cells exhibit excellent cycle performance at wide temperature range(from 0 to 60°C),which shows a promising path toward all-weather practical solid-state batteries.展开更多
In this paper, we report a ferromagnetic resonance study on the permalloy film of submicron sized rectangular arrays prepared by electron beam lithography and the theoretical simulation to the non uniform demagnetiz...In this paper, we report a ferromagnetic resonance study on the permalloy film of submicron sized rectangular arrays prepared by electron beam lithography and the theoretical simulation to the non uniform demagnetizing effect and ferromagnetic resonance data. By theoretical simulation, the magnetization, gyromagnetic ratio and g value of the sample are determined. The theoretical curves of the dependence of the resonance field on the field orientation φ H fit well with the experimental data. When the steady magnetic field is applied near the film normal, a series of additional regular peaks (up to eight ) appeared in the FMR spectrum on the low field side of the main FMR peak. The resonance field of these side peaks decreases linearly with the peak number. The possible physical mechanism of these multiple peaks was discussed.展开更多
In this article, unique spectral features of short-wave infrared band of 1 μm–3 μm, and various applications related to the photodetectors and focal plane arrays in this band, are introduced briefly. In addition, t...In this article, unique spectral features of short-wave infrared band of 1 μm–3 μm, and various applications related to the photodetectors and focal plane arrays in this band, are introduced briefly. In addition, the different material systems for the devices in this band are outlined. Based on the background, the development of lattice-matched and wavelengthextended InGaAs photodetectors and focal plane arrays, including our continuous efforts in this field, are reviewed. These devices are concentrated on the applications in spectral sensing and imaging, exclusive of optical fiber communication.展开更多
Rapid dissemination of antibiotic resistance genes among bacterial isolates is an increasing problem in China. Integron, a conserved DNA sequence, which is carried on episomal genetic structures, plays a very importan...Rapid dissemination of antibiotic resistance genes among bacterial isolates is an increasing problem in China. Integron, a conserved DNA sequence, which is carried on episomal genetic structures, plays a very important role in development of antibiotic resistance. This systematic analysis was based on MEDLINE and EMBASE databases. We summarized the distribution and proportion of different types of gene cassette arrays ofintegrons (including class 1, 2, 3 and atypical class 1 integron) from clinical bacteria isolates in China. Fifty-six literatures were included in this study. Most of the strains were Gram-negative bacteria (94.1%, 7,364/7,822) while only 5.9% strains were Gram- positive bacteria. Class 1 integrons were detected in 54.2% (3956/7295) Gram-negative strains, aadA2 was the most popular gene cassette array detected from 60 Gram-positive bacteria while dfrA 17-aadA5 were detected in 426 Gram- negative bacteria. This study identified 12 novel gene cassette arrays which have not been previously found in any species. All the novel gene cassette arrays were detected from Gram-negative bacteria. A regional characteristic of distribution of integrons was presented in this study. The results highlight a need for continuous surveillance of integrons and provide a guide for future research on integron-mediated bacteria resistance.展开更多
Oxygen electrocatalysis,exemplified by the oxygen reduction reaction(ORR)and oxygen evolution reaction(OER),is central to energy storage and conversion technologies such as fuel cells,metal-air batteries,and water ele...Oxygen electrocatalysis,exemplified by the oxygen reduction reaction(ORR)and oxygen evolution reaction(OER),is central to energy storage and conversion technologies such as fuel cells,metal-air batteries,and water electrolysis.However,highly effective and inexpensive earth-abundant materials are sought after to replace the noble metal-based electrocatalysts currently in use.Recently,metal-organic frameworks(MOFs)and carbon-based MOF derivatives have attracted considerable attention as efficient catalysts due to their exceedingly tunable morphologies,structures,compositions,and functionalization.Here,we report two-dimensional(2D)MOF/MOF derivative coupled arrays on nickel foam as binder-free bifunctional ORR/OER catalysts with enhanced electrocatalytic activity and stability.Their remarkable electrochemical properties are primarily attributed to fully exposed active sites and facilitated charge-transfer kinetics.The coupled and hierarchical nanosheet arrays produced via our growth-pyrolysis-regrowth strategy offer promise in the development of highly active electrodes for energy-related electrochemical devices.展开更多
Herein, combining solverthermal route and electrodeposition, we grew unique hybrid nanosheet arrays consisting of Co_3O_4 nanosheet as a core, PPy as a shell. Benefiting from the PPy as conducting polymer improving an...Herein, combining solverthermal route and electrodeposition, we grew unique hybrid nanosheet arrays consisting of Co_3O_4 nanosheet as a core, PPy as a shell. Benefiting from the PPy as conducting polymer improving an electron transport rate as well as synergistic effects from such a core/shell structure, a hybrid electrode made of the Co_3O_4@PPy core/shell nanosheet arrays exhibits a large areal capacitance of 2.11 F cm-2at the current density of 2 m A cm^(-2), a *4-fold enhancement compared with the pristine Co_3O_4electrode; furthermore, this hybrid electrode also displays good rate capability(*65 % retention of the initial capacitance from 2 to 20 m A cm^(-2)) and superior cycling performance(*85.5 % capacitance retention after 5000 cycles). In addition, the equivalent series resistance value of the Co_3O_4@PPy hybrid electrode(0.238 X) is significantly lower than that of the pristine Co_3O_4electrode(0.319 X). These results imply that the Co_3O_4@PPy hybrid composites have a potential for fabricating next-generation energy storage and conversion devices.展开更多
Metal sulphide electrocatalyst is considered as one of the most promising low-cost candidates for oxygen evolution reaction(OER).In this work,we report a novel free-standing Cu2S branch array via a facile TiO2-induced...Metal sulphide electrocatalyst is considered as one of the most promising low-cost candidates for oxygen evolution reaction(OER).In this work,we report a novel free-standing Cu2S branch array via a facile TiO2-induced electrodeposition-sulfurization method.Interestingly,cross-linked Cu2S nanoflake branch is strongly anchored on the TiO2 backbone forming high-quality Cu2S/TiO2/Cu2S core-branch arrays.The branch formation mechanism is also proposed.As compared to the pure Cu2S nanowire arrays,the asprepared Cu2S/TiO2/Cu2S core-branch arrays show much better alkaline OER performance with lower overpotential(284 mV at 10 mA cm^-2)and smaller Tafel slope(72 dec-1)as well as enhanced longterm durability mainly due to larger exposed area and more active electrocatalytic sites.Our work provides a new way for construction of advanced metal sulphide electrocatalysts for electrochemical energy conversion.展开更多
Photoanodes based on In_2S_3/ZnO heterojunction nanosheet arrays(NSAs) have been fabricated by atomic layer deposition of ZnO over In_2S_3 NSAs, which were in situ grown on fluorine-doped tin oxide glasses via a facil...Photoanodes based on In_2S_3/ZnO heterojunction nanosheet arrays(NSAs) have been fabricated by atomic layer deposition of ZnO over In_2S_3 NSAs, which were in situ grown on fluorine-doped tin oxide glasses via a facile solvothermal process. The as-prepared photoanodes show dramatically enhanced performance for photoelectrochemical(PEC) water splitting, compared to single semiconductor counterparts. The optical and PEC properties of In_2S_3/ZnO NSAs have been optimized by modulating the thickness of the Zn O overlayer. After pairing with ZnO, the NSAs exhibit a broadened absorption range and an increased light absorptance over a wide wavelength region of 250–850 nm. The optimized sample of In_2S_3/ZnO-50 NSAs shows a photocurrent density of 1.642 m A cm^(-2)(1.5 V vs. RHE) and an incident photonto-current efficiency of 27.64% at 380 nm(1.23 V vs.RHE), which are 70 and 116 times higher than those of the pristine In_2S_3 NSAs, respectively. A detailed energy band edge analysis reveals the type-II band alignment of the In_2S_3/ZnO heterojunction, which enables efficient separation and collection of photogenerated carriers,especially with the assistance of positive bias potential, and then results in the significantly increased PEC activity.展开更多
It is important but challenging to design and fabricate an efficient and cost-effective electrocatalyst for the oxygen evolution reaction(OER). Herein, we report free-standing 3 D nickel arrays with a cross-linked por...It is important but challenging to design and fabricate an efficient and cost-effective electrocatalyst for the oxygen evolution reaction(OER). Herein, we report free-standing 3 D nickel arrays with a cross-linked porous structure as interesting and high-performance electrocatalysts for OER via a facile one-step electrodeposition method. The 3 D nickel arrays are strongly anchored on the substrate, forming self-supported electrocatalysts with reinforced structural stability and high electrical conductivity. Because of their increased active surface area, abundant channels for electron/ion transportation and enhanced electronic conductivity, the designed 3 D nickel arrays exhibit superior electrocatalytic OER performance with a low overpotential(496 mV at 50 mA cm–2) and a small Tafel slope(43 mV dec–1) as well as long-term stability(no decay after 24 h) in alkaline solution. Our proposed rational design strategy may open up a new way to construct other advanced 3 D porous materials for widespread application in electrocatalysis.展开更多
For efficient electrolysis of water for hydrogen generation or other valueadded chemicals, it is highly relevant to develop low-temperature synthesis of low-cost and high-e ciency metal sulfide electrocatalysts on a l...For efficient electrolysis of water for hydrogen generation or other valueadded chemicals, it is highly relevant to develop low-temperature synthesis of low-cost and high-e ciency metal sulfide electrocatalysts on a large scale. Herein, we construct a new core–branch array and binder-free electrode by growing Ni_3S_2 nanoflake branches on an atomic-layer-deposited(ALD) TiO_2 skeleton. Through induced growth on the ALD-TiO_2 backbone, cross-linked Ni_3S_2 nanoflake branches with exposed { 210} highindex facets are uniformly anchored to the preformed TiO_2 core forming an integrated electrocatalyst. Such a core–branch array structure possesses large active surface area, uniform porous structure, and rich active sites of the exposed { 210 } high-index facet in the Ni_3S_2 nanoflake. Accordingly, the TiO_2@Ni_3S_2 core/branch arrays exhibit remarkable electrocatalytic activities in an alkaline medium, with lower overpotentials for both oxygen evolution reaction(220 mV at 10 mA cm^(-2)) and hydrogen evolution reaction(112 m V at 10 mA cm^(-2)), which are better than those of other Ni_3S_2 counterparts. Stable overall water splitting based on this bifunctional electrolyzer is also demonstrated.展开更多
Titanium dioxide(TiO_2) has been investigated broadly as a stable,safe,and cheap anode material for sodium-ion batteries in recent years.However,the poor electronic conductivity and inherent sluggish sodium ion diffus...Titanium dioxide(TiO_2) has been investigated broadly as a stable,safe,and cheap anode material for sodium-ion batteries in recent years.However,the poor electronic conductivity and inherent sluggish sodium ion diffusion hinder its practical applications.Herein,a self-template and in situ vulcanization strategy is developed to synthesize self-supported hybrid nanotube arrays composed of nitrogen/sulfur-codoped carbon coated sulfur-doped TiO_2 nanotubes(S-TiO_2@NS-C) starting from H_2 Ti_2 O_5-H_2 O nanoarrays.The S-TiO_2@NS-C composite with one-dimensional nano-sized subunits integrates several merits.Specifically,sulfur doping strongly improves the Na~+ storage ability of TiO_2@C-N nanotubes by narrowing the bandgap of original TiO_2.Originating from the nanoarrays structures built from hollow nanotubes,carbon layer and sulfur doping,the sluggish Na~+ insertion/extraction kinetics is effectively improved and the volume variation of the electrode material is significantly alleviated.As a result,the S-TiO_2@NS-C nanoarrays present efficient sodium storage properties.The greatly improved sodium storage performances of S-TiO_2@NS-C nanoarrays confirm the importance of rational engineering and synthesis of hollow array architectures with higher complexity.展开更多
基金funded by the National Natural Science Foundation of China(Nos.L2224042,T2293731,62121003,61960206012,61973292,62171434,61975206,and 61971400)the Frontier Interdisciplinary Project of the Chinese Academy of Sciences(No.XK2022XXC003)+2 种基金the National Key Research and Development Program of China(Nos.2022YFC2402501 and 2022YFB3205602)the Major Program of Scientific and Technical Innovation 2030(No.2021ZD02016030)the Scientific Instrument Developing Project of he Chinese Academy of Sciences(No.GJJSTD20210004).
文摘The subthalamic nucleus(STN)is considered the best target for deep brain stimulation treatments of Parkinson’s disease(PD).It is difficult to localize the STN due to its small size and deep location.Multichannel microelectrode arrays(MEAs)can rapidly and precisely locate the STN,which is important for precise stimulation.In this paper,16-channel MEAs modified with multiwalled carbon nanotube/poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(MWCNT/PEDOT:PSS)nanocomposites were designed and fabricated,and the accurate and rapid identification of the STN in PD rats was performed using detection sites distributed at different brain depths.These results showed that nuclei in 6-hydroxydopamine hydrobromide(6-OHDA)-lesioned brains discharged more intensely than those in unlesioned brains.In addition,the MEA simultaneously acquired neural signals from both the STN and the upper or lower boundary nuclei of the STN.Moreover,higher values of spike firing rate,spike amplitude,local field potential(LFP)power,and beta oscillations were detected in the STN of the 6-OHDA-lesioned brain,and may therefore be biomarkers of STN localization.Compared with the STNs of unlesioned brains,the power spectral density of spikes and LFPs synchronously decreased in the delta band and increased in the beta band of 6-OHDA-lesioned brains.This may be a cause of sleep and motor disorders associated with PD.Overall,this work describes a new cellular-level localization and detection method and provides a tool for future studies of deep brain nuclei.
基金Supported by the National Natural Science Foundation of China(NSFC 62105100)the National Key research and development program in the 14th five year plan(2021YFA1200700)。
文摘Silicon(Si)diffraction microlens arrays are usually used to integrating with infrared focal plane arrays(IRFPAs)to improve their performance.The errors of lithography are unavoidable in the process of the Si diffrac-tion microlens arrays preparation in the conventional engraving method.It has a serious impact on its performance and subsequent applications.In response to the problem of errors of Si diffraction microlens arrays in the conven-tional method,a novel self-alignment method for high precision Si diffraction microlens arrays preparation is pro-posed.The accuracy of the Si diffractive microlens arrays preparation is determined by the accuracy of the first li-thography mask in the novel self-alignment method.In the subsequent etching,the etched area will be protected by the mask layer and the sacrifice layer or the protective layer.The unprotection area is carved to effectively block the non-etching areas,accurately etch the etching area required,and solve the problem of errors.The high precision Si diffraction microlens arrays are obtained by the novel self-alignment method and the diffraction effi-ciency could reach 92.6%.After integrating with IRFPAs,the average blackbody responsity increased by 8.3%,and the average blackbody detectivity increased by 10.3%.It indicates that the Si diffraction microlens arrays can improve the filling factor and reduce crosstalk of IRFPAs through convergence,thereby improving the perfor-mance of the IRFPAs.The results are of great reference significance for improving their performance through opti-mizing the preparation level of micro nano devices.
基金financially supported by the National Natural Science Foundation of China(21972068,22072067,22232004)the High-level Talents Project of Jinling Institute of Technology(jit-b-202164)。
文摘Precisely refining the electronic structure of electrocatalysts represents a powerful approach to further optimize the electrocatalytic performance.Herein,we demonstrate an ingenious d-d orbital hybridization concept to construct Mo-doped Co_(9)S_(8) nanorod arrays aligned on carbon cloth(CC)substrate(abbreviated as Mo-Co_(9)S_(8)@CC hereafter)as a high-efficiency bifunctional electrocatalyst toward water electrolysis.It has experimentally and theoretically validated that the 4d-3d orbital coupling between Mo dopant and Co site can effectively optimize the H_(2)O activation energy and lower H^(*)adsorption energy barrier,thereby leading to enhanced hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)activities.Thanks to the unique electronic and geometrical advantages,the optimized Mo-Co_(9)S_(8)@CC with appropriate Mo content exhibits outstanding bifunctional performance in alkaline solution,with the overpotentials of 75 and 234 mV for the delivery of a current density of 10 mA cm^(-2),small Tafel slopes of 53.8 and 39.9 mV dec~(-1)and long-term stabilities for at least 32 and 30 h for HER and OER,respectively.More impressively,a water splitting electrolylzer assembled by the self-supported Mo-Co_(9)S_(8)@CC electrode requires a low cell voltage of 1.53 V at 10 mA cm^(-2)and shows excellent stability and splendid reversibility,demonstrating a huge potential for affordable and scalable electrochemical H_(2) production.The innovational orbital hybridization strategy for electronic regulation herein provides an inspirable avenue for developing progressive electrocatalysts toward new energy systems.
基金Project (21171027) supported by the National Natural Science Foundation of ChinaProject (K1001020-11) supported by the Science and Technology Key Project of Changsha City, ChinaProject ([2010]70) supported by Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province, China
文摘ZnO nanorod arrays (NRs) were synthesized on the fluorine-doped SnO2 transparent conductive glass (FTO) by a simple chemical bath deposition (CBD) method combined with alkali-etched method in potassium hydroxide (KOH) solution. X-ray diffraction (XRD), scanning electron microscopy (SEM) and current-voltage (I-V) curve were used to characterize the structure, morphologies and optoelectronic properties. The results demonstrated that ZnO NRs had wurtzite structures, the morphologies and photovoltaic properties of ZnO NRs were closely related to the concentration of KOH and etching time, well-aligned and uniformly distributed ZnO NRs were obtained after etching with 0.1 mol/L KOH for 1 h. ZnO NRs treated by KOH had been proved to have superior photovoltaic properties compared with high density ZnO NRs. When using ZnO NRs etched with 0.1 mol/L KOH for 1 h as the anode of solar cell, the conversion efficiency, short circuit current and open circuit voltage, compared with the unetched ZnO NRs, increased by 0.71%, 2.79 mA and 0.03 V, respectively.
文摘The influence of DBR in resonant cavity on the characteristics of the reflectivity of InGaAs/GaAs MQW SEED arrays has been discussed. InGaAs/GaAs acting as the active region of MQW SEED to gain 980nm work wavelergth has been introduced. A new resonant cavity structure of the InGaAs/GaAs MQW SEED arrays has been designed and analyzed. The MQW materials grown by MOCVD system have also been measured and analyzed with micro optical spot reflection spectra, PL measurement and X ray measurement. The results of measurement prove the good quality of the wafer and the accuracy of our design and analysis of the structure of the device.
基金supported by the National Natural Science Foundation of China under Grant No. G050104011004024the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No. A0901040110018512026
文摘Surface plasmon resonance of noble metal nanoparticles leads to the optical absorption enhancement effects,which have great potential applications in solar cell.By using the general numerical method of discrete dipole approximation (DDA),we study the absorption and scattering properties of two-dimensional square silver nanodisks (2D SSN) arrays on the single crystal silicon solar cell.Based on the effective reflective index model of the single crystal silicon solar cell,we investigate the optical enhancement absorption of light energy by varying the light incident direction,particle size,aspect ratio,and interparticle spacing of the silver nanodisks.The peak values and position of the optical extinction spectra of the 2D square arrays of noble metal nanodisks are obtained with the different array structures.
基金supported by the National Natural Science Foundation of China(2137704421573085)+5 种基金the Key Project of Natural Science Foundation of Hubei Province(2015CFA037)Wuhan Planning Project of Science and Technology(2014010101010023)Self-determined Research Funds of CCNU from the Colleges’Basic Research and Operation of MOE(CCNU15ZD007CCNU15KFY005)China Postdoctoral Science Foundation(2015M572187)Hubei Provincial Department of Education(D20152702)~~
文摘A photocatalyst composed of TiO 2 nanotube arrays(TNTs) and octahedral Cu2 O nanoparticles was fabricated,and its performance in the photocatalytic reduction of CO2 under visible and simulated solar irradiation was studied. The average nanotube diameter and length was 100 nm and 5 μm,respectively. The different amount of octahedral Cu2 O modified TNTs were obtained by varying electrochemical deposition time. TNTs modified with an optimized amount of Cu2 O nanoparticles exhibited high efficiency in the photocatalysis,and the predominant hydrocarbon product was methane. The methane yield increased with increasing Cu2 O content of the catalyst up to a certain deposition time,and decreased with further increase in Cu2 O deposition time. Insufficient deposition time(5 min) resulted in a small amount of Cu2 O nanoparticles on the TNTs,leading to the disadvantage of harvesting light. However,excess deposition time(45 min) gave rise to entire TNT surface being most covered with Cu2 O nanoparticles with large sizes,inconvenient for the transport of photo-generated carriers. The highest methane yield under simulated solar and visible light irradiation was observed for the catalysts prepared at a Cu2 O deposition time of 15 and 30 min respectively. The morphology,crystallization,photoresponse and electrochemical properties of the catalyst were characterized to understand the mechanism of its high photocatalytic activity. The TNT structure provided abundant active sites for the adsorption of reactants,and promoted the transport of photogenerated carriers that improved charge separation. Modifying the TNTs with octahedral Cu2 O nanoparticles promoted light absorption,and prevented the hydrocarbon product from oxidation. These factors provided the Cu2O-modified TNT photocatalyst with high efficiency in the reduction of CO2,without requiring co-catalysts or sacrificial agents.
基金financially supported by the National Natural Science Foundation of China(NSFC,Grant no.21503228)the Transformational Technologies for Clean Energy and Demonstration,Strategic Priority Research Program of the Chinese Academy of Sciences(Grant no.XDA21090203)。
文摘Fabrication of novel electrode architectures with nanostructured ultrathin catalyst layers is an effective strategy to improve catalyst utilization and enhance mass transport for polymer electrolyte membrane fuel cells (PEMFCs).Herein,we report the design and construction of a nanostructured ultrathin catalyst layer with ordered Pt nanotube arrays,which were obtained by a hard-template strategy based on ZnO,via hydrothermal synthesis and magnetron sputtering for PEMFC application.Because of the crystallographically preferential growth of Pt (111) facets,which was attributed to the structural effects of ZnO nanoarrays on the Pt nanotubes,the catalyst layers exhibit obviously higher electrochemical activity with remarkable enhancement of specific activity and mass transport compared with the state-of-the-art randomly distributed Pt/C catalyst layer.The PEMFC fabricated with the as-prepared catalyst layer composed of optimized Pt nanotubes with an average diameter of 90(±10) nm shows excellent performance with a peak power density of 6.0W/mgPt at 1 A/cm^2,which is 11.6%greater than that of the conventional Pt/C electrode.
基金The project supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry,China,and the "BaiRen" Plan of Chinese Academy of Sciences
文摘When a shock wave interacts with a group of solid spheres,non-linear aerodynamic behaviors come into effect.The complicated wave reflections such as the Mach reflection occur in the wave propagation process.The wave interactions with vortices behind each sphere's wake cause fluctuation in the pressure profiles of shock waves.This paper reports an experimental study for the aerodynamic processes involved in the interaction between shock waves and solid spheres.A schlieren photography was applied to visualize the various shock waves passing through solid spheres.Pressure measurements were performed along different downstream positions.The experiments were conducted in both rectangular and circular shock tubes.The data with respect to the effect of the sphere array, size,interval distance,incident Mach number,etc.,on the shock wave attenuation were obtained.
基金This work was supported partially by the National Natural Science Foundation of China(No.51973171)China Postdoctoral Science Foundation(No.2019M663687)+1 种基金National Natural Science Foundation of China(No.52105587),the Foundation of State Key Laboratory of Organic-Inorganic Composites(oic-202001003)the University Joint Project-Key Projects of Shaanxi Province(No.2021GXLH-Z-042).
文摘The rapid improvement in the gel polymer electrolytes(GPEs)with high ionic conductivity brought it closer to practical applications in solid-state Li-metal batteries.The combination of solvent and polymer enables quasi-liquid fast ion transport in the GPEs.However,different ion transport capacity between solvent and polymer will cause local nonuniform Li+distribution,leading to severe dendrite growth.In addition,the poor thermal stability of the solvent also limits the operating-temperature window of the electrolytes.Optimizing the ion transport environment and enhancing the thermal stability are two major challenges that hinder the application of GPEs.Here,a strategy by introducing ion-conducting arrays(ICA)is created by vertical-aligned montmorillonite into GPE.Rapid ion transport on the ICA was demonstrated by 6Li solid-state nuclear magnetic resonance and synchrotron X-ray diffraction,combined with computer simulations to visualize the transport process.Compared with conventional randomly dispersed fillers,ICA provides continuous interfaces to regulate the ion transport environment and enhances the tolerance of GPEs to extreme temperatures.Therefore,GPE/ICA exhibits high room-temperature ionic conductivity(1.08 mS cm^(−1))and long-term stable Li deposition/stripping cycles(>1000 h).As a final proof,Li||GPE/ICA||LiFePO_(4) cells exhibit excellent cycle performance at wide temperature range(from 0 to 60°C),which shows a promising path toward all-weather practical solid-state batteries.
文摘In this paper, we report a ferromagnetic resonance study on the permalloy film of submicron sized rectangular arrays prepared by electron beam lithography and the theoretical simulation to the non uniform demagnetizing effect and ferromagnetic resonance data. By theoretical simulation, the magnetization, gyromagnetic ratio and g value of the sample are determined. The theoretical curves of the dependence of the resonance field on the field orientation φ H fit well with the experimental data. When the steady magnetic field is applied near the film normal, a series of additional regular peaks (up to eight ) appeared in the FMR spectrum on the low field side of the main FMR peak. The resonance field of these side peaks decreases linearly with the peak number. The possible physical mechanism of these multiple peaks was discussed.
基金Project supported by the National Key Research and Development Program of China(Grant No.2016YFB0402400)the National Natural Science Foundation of China(Grant Nos.61675225,61605232,and 61775228)the Shanghai Rising-Star Program,China(Grant No.17QA1404900)
文摘In this article, unique spectral features of short-wave infrared band of 1 μm–3 μm, and various applications related to the photodetectors and focal plane arrays in this band, are introduced briefly. In addition, the different material systems for the devices in this band are outlined. Based on the background, the development of lattice-matched and wavelengthextended InGaAs photodetectors and focal plane arrays, including our continuous efforts in this field, are reviewed. These devices are concentrated on the applications in spectral sensing and imaging, exclusive of optical fiber communication.
基金funded by the National Natural Science Foundation of China(No.81000754 and No. 81471994)received a grant from the Key Laboratory for Laboratory Medicine of Jiangsu Province of China(No.XK201114)
文摘Rapid dissemination of antibiotic resistance genes among bacterial isolates is an increasing problem in China. Integron, a conserved DNA sequence, which is carried on episomal genetic structures, plays a very important role in development of antibiotic resistance. This systematic analysis was based on MEDLINE and EMBASE databases. We summarized the distribution and proportion of different types of gene cassette arrays ofintegrons (including class 1, 2, 3 and atypical class 1 integron) from clinical bacteria isolates in China. Fifty-six literatures were included in this study. Most of the strains were Gram-negative bacteria (94.1%, 7,364/7,822) while only 5.9% strains were Gram- positive bacteria. Class 1 integrons were detected in 54.2% (3956/7295) Gram-negative strains, aadA2 was the most popular gene cassette array detected from 60 Gram-positive bacteria while dfrA 17-aadA5 were detected in 426 Gram- negative bacteria. This study identified 12 novel gene cassette arrays which have not been previously found in any species. All the novel gene cassette arrays were detected from Gram-negative bacteria. A regional characteristic of distribution of integrons was presented in this study. The results highlight a need for continuous surveillance of integrons and provide a guide for future research on integron-mediated bacteria resistance.
文摘Oxygen electrocatalysis,exemplified by the oxygen reduction reaction(ORR)and oxygen evolution reaction(OER),is central to energy storage and conversion technologies such as fuel cells,metal-air batteries,and water electrolysis.However,highly effective and inexpensive earth-abundant materials are sought after to replace the noble metal-based electrocatalysts currently in use.Recently,metal-organic frameworks(MOFs)and carbon-based MOF derivatives have attracted considerable attention as efficient catalysts due to their exceedingly tunable morphologies,structures,compositions,and functionalization.Here,we report two-dimensional(2D)MOF/MOF derivative coupled arrays on nickel foam as binder-free bifunctional ORR/OER catalysts with enhanced electrocatalytic activity and stability.Their remarkable electrochemical properties are primarily attributed to fully exposed active sites and facilitated charge-transfer kinetics.The coupled and hierarchical nanosheet arrays produced via our growth-pyrolysis-regrowth strategy offer promise in the development of highly active electrodes for energy-related electrochemical devices.
基金financially supported by the National Natural Science Foundation of China(Grant No.2117103551472049 and 51302035)+7 种基金the Key Grant Project of Chinese Ministry of Education(Grant No.313015)the PhD Programs Foundation of the Ministry of Education of China(Grant No.20110075110008 and20130075120001)the National 863 Program of China(Grant No.2013AA031903)the Science and Technology Commission of Shanghai Municipality(Grant No.13ZR1451200)the Fundamental Research Funds for the Central Universitiesthe Program Innovative Research Team in University(IRT1221)the Shanghai Leading Academic Discipline Project(Grant No.B603)the Program of Introducing Talents of Discipline to Universities(No.111-2-04)
文摘Herein, combining solverthermal route and electrodeposition, we grew unique hybrid nanosheet arrays consisting of Co_3O_4 nanosheet as a core, PPy as a shell. Benefiting from the PPy as conducting polymer improving an electron transport rate as well as synergistic effects from such a core/shell structure, a hybrid electrode made of the Co_3O_4@PPy core/shell nanosheet arrays exhibits a large areal capacitance of 2.11 F cm-2at the current density of 2 m A cm^(-2), a *4-fold enhancement compared with the pristine Co_3O_4electrode; furthermore, this hybrid electrode also displays good rate capability(*65 % retention of the initial capacitance from 2 to 20 m A cm^(-2)) and superior cycling performance(*85.5 % capacitance retention after 5000 cycles). In addition, the equivalent series resistance value of the Co_3O_4@PPy hybrid electrode(0.238 X) is significantly lower than that of the pristine Co_3O_4electrode(0.319 X). These results imply that the Co_3O_4@PPy hybrid composites have a potential for fabricating next-generation energy storage and conversion devices.
基金supported by the National Natural Science Foundation of China(Grant Nos.51728204 and 51772272)Fundamental Research Funds for the Central Universities(Grant No.2018QNA4011)+1 种基金Qianjiang Talents Plan D(QJD1602029)Startup Foundation for Hundred-Talent Program of Zhejiang University
文摘Metal sulphide electrocatalyst is considered as one of the most promising low-cost candidates for oxygen evolution reaction(OER).In this work,we report a novel free-standing Cu2S branch array via a facile TiO2-induced electrodeposition-sulfurization method.Interestingly,cross-linked Cu2S nanoflake branch is strongly anchored on the TiO2 backbone forming high-quality Cu2S/TiO2/Cu2S core-branch arrays.The branch formation mechanism is also proposed.As compared to the pure Cu2S nanowire arrays,the asprepared Cu2S/TiO2/Cu2S core-branch arrays show much better alkaline OER performance with lower overpotential(284 mV at 10 mA cm^-2)and smaller Tafel slope(72 dec-1)as well as enhanced longterm durability mainly due to larger exposed area and more active electrocatalytic sites.Our work provides a new way for construction of advanced metal sulphide electrocatalysts for electrochemical energy conversion.
基金sponsored by the National Natural Science Foundation of China (Nos. 51402190, 61574091)Shanghai Sailing Program (18YF1427800)the special funds for theoretical physics of the National Natural Science Foundation of China (No. 11747029)
文摘Photoanodes based on In_2S_3/ZnO heterojunction nanosheet arrays(NSAs) have been fabricated by atomic layer deposition of ZnO over In_2S_3 NSAs, which were in situ grown on fluorine-doped tin oxide glasses via a facile solvothermal process. The as-prepared photoanodes show dramatically enhanced performance for photoelectrochemical(PEC) water splitting, compared to single semiconductor counterparts. The optical and PEC properties of In_2S_3/ZnO NSAs have been optimized by modulating the thickness of the Zn O overlayer. After pairing with ZnO, the NSAs exhibit a broadened absorption range and an increased light absorptance over a wide wavelength region of 250–850 nm. The optimized sample of In_2S_3/ZnO-50 NSAs shows a photocurrent density of 1.642 m A cm^(-2)(1.5 V vs. RHE) and an incident photonto-current efficiency of 27.64% at 380 nm(1.23 V vs.RHE), which are 70 and 116 times higher than those of the pristine In_2S_3 NSAs, respectively. A detailed energy band edge analysis reveals the type-II band alignment of the In_2S_3/ZnO heterojunction, which enables efficient separation and collection of photogenerated carriers,especially with the assistance of positive bias potential, and then results in the significantly increased PEC activity.
基金supported by the National Natural Science Foundation of China(51772272,51502263,51728204)the Fundamental Research Funds for the Central Universities(2018QNA4011)+2 种基金Qianjiang Talents Plan of Zhejiang Province(QJD1602029)the Program for Innovative Research Team in University of Ministry of Education of China(IRT13037)the Startup Foundation for Hundred-Talent Program of Zhejiang University~~
文摘It is important but challenging to design and fabricate an efficient and cost-effective electrocatalyst for the oxygen evolution reaction(OER). Herein, we report free-standing 3 D nickel arrays with a cross-linked porous structure as interesting and high-performance electrocatalysts for OER via a facile one-step electrodeposition method. The 3 D nickel arrays are strongly anchored on the substrate, forming self-supported electrocatalysts with reinforced structural stability and high electrical conductivity. Because of their increased active surface area, abundant channels for electron/ion transportation and enhanced electronic conductivity, the designed 3 D nickel arrays exhibit superior electrocatalytic OER performance with a low overpotential(496 mV at 50 mA cm–2) and a small Tafel slope(43 mV dec–1) as well as long-term stability(no decay after 24 h) in alkaline solution. Our proposed rational design strategy may open up a new way to construct other advanced 3 D porous materials for widespread application in electrocatalysis.
基金supported by National Natural Science Foundation of China (Grant Nos. 51728204 and 51772272)Fundamental Research Funds for the Central Universities (Grant No. 2018QNA4011)+2 种基金Qianjiang Talents Plan D (QJD1602029)Startup Foundation for Hundred-Talent Program of Zhejiang Universitythe Fundamental Research Funds for the Central Universities (2015XZZX010-02)
文摘For efficient electrolysis of water for hydrogen generation or other valueadded chemicals, it is highly relevant to develop low-temperature synthesis of low-cost and high-e ciency metal sulfide electrocatalysts on a large scale. Herein, we construct a new core–branch array and binder-free electrode by growing Ni_3S_2 nanoflake branches on an atomic-layer-deposited(ALD) TiO_2 skeleton. Through induced growth on the ALD-TiO_2 backbone, cross-linked Ni_3S_2 nanoflake branches with exposed { 210} highindex facets are uniformly anchored to the preformed TiO_2 core forming an integrated electrocatalyst. Such a core–branch array structure possesses large active surface area, uniform porous structure, and rich active sites of the exposed { 210 } high-index facet in the Ni_3S_2 nanoflake. Accordingly, the TiO_2@Ni_3S_2 core/branch arrays exhibit remarkable electrocatalytic activities in an alkaline medium, with lower overpotentials for both oxygen evolution reaction(220 mV at 10 mA cm^(-2)) and hydrogen evolution reaction(112 m V at 10 mA cm^(-2)), which are better than those of other Ni_3S_2 counterparts. Stable overall water splitting based on this bifunctional electrolyzer is also demonstrated.
基金financial supports provided by the National Natural Science Foundation of China (21871164)the Taishan Scholar Project Foundation of Shandong Province (ts20190908, ts201511004)the Natural Science Foundation of Shandong Province (ZR2019MB024)。
文摘Titanium dioxide(TiO_2) has been investigated broadly as a stable,safe,and cheap anode material for sodium-ion batteries in recent years.However,the poor electronic conductivity and inherent sluggish sodium ion diffusion hinder its practical applications.Herein,a self-template and in situ vulcanization strategy is developed to synthesize self-supported hybrid nanotube arrays composed of nitrogen/sulfur-codoped carbon coated sulfur-doped TiO_2 nanotubes(S-TiO_2@NS-C) starting from H_2 Ti_2 O_5-H_2 O nanoarrays.The S-TiO_2@NS-C composite with one-dimensional nano-sized subunits integrates several merits.Specifically,sulfur doping strongly improves the Na~+ storage ability of TiO_2@C-N nanotubes by narrowing the bandgap of original TiO_2.Originating from the nanoarrays structures built from hollow nanotubes,carbon layer and sulfur doping,the sluggish Na~+ insertion/extraction kinetics is effectively improved and the volume variation of the electrode material is significantly alleviated.As a result,the S-TiO_2@NS-C nanoarrays present efficient sodium storage properties.The greatly improved sodium storage performances of S-TiO_2@NS-C nanoarrays confirm the importance of rational engineering and synthesis of hollow array architectures with higher complexity.