Improvements in the aerodynamic design will lead to more efficiency of wind turbines and higher power production. In the present study, a 3D parametric gas turbine blade geometry building code, 3DBGB, has been modifie...Improvements in the aerodynamic design will lead to more efficiency of wind turbines and higher power production. In the present study, a 3D parametric gas turbine blade geometry building code, 3DBGB, has been modified in order to include wind turbine design capabilities. This approach enables greater flexibility of the design along with the ability to design more complex geometries with relative ease. The NREL NASA Phase VI wind turbine was considered as a test case for validation and as a baseline by which modified designs could be compared. The design parameters were translated into 3DBGB input to create a 3D model of the wind turbine which can also be imported into any CAD program. Design modifications included replacing the airfoil section and modifying the thickness to chord ratio as a function of span. These models were imported into a high-fidelity CFD package, Fine/TURBO by NUMECA. Fine/TURBO is a specialized CFD platform for turbo-machinery analysis. A code-geomturbo was used to convert the 3D model of the wind turbine into the native format used to define geometries in the Fine/TURBO meshing tool, AutoGrid. The CFD results were post processed using a 3D force analysis code. The radial force variations were found to play a measurable role in the performance of wind turbine blades. The radial component of the blade surface area as it varies in span is the dominant contributor of the radial forces. Through the radial momentum equation, this radial force variation is responsible for creating the streamline curvature that leads to the expansion of the streamtube (slipstream) that is responsible for slowing the wind velocity ahead of the wind turbine leading edge, which is quantified as the axial induction factor. These same radial forces also play a role in changing the slipstream for propellers. Through the design modifications, simulated with CFD and post-processed appropriately, this connection with the radial component of area to the radial forces to the axial induction factor, and finally the wind turbine power is demonstrated. The results from the CFD analysis and 3D force analysis are presented. For the case presented, the power increases by 5.6% due to changes in airfoil thickness only.展开更多
在轴向柱塞泵的工作过程中,通过配流盘进行高低压的循环切换,而配流盘的过流面积是影响柱塞泵内部压力平稳过渡的重要参数。为了完成对配流结构过流面积的求解计算,提出了一种基于多维流场点云的过流面积计算方法。首先,对配流盘流场的...在轴向柱塞泵的工作过程中,通过配流盘进行高低压的循环切换,而配流盘的过流面积是影响柱塞泵内部压力平稳过渡的重要参数。为了完成对配流结构过流面积的求解计算,提出了一种基于多维流场点云的过流面积计算方法。首先,对配流盘流场的点云化过程进行了理论分析,得到了点云化处理的实施方法;然后,对配流盘三维流域模型进行了系列修正,提出了缓冲槽连通阶段模型的修正方法,提高了过流面积计算的准确性;最后,对不同配流阶段的过流面积进行了计算,并与理论测量所得结果以及采用计算流体力学(CFD)数值模拟方法所得的结果,分别进行了对比。计算结果表明:基于多维流场点云的过流面积识别算法求得的过流面积峰值大小为174.5 mm 2,而理论测量值的大小为177.5 mm 2;二者的相对误差率大约为1.7%;而与基于CFD方法所得结果的整体相对误差率,大约在5%以内。研究结果表明:采用该方法,能够直接且较精准地完成对配流盘过流面积的求解与计算,有效地简化了过流面积变换趋势的求解过程。展开更多
Commercially available wind-turbines are optimized to operate at certain wind velocity, known as rated wind velocity. For other values of wind velocity, it has different output which is lower than the rated output of ...Commercially available wind-turbines are optimized to operate at certain wind velocity, known as rated wind velocity. For other values of wind velocity, it has different output which is lower than the rated output of the wind plant. Wind mill can be designed to provide maximum power output at different wind velocities through modification of swept area to match with the wind speed available at the moment. This can result in higher power output at all the velocities except that at rated wind speed because of limitation of generator. This results in increased utilization of generation capacity of wind mill compared to its commercially designed counterpart. A theoretical simulation has been done to prove a new concept about swept area of wind turbine blade which results in a significant increase in the power output through the year. Simulation results of power extracted through normal wind blade design and new concept are studied and compared. The findings of the study are presented in graphical and tabular form. Study establishes that there can be a significant gain in the power output with the new concept.展开更多
文摘Improvements in the aerodynamic design will lead to more efficiency of wind turbines and higher power production. In the present study, a 3D parametric gas turbine blade geometry building code, 3DBGB, has been modified in order to include wind turbine design capabilities. This approach enables greater flexibility of the design along with the ability to design more complex geometries with relative ease. The NREL NASA Phase VI wind turbine was considered as a test case for validation and as a baseline by which modified designs could be compared. The design parameters were translated into 3DBGB input to create a 3D model of the wind turbine which can also be imported into any CAD program. Design modifications included replacing the airfoil section and modifying the thickness to chord ratio as a function of span. These models were imported into a high-fidelity CFD package, Fine/TURBO by NUMECA. Fine/TURBO is a specialized CFD platform for turbo-machinery analysis. A code-geomturbo was used to convert the 3D model of the wind turbine into the native format used to define geometries in the Fine/TURBO meshing tool, AutoGrid. The CFD results were post processed using a 3D force analysis code. The radial force variations were found to play a measurable role in the performance of wind turbine blades. The radial component of the blade surface area as it varies in span is the dominant contributor of the radial forces. Through the radial momentum equation, this radial force variation is responsible for creating the streamline curvature that leads to the expansion of the streamtube (slipstream) that is responsible for slowing the wind velocity ahead of the wind turbine leading edge, which is quantified as the axial induction factor. These same radial forces also play a role in changing the slipstream for propellers. Through the design modifications, simulated with CFD and post-processed appropriately, this connection with the radial component of area to the radial forces to the axial induction factor, and finally the wind turbine power is demonstrated. The results from the CFD analysis and 3D force analysis are presented. For the case presented, the power increases by 5.6% due to changes in airfoil thickness only.
文摘在轴向柱塞泵的工作过程中,通过配流盘进行高低压的循环切换,而配流盘的过流面积是影响柱塞泵内部压力平稳过渡的重要参数。为了完成对配流结构过流面积的求解计算,提出了一种基于多维流场点云的过流面积计算方法。首先,对配流盘流场的点云化过程进行了理论分析,得到了点云化处理的实施方法;然后,对配流盘三维流域模型进行了系列修正,提出了缓冲槽连通阶段模型的修正方法,提高了过流面积计算的准确性;最后,对不同配流阶段的过流面积进行了计算,并与理论测量所得结果以及采用计算流体力学(CFD)数值模拟方法所得的结果,分别进行了对比。计算结果表明:基于多维流场点云的过流面积识别算法求得的过流面积峰值大小为174.5 mm 2,而理论测量值的大小为177.5 mm 2;二者的相对误差率大约为1.7%;而与基于CFD方法所得结果的整体相对误差率,大约在5%以内。研究结果表明:采用该方法,能够直接且较精准地完成对配流盘过流面积的求解与计算,有效地简化了过流面积变换趋势的求解过程。
文摘Commercially available wind-turbines are optimized to operate at certain wind velocity, known as rated wind velocity. For other values of wind velocity, it has different output which is lower than the rated output of the wind plant. Wind mill can be designed to provide maximum power output at different wind velocities through modification of swept area to match with the wind speed available at the moment. This can result in higher power output at all the velocities except that at rated wind speed because of limitation of generator. This results in increased utilization of generation capacity of wind mill compared to its commercially designed counterpart. A theoretical simulation has been done to prove a new concept about swept area of wind turbine blade which results in a significant increase in the power output through the year. Simulation results of power extracted through normal wind blade design and new concept are studied and compared. The findings of the study are presented in graphical and tabular form. Study establishes that there can be a significant gain in the power output with the new concept.