In this paper, we consider a class of reaction hyperbolic systems for axonal trans- port arising in neuroscience which can be regarded as hyperbolic systems with relaxation. We prove the BV entropy solutions of the hy...In this paper, we consider a class of reaction hyperbolic systems for axonal trans- port arising in neuroscience which can be regarded as hyperbolic systems with relaxation. We prove the BV entropy solutions of the hyperbolic systems converge toward to the unique entropy solution of the equilibrium equation at the optimal rate O(√δ) in L1 norm as the relaxation time δ tends to zero.展开更多
Rabies virus (RABV) of the rhabdoviridae family is a prototype neurotropic virus that causes a fatal disease, and is still a major risk mostly in developing countries. A key step in the RABV infection process is its...Rabies virus (RABV) of the rhabdoviridae family is a prototype neurotropic virus that causes a fatal disease, and is still a major risk mostly in developing countries. A key step in the RABV infection process is its arrival into the central nervous system (CNS), for which it uses the cellular transport machinery. Neurons are irregular cells with a specialized anatomy, and often extend lengthy axons that may span over a meter long. In infected organisms, RABV virions enter the neuron periphery at the area of a bite and must overcome great distances in order to reach the peripheral neuron's cell body and from there,展开更多
Each neuronal subtype is distinct in how it develops,responds to environmental cues,and whether it is capable of mounting a regenerative response following injury.Although the adult central nervous system(CNS) does ...Each neuronal subtype is distinct in how it develops,responds to environmental cues,and whether it is capable of mounting a regenerative response following injury.Although the adult central nervous system(CNS) does not regenerate,several experimental interventions have been trialled with successful albeit limited instances of axonal repair.We highlight here some of these approaches including extracellular matrix(ECM) modification,cellular grafting,gene therapy-induced replacement of proteins,as well as application of biomaterials.We also review the recent report demonstrating the failure of axonal localization and transport of growth-promoting receptors within certain classes of mature neurons.More specifically,we discuss an inability of integrin receptors to localize within the axonal compartment of mature motor neurons such as in the corticospinal and rubrospinal tracts,whereas in immature neurons of those pathways and in mature sensory tracts such as in the optic nerve and dorsal column pathways these receptors readily localize within axons.Furthermore we assert that this failure of axonal localization contributes to the intrinsic inability of axonal regeneration.We conclude by highlighting the necessity for both combined therapies as well as a targeted approach specific to both age and neuronal subtype will be required to induce substantial CNS repair.展开更多
Huntington's disease (HD) is an autosomal dominant, progressive, neurodegenerative disorder caused by an unstable expansion of CAG repeats (〉35 repeats) within exon 1 of the interesting transcript 15 (IT15) ge...Huntington's disease (HD) is an autosomal dominant, progressive, neurodegenerative disorder caused by an unstable expansion of CAG repeats (〉35 repeats) within exon 1 of the interesting transcript 15 (IT15) gene. This gene encodes a protein called Huntingtin (Htt), and mutation of the gene results in a polyglutamine (polyQ) near the N-terminus of Htt. The N-terminal fragments of mutant Htt (mHtt), which tend to aggregate, are sufficient to cause HD. Whether these aggregates are causal or protective for HD remains hotly debated. Dysfunctional mitochondrial axonal transport is associated with HD. It remains unknown whether the soluble or aggregated form of mHtt is the primary cause of the impaired mitochondrial axonal transport in HD pathology. Here, we investigated the impact of soluble and aggregated N-terminal fragments of mHtt on mitochondrial axonal transport in cultured hippocampal neurons. We found that the N-terminal fragment of mHtt formed aggregates in almost half of the transfected neurons. Overexpression of the N-terminal fragment of mHtt decreased the velocity of mitochondrial axonal transport and mitochondrial mobility in neurons regardless of whether aggregates were formed. However, the impairment of mitochondrial axonal transport in neurons expressing the soluble and aggregated N-terminal fragments of mHtt did not differ. Our findings indicate that both the soluble and aggregated N-terminal fragments of mHtt impair mitochondrial axonal transport in cultured hippocampal neurons. We predict that dysfunction of mitochondrial axonal transport is an early-stage event in the progression of HD, even before mHtt aggregates are formed.展开更多
OBJECTIVE Peroxisome proliferator activated receptor alpha(PPARα)is an important protective factor in neurovascular diseases such as ischemic stroke.Although PPARαexpression is higher in neurons than astrocytes and ...OBJECTIVE Peroxisome proliferator activated receptor alpha(PPARα)is an important protective factor in neurovascular diseases such as ischemic stroke.Although PPARαexpression is higher in neurons than astrocytes and microglia,the pathophysiological functions of neuronal specific-PPARαin isch⁃emic stroke remains unknown.Here,we report that neuronal PPARαdeficiency is a key factor of neuronal injury.PPARαexpression markedly decreased in neurons after ischemic stroke.METHODS AND RESULTS Neuronal-specific PPARαknockout(NCKO)exacerbates neuronal damage and brain ischemic injury.PPARαdefi⁃ciency disrupts axonal microtubule organization and mitochondrial transport by decreasing the expression of dynein light chain Tctex-type 1(Dynlt1),which is implicated in cytoprotective role with damaged neurons.Furthermore,resto⁃ration of Dynlt1 expression in neurons of NCKO mice rescue mitochondrial transport disorder,cognitive deficits and brain ischemic injury asso⁃ciated with PPARαdeletion.CONCLUSION These results reveal a critical role for neuronal PPARαin ischemic brain injury by modulating axonal mitochondrial transportation.展开更多
Successful nerve regeneration requires not only that neurons reconstruct new axons distal to the site of injury,but also those growing axons must navigate through the neuropil to make appropriate synaptic connections ...Successful nerve regeneration requires not only that neurons reconstruct new axons distal to the site of injury,but also those growing axons must navigate through the neuropil to make appropriate synaptic connections with target cells.While this is an imposing task for the thousands of axons that may occupy a regenerating nerve in the peripheral nervous system or a tract inthe central nervous system, the billions of neurons in the developing brain must accomplish similar tasks making connections that number in the trillions. How do neurons do this?展开更多
Axonal degeneration is a key pathological feature in many neurological diseases. It often leads to persistent deficits due to the inability of axons to regenerate in the central nervous system. Therefore therapeutic a...Axonal degeneration is a key pathological feature in many neurological diseases. It often leads to persistent deficits due to the inability of axons to regenerate in the central nervous system. Therefore therapeutic approaches should optimally both attenuate axonal degeneration and foster axonal regeneration. Compelling evidence suggests that collapsin response mediator protein-2(CRMP2) might be a molecular target fulfilling these requirements. In this mini-review, we give a compact overview of the known functions of CRMP2 and its molecular interactors in neurite outgrowth and in neurodegenerative conditions. Moreover, we discuss in detail our recent findings on the role of CRMP2 in acute axonal degeneration in the optic nerve. We found that the calcium influx induced by the lesion activates the protease calpain which cleaves CRMP2, leading to impairment of axonal transport. Both calpain inhibition and CRMP2 overexpression effectively protected the proximal axons against acute axonal degeneration. Taken together, CRMP2 is further characterized as a central molecular player in acute axonal degeneration and thus evolves as a promising therapeutic target to both counteract axonal degeneration and foster axonal regeneration in neurodegenerative and neurotraumatic diseases.展开更多
Membrane trafficking processes are presumably vital for axonal regeneration after injury, but mechanistic understanding in this regard has been sparse. A recent loss-of-function screen had been carried out for factors...Membrane trafficking processes are presumably vital for axonal regeneration after injury, but mechanistic understanding in this regard has been sparse. A recent loss-of-function screen had been carried out for factors important for axonal regeneration by cultured cortical neurons and the results suggested that the activity of a number of Rab GTPases might act to restrict axonal regeneration. A loss of Rab27b, in particular, is shown to enhance axonal regeneration in vitro, as well as in C. elegans and mouse central nervous system injury models in vivo. Possible mechanisms underlying this new finding, which has important academic and translational implication, are discussed.展开更多
Injuries to the central or peripheral nervous system frequently cause long-term disabilities because damaged neurons are unable to efficiently self-repair.This inherent deficiency necessitates the need for new treatme...Injuries to the central or peripheral nervous system frequently cause long-term disabilities because damaged neurons are unable to efficiently self-repair.This inherent deficiency necessitates the need for new treatment options aimed at restoring lost function to patients.Compared to humans,a number of species possess far greater regenerative capabilities,and can therefore provide important insights into how our own nervous systems can be repaired.In particular,several invertebrate species have been shown to rapidly initiate regeneration post-injury,allowing separated axon segments to re-join.This process,known as axonal fusion,represents a highly efficient repair mechanism as a regrowing axon needs to only bridge the site of damage and fuse with its separated counterpart in order to re-establish its original structure.Our recent findings in the nematode Caenorhabditis elegans have expanded the promise of axonal fusion by demonstrating that it can restore complete function to damaged neurons.Moreover,we revealed the importance of injury-induced changes in the composition of the axonal membrane for mediating axonal fusion,and discovered that the level of axonal fusion can be enhanced by promoting a neuron's intrinsic growth potential.A complete understanding of the molecular mechanisms controlling axonal fusion may permit similar approaches to be applied in a clinical setting.展开更多
The regulation of mRNA localization and local translation play vital roles in the maintenance of cellular structure and function.Many human neurodegenerative diseases,such as fragile X syndrome,amyotrophic lateral scl...The regulation of mRNA localization and local translation play vital roles in the maintenance of cellular structure and function.Many human neurodegenerative diseases,such as fragile X syndrome,amyotrophic lateral sclerosis,Alzheimer’s disease,and spinal muscular atrophy,have been characterized by pathological changes in neuronal axons,including abnormal mRNA translation,the loss of protein expression,or abnormal axon transport.Moreover,the same protein and mRNA molecules have been associated with variable functions in different diseases due to differences in their interaction networks.In this review,we briefly examine fragile X syndrome,amyotrophic lateral sclerosis,Alzheimer’s disease,and spinal muscular atrophy,with a focus on disease pathogenesis with regard to local mRNA translation and axon transport,suggesting possible treatment directions.展开更多
Spinal cord injury has devastating consequences because adult central nervous system (CNS) neurons do not regenerate their axons after injury. Two key reasons for axon regeneration fail- ure are extrinsic inhibitory...Spinal cord injury has devastating consequences because adult central nervous system (CNS) neurons do not regenerate their axons after injury. Two key reasons for axon regeneration fail- ure are extrinsic inhibitory factors and a low intrinsic capacity for axon regrowth. Research has therefore focused on overcom- ing extrinsic growth inhibition, and enhancing intrinsic regeneration capacity. Both of these issues will need to be addressed to enable optimal repair of the injured sp+inal cord.展开更多
The onset of amyotrophic lateral sclerosis is usually characterized by focal death of both upper and/or lower motor neurons occurring in the motor cortex,basal ganglia,brainstem,and spinal cord,and commonly involves t...The onset of amyotrophic lateral sclerosis is usually characterized by focal death of both upper and/or lower motor neurons occurring in the motor cortex,basal ganglia,brainstem,and spinal cord,and commonly involves the muscles of the upper and/or lower extremities,and the muscles of the bulbar and/or respiratory regions.However,as the disease progresses,it affects the adjacent body regions,leading to generalized muscle weakness,occasionally along with memory,cognitive,behavioral,and language impairments;respiratory dysfunction occurs at the final stage of the disease.The disease has a complicated pathophysiology and currently,only riluzole,edaravone,and phenylbutyrate/taurursodiol are licensed to treat amyotrophic lateral sclerosis in many industrialized countries.The TAR DNA-binding protein 43 inclusions are observed in 97%of those diagnosed with amyotrophic lateral sclerosis.This review provides a preliminary overview of the potential effects of TAR DNAbinding protein 43 in the pathogenesis of amyotrophic lateral sclerosis,including the abnormalities in nucleoplasmic transport,RNA function,post-translational modification,liquid-liquid phase separation,stress granules,mitochondrial dysfunction,oxidative stress,axonal transport,protein quality control system,and non-cellular autonomous functions(e.g.,glial cell functions and prion-like propagation).展开更多
Previous studies on the mechanisms of peripheral nerve injury(PNI)have mainly focused on the pathophysiological changes within a single injury site.However,recent studies have indicated that within the central nervous...Previous studies on the mechanisms of peripheral nerve injury(PNI)have mainly focused on the pathophysiological changes within a single injury site.However,recent studies have indicated that within the central nervous system,PNI can lead to changes in both injury sites and target organs at the cellular and molecular levels.Therefore,the basic mechanisms of PNI have not been comprehensively understood.Although electrical stimulation was found to promote axonal regeneration and functional rehabilitation after PNI,as well as to alleviate neuropathic pain,the specific mechanisms of successful PNI treatment are unclear.We summarize and discuss the basic mechanisms of PNI and of treatment via electrical stimulation.After PNI,activity in the central nervous system(spinal cord)is altered,which can limit regeneration of the damaged nerve.For example,cell apoptosis and synaptic stripping in the anterior horn of the spinal cord can reduce the speed of nerve regeneration.The pathological changes in the posterior horn of the spinal cord can modulate sensory abnormalities after PNI.This can be observed in cases of ectopic discharge of the dorsal root ganglion leading to increased pain signal transmission.The injured site of the peripheral nerve is also an important factor affecting post-PNI repair.After PNI,the proximal end of the injured site sends out axial buds to innervate both the skin and muscle at the injury site.A slow speed of axon regeneration leads to low nerve regeneration.Therefore,it can take a long time for the proximal nerve to reinnervate the skin and muscle at the injured site.From the perspective of target organs,long-term denervation can cause atrophy of the corresponding skeletal muscle,which leads to abnormal sensory perception and hyperalgesia,and finally,the loss of target organ function.The mechanisms underlying the use of electrical stimulation to treat PNI include the inhibition of synaptic stripping,addressing the excessive excitability of the dorsal root ganglion,alleviating neuropathic pain,improving neurological function,and accelerating nerve regeneration.Electrical stimulation of target organs can reduce the atrophy of denervated skeletal muscle and promote the recovery of sensory function.Findings from the included studies confirm that after PNI,a series of physiological and pathological changes occur in the spinal cord,injury site,and target organs,leading to dysfunction.Electrical stimulation may address the pathophysiological changes mentioned above,thus promoting nerve regeneration and ameliorating dysfunction.展开更多
Neuroma formation after peripheral nerve transection often leads to severe neuropathic pain.Regenerative peripheral nerve interface has been shown to reduce painful neuroma in the clinic.However,no reports have invest...Neuroma formation after peripheral nerve transection often leads to severe neuropathic pain.Regenerative peripheral nerve interface has been shown to reduce painful neuroma in the clinic.However,no reports have investigated the underlying mechanisms,and no comparative animal studies on regenerative peripheral nerve interface and other means of neuroma prevention have been conducted to date.In this study,we established a rat model of left sciatic nerve transfection,and subsequently interfered with the model using the regenerative peripheral nerve interface or proximal nerve stump implantation inside a fully innervated muscle.Results showed that,compared with rats subjected to nerve stump implantation inside the muscle,rats subjected to regenerative peripheral nerve interface intervention showed greater inhibition of the proliferation of collagenous fibers and irregular regenerated axons,lower expressions of the fibrosis markerα-smooth muscle actin and the inflammatory marker sigma-1 receptor in the proximal nerve stump,lower autophagy behaviors,lower expressions of c-fos and substance P,higher expression of glial cell line-derived neurotrophic factor in the ipsilateral dorsal root ganglia.These findings suggested that regenerative peripheral nerve interface inhibits peripheral nerve injury-induced neuroma formation and neuropathic pain possibly via the upregulation of the expression of glial cell line-derived neurotrophic factor in the dorsal root ganglia and reducing neuroinflammation in the nerve stump.展开更多
Tremendous research efforts have been made regarding the pathogenesis of Parkinson’s disease(PD).However,there are still no effective strategies to restore midbrain dopaminergic(mDA)innervation and prevent disease pr...Tremendous research efforts have been made regarding the pathogenesis of Parkinson’s disease(PD).However,there are still no effective strategies to restore midbrain dopaminergic(mDA)innervation and prevent disease progression.One possibility is that we may have been neglecting the role of axons in mDA neuronal degeneration.This review first summarizes mDA axon development during the early stage of PD and discusses how axon guidance defects contribute to PD vulnerability.Furthermore,we review axonal transport dysregulation in the numerous PD-related genetic mutations,including Parkin,PINK1,DJ1,LRRK2 and SNCA.The evidence suggests that proper axonal transport is crucial for neuronal function and survival.Finally,advanced tools for axonal studies were evaluated,including light-sheet and super-resolution microscopy.These adapted microscopes have been used to help solve questions unanswered before.Overall,the role of axon terminals in the initiation of the degeneration cascade remains undeciphered,and more research in the related area may be conducted further to restore dopamine levels in the striatum to alleviate the motor complications of PD.展开更多
Much research has focused on the PI3-kinase and PTEN signaling pathway with the aim to stimulate repair of the injured central nervous system.Axons in the central nervous system fail to regenerate,meaning that injurie...Much research has focused on the PI3-kinase and PTEN signaling pathway with the aim to stimulate repair of the injured central nervous system.Axons in the central nervous system fail to regenerate,meaning that injuries or diseases that cause loss of axonal connectivity have life-changing consequences.In 2008,genetic deletion of PTEN was identified as a means of stimulating robust regeneration in the optic nerve.PTEN is a phosphatase that opposes the actions of PI3-kinase,a family of enzymes that function to generate the membrane phospholipid PIP_(3) from PIP_(2)(phosphatidylinositol(3,4,5)-trisphosphate from phosphatidylinositol(4,5)-bisphosphate).Deletion of PTEN therefore allows elevated signaling downstream of PI3-kinase,and was initially demonstrated to promote axon regeneration by signaling through mTOR.More recently,additional mechanisms have been identified that contribute to the neuron-intrinsic control of regenerative ability.This review describes neuronal signaling pathways downstream of PI3-kinase and PIP3,and considers them in relation to both developmental and regenerative axon growth.We briefly discuss the key neuron-intrinsic mechanisms that govern regenerative ability,and describe how these are affected by signaling through PI3-kinase.We highlight the recent finding of a developmental decline in the generation of PIP_(3) as a key reason for regenerative failure,and summarize the studies that target an increase in signaling downstream of PI3-kinase to facilitate regeneration in the adult central nervous system.Finally,we discuss obstacles that remain to be overcome in order to generate a robust strategy for repairing the injured central nervous system through manipulation of PI3-kinase signaling.展开更多
Optic neuropathies lead to blindness;the common pathology is the degeneration of axons of the retinal ganglion cells. In this study, we used a rat model of retinal ischemia-reperfusion and a one-time intravitreal brai...Optic neuropathies lead to blindness;the common pathology is the degeneration of axons of the retinal ganglion cells. In this study, we used a rat model of retinal ischemia-reperfusion and a one-time intravitreal brain-derived neurotrophic factor(BDNF)injection;then we examined axon transportation function, continuity, physical presence of axons in different part of the optic nerve, and the expression level of proteins involved in axon transportation. We found that in the disease model, axon transportation was the most severely affected, followed by axon continuity, then the number of axons in the distal and proximal optic nerve. BDNF treatment relieved all reductions and significantly restored function. The molecular changes were more minor,probably due to massive gliosis of the optic nerve, so interpretation of protein expression data should be done with some caution.The process in this acute model resembles a fast-forward of changes in the chronic model of glaucoma. Therefore, impairment in axon transportation appears to be a common early process underlying different optic neuropathies. This research on effective intervention can be used to develop interventions for all optic neuropathies targeting axon transportation.展开更多
OBJECTIVE: To investigate in vivo survival of retinal ganglion cells (RGCs) after partial blockage of optic nerve (ON) axoplasmic flow by sub-retinal space or vitreous cavity injection of brain-derived neural factor (...OBJECTIVE: To investigate in vivo survival of retinal ganglion cells (RGCs) after partial blockage of optic nerve (ON) axoplasmic flow by sub-retinal space or vitreous cavity injection of brain-derived neural factor (BDNF) produced by genetically modified neural progenitor cells (NPCs). METHODS: Adult Sprague-Dawley (SD) rat RGCs were labeled with granular blue (GB) applied to their main targets in the brain. Seven days later, the left ON was intra-obitally crushed with a 40 g power forceps to partially block ON axoplasmic flow. Animals were randomized to three groups. The left eye of each rat received a sham injection, NPCs injection or an injection of genetically modified neural progenitors producing BDNF (BDNF-NPCs). Seven, 15 and 30 days after ON crush, retinas were examined under a fluorescence microscope. By calculating and comparing the average RGCs densities and RGC apoptosis density, RGC survival was estimated and the neuro-protective effect of transplanted cells was evaluated. RESULTS: Seven, 15 and 30 days after crush, in the intra-vitreous injection group, mean RGC densities had decreased to 1885 +/- 68, 1562 +/- 20, 1380 +/- 7 and 1837 +/- 46, 1561 +/- 58, 1370 +/- 16, respectively with sham injection or neural progenitors injection. However, RGCs density in the groups treated with intra-vitreous injection of BDNF-NPC was 2101 +/- 15, 1809 +/- 19 and 1625 +/- 34. Similar results were found in groups after sub-retinal injection. Higher densities were observed in groups treated with BDNF-NPCs. There were statistically significant differences among groups through nonparametric tests followed by the Mann-Whitely test. RGC apoptosis density in BDNF-NPC at each follow-up time was less than in other groups. CONCLUSIONS: A continuous supply of neurotrophic factors by the injection of genetically modified neural progenitors presents a highly effective approach to counteract optic neuropathy and RGC degeneration after partial ON axoplasmic flow blockage.展开更多
Amyotrophic lateral sclerosis(ALS)is a progressive neurodegenerative disease characterized by selective,early degeneration of motor neurons in the brain and spinal cord.Motor neurons have long axonal projections,which...Amyotrophic lateral sclerosis(ALS)is a progressive neurodegenerative disease characterized by selective,early degeneration of motor neurons in the brain and spinal cord.Motor neurons have long axonal projections,which rely on the integrity of neuronal cytoskeleton and mitochondria to regulate energy requirements for maintaining axonal stability,anterograde and retrograde transport,and signaling between neurons.The formation of protein aggregates which contain cytoskeletal proteins,and mitochondrial dysfunction both have devastating effects on the function of neurons and are shared pathological features across several neurodegenerative conditions,including ALS,Alzheimer's disease,Parkinson's disease,Huntington's disease and Charcot-Marie-Tooth disease.Furthermore,it is becoming increasingly clear that cytoskeletal integrity and mitochondrial function are intricately linked.Therefore,dysregulations of the cytoskeletal network and mitochondrial homeostasis and localization,may be common pathways in the initial steps of neurodegeneration.Here we review and discuss known contributors,including variants in genetic loci and aberrant protein activities,which modify cytoskeletal integrity,axonal transport and mitochondrial localization in ALS and have overlapping features with other neurodegenerative diseases.Additionally,we explore some emerging pathways that may contribute to this disruption in ALS.展开更多
Background:Amyotrophic lateral sclerosis(ALS)is a devastating progressive neurodegenerative disease that affects neurons in the central nervous system and the spinal cord.As in many other neurodegenerative disorders,t...Background:Amyotrophic lateral sclerosis(ALS)is a devastating progressive neurodegenerative disease that affects neurons in the central nervous system and the spinal cord.As in many other neurodegenerative disorders,the genetic risk factors and pathogenesis of ALS involve dysregulation of cytoskeleton and neuronal transport.Notably,sen-sory and motor neuron diseases such as hereditary sensory and autonomic neuropathy type 2(HSAN2)and spastic paraplegia 30(SPG30)share several causative genes with ALS,as well as having common clinical phenotypes.KIF1A encodes a kinesin 3 motor that transports presynaptic vesicle precursors(SVPs)and dense core vesicles and has been reported as a causative gene for HSAN2 and SPG30.Methods:Here,we analyzed whole-exome sequencing data from 941 patients with ALS to investigate the genetic association of KIF1A with ALS.Results:We identified rare damage variants(RDVs)in the KIF1A gene associated with ALS and delineated the clini-cal characteristics of ALS patients with KIF1A RDVs.Clinically,these patients tended to exhibit sensory disturbance.Interestingly,the majority of these variants are located at the C-terminal cargo-binding region of the KIF1A protein.Functional examination revealed that the ALS-associated KIF1A variants located in the C-terminal region preferentially enhanced the binding of SVPs containing RAB3A,VAMP2,and synaptophysin.Expression of several disease-related KIF1A mutants in cultured mouse cortical neurons led to enhanced colocalization of RAB3A or VAMP2 with the KIF1A motor.Conclusions:Our study highlighted the importance of KIF1A motor-mediated transport in the pathogenesis of ALS,indicating KIF1A as an important player in the oligogenic scenario of ALS.展开更多
基金partially supported by the NSFC(11371349)National Basic Research Program of China(973 Program)(2011CB808002)
文摘In this paper, we consider a class of reaction hyperbolic systems for axonal trans- port arising in neuroscience which can be regarded as hyperbolic systems with relaxation. We prove the BV entropy solutions of the hyperbolic systems converge toward to the unique entropy solution of the equilibrium equation at the optimal rate O(√δ) in L1 norm as the relaxation time δ tends to zero.
基金supported by the German Israeli Foundation for Scientific Research and Development(GIF)grant G-1107-73.1/2010 to EP and SFThe European Research Council(ERC)grant 309377 and Israel Science Foundation ISF grant 614/11 to EP
文摘Rabies virus (RABV) of the rhabdoviridae family is a prototype neurotropic virus that causes a fatal disease, and is still a major risk mostly in developing countries. A key step in the RABV infection process is its arrival into the central nervous system (CNS), for which it uses the cellular transport machinery. Neurons are irregular cells with a specialized anatomy, and often extend lengthy axons that may span over a meter long. In infected organisms, RABV virions enter the neuron periphery at the area of a bite and must overcome great distances in order to reach the peripheral neuron's cell body and from there,
基金support from the Morton Cure Paralysis Fund and Royal Society Research grant
文摘Each neuronal subtype is distinct in how it develops,responds to environmental cues,and whether it is capable of mounting a regenerative response following injury.Although the adult central nervous system(CNS) does not regenerate,several experimental interventions have been trialled with successful albeit limited instances of axonal repair.We highlight here some of these approaches including extracellular matrix(ECM) modification,cellular grafting,gene therapy-induced replacement of proteins,as well as application of biomaterials.We also review the recent report demonstrating the failure of axonal localization and transport of growth-promoting receptors within certain classes of mature neurons.More specifically,we discuss an inability of integrin receptors to localize within the axonal compartment of mature motor neurons such as in the corticospinal and rubrospinal tracts,whereas in immature neurons of those pathways and in mature sensory tracts such as in the optic nerve and dorsal column pathways these receptors readily localize within axons.Furthermore we assert that this failure of axonal localization contributes to the intrinsic inability of axonal regeneration.We conclude by highlighting the necessity for both combined therapies as well as a targeted approach specific to both age and neuronal subtype will be required to induce substantial CNS repair.
基金supported by the National Natural Science Foundation of China(81271248)the National Basic Research Development Program(973 Program)of China(2013CB530904)
文摘Huntington's disease (HD) is an autosomal dominant, progressive, neurodegenerative disorder caused by an unstable expansion of CAG repeats (〉35 repeats) within exon 1 of the interesting transcript 15 (IT15) gene. This gene encodes a protein called Huntingtin (Htt), and mutation of the gene results in a polyglutamine (polyQ) near the N-terminus of Htt. The N-terminal fragments of mutant Htt (mHtt), which tend to aggregate, are sufficient to cause HD. Whether these aggregates are causal or protective for HD remains hotly debated. Dysfunctional mitochondrial axonal transport is associated with HD. It remains unknown whether the soluble or aggregated form of mHtt is the primary cause of the impaired mitochondrial axonal transport in HD pathology. Here, we investigated the impact of soluble and aggregated N-terminal fragments of mHtt on mitochondrial axonal transport in cultured hippocampal neurons. We found that the N-terminal fragment of mHtt formed aggregates in almost half of the transfected neurons. Overexpression of the N-terminal fragment of mHtt decreased the velocity of mitochondrial axonal transport and mitochondrial mobility in neurons regardless of whether aggregates were formed. However, the impairment of mitochondrial axonal transport in neurons expressing the soluble and aggregated N-terminal fragments of mHtt did not differ. Our findings indicate that both the soluble and aggregated N-terminal fragments of mHtt impair mitochondrial axonal transport in cultured hippocampal neurons. We predict that dysfunction of mitochondrial axonal transport is an early-stage event in the progression of HD, even before mHtt aggregates are formed.
文摘OBJECTIVE Peroxisome proliferator activated receptor alpha(PPARα)is an important protective factor in neurovascular diseases such as ischemic stroke.Although PPARαexpression is higher in neurons than astrocytes and microglia,the pathophysiological functions of neuronal specific-PPARαin isch⁃emic stroke remains unknown.Here,we report that neuronal PPARαdeficiency is a key factor of neuronal injury.PPARαexpression markedly decreased in neurons after ischemic stroke.METHODS AND RESULTS Neuronal-specific PPARαknockout(NCKO)exacerbates neuronal damage and brain ischemic injury.PPARαdefi⁃ciency disrupts axonal microtubule organization and mitochondrial transport by decreasing the expression of dynein light chain Tctex-type 1(Dynlt1),which is implicated in cytoprotective role with damaged neurons.Furthermore,resto⁃ration of Dynlt1 expression in neurons of NCKO mice rescue mitochondrial transport disorder,cognitive deficits and brain ischemic injury asso⁃ciated with PPARαdeletion.CONCLUSION These results reveal a critical role for neuronal PPARαin ischemic brain injury by modulating axonal mitochondrial transportation.
文摘Successful nerve regeneration requires not only that neurons reconstruct new axons distal to the site of injury,but also those growing axons must navigate through the neuropil to make appropriate synaptic connections with target cells.While this is an imposing task for the thousands of axons that may occupy a regenerating nerve in the peripheral nervous system or a tract inthe central nervous system, the billions of neurons in the developing brain must accomplish similar tasks making connections that number in the trillions. How do neurons do this?
文摘Axonal degeneration is a key pathological feature in many neurological diseases. It often leads to persistent deficits due to the inability of axons to regenerate in the central nervous system. Therefore therapeutic approaches should optimally both attenuate axonal degeneration and foster axonal regeneration. Compelling evidence suggests that collapsin response mediator protein-2(CRMP2) might be a molecular target fulfilling these requirements. In this mini-review, we give a compact overview of the known functions of CRMP2 and its molecular interactors in neurite outgrowth and in neurodegenerative conditions. Moreover, we discuss in detail our recent findings on the role of CRMP2 in acute axonal degeneration in the optic nerve. We found that the calcium influx induced by the lesion activates the protease calpain which cleaves CRMP2, leading to impairment of axonal transport. Both calpain inhibition and CRMP2 overexpression effectively protected the proximal axons against acute axonal degeneration. Taken together, CRMP2 is further characterized as a central molecular player in acute axonal degeneration and thus evolves as a promising therapeutic target to both counteract axonal degeneration and foster axonal regeneration in neurodegenerative and neurotraumatic diseases.
基金supported by the National University of Singapore Graduate School for Integrative Sciences and Engineering(to BLT)
文摘Membrane trafficking processes are presumably vital for axonal regeneration after injury, but mechanistic understanding in this regard has been sparse. A recent loss-of-function screen had been carried out for factors important for axonal regeneration by cultured cortical neurons and the results suggested that the activity of a number of Rab GTPases might act to restrict axonal regeneration. A loss of Rab27b, in particular, is shown to enhance axonal regeneration in vitro, as well as in C. elegans and mouse central nervous system injury models in vivo. Possible mechanisms underlying this new finding, which has important academic and translational implication, are discussed.
基金supported by National Health and Medical Research Council(NHMRC) Project Grant 1101974 to BN
文摘Injuries to the central or peripheral nervous system frequently cause long-term disabilities because damaged neurons are unable to efficiently self-repair.This inherent deficiency necessitates the need for new treatment options aimed at restoring lost function to patients.Compared to humans,a number of species possess far greater regenerative capabilities,and can therefore provide important insights into how our own nervous systems can be repaired.In particular,several invertebrate species have been shown to rapidly initiate regeneration post-injury,allowing separated axon segments to re-join.This process,known as axonal fusion,represents a highly efficient repair mechanism as a regrowing axon needs to only bridge the site of damage and fuse with its separated counterpart in order to re-establish its original structure.Our recent findings in the nematode Caenorhabditis elegans have expanded the promise of axonal fusion by demonstrating that it can restore complete function to damaged neurons.Moreover,we revealed the importance of injury-induced changes in the composition of the axonal membrane for mediating axonal fusion,and discovered that the level of axonal fusion can be enhanced by promoting a neuron's intrinsic growth potential.A complete understanding of the molecular mechanisms controlling axonal fusion may permit similar approaches to be applied in a clinical setting.
基金This work was supported by the National Natural Science Foundation of China,Nos.81830036(to GC),81771255(to GC),81771254(to HYL),81971106(to ZQY)Project of Jiangsu Provincial Medical Innovation Team,No.CXTDA2017003(to GC)+2 种基金Jiangsu Provincial Medical Youth Talent,No.QNRC2016728(to HYL)the Natural Science Foundation of Jiangsu Province,No.BK20170363(to HYL)Gusu Health Personnel Training Project,No.GSWS2019030(to HYL)。
文摘The regulation of mRNA localization and local translation play vital roles in the maintenance of cellular structure and function.Many human neurodegenerative diseases,such as fragile X syndrome,amyotrophic lateral sclerosis,Alzheimer’s disease,and spinal muscular atrophy,have been characterized by pathological changes in neuronal axons,including abnormal mRNA translation,the loss of protein expression,or abnormal axon transport.Moreover,the same protein and mRNA molecules have been associated with variable functions in different diseases due to differences in their interaction networks.In this review,we briefly examine fragile X syndrome,amyotrophic lateral sclerosis,Alzheimer’s disease,and spinal muscular atrophy,with a focus on disease pathogenesis with regard to local mRNA translation and axon transport,suggesting possible treatment directions.
基金funded by grants from the Christopher and Dana Reeve Foundation[JFC-2013(3),JFC-2013(4)]the Medical Research Council(G1000864 018556)+1 种基金the International Spinal Research Trust(Nathalie Rose Barr studentship NRB110)ERANET NEURON grant Axon Repair(013-16-002)
文摘Spinal cord injury has devastating consequences because adult central nervous system (CNS) neurons do not regenerate their axons after injury. Two key reasons for axon regeneration fail- ure are extrinsic inhibitory factors and a low intrinsic capacity for axon regrowth. Research has therefore focused on overcom- ing extrinsic growth inhibition, and enhancing intrinsic regeneration capacity. Both of these issues will need to be addressed to enable optimal repair of the injured sp+inal cord.
基金in part supported by the National Natural Science Foundation of China,Nos.30560042,81160161,81360198,and 82160255Education Department of Jiangxi Province,Nos.GJJ13198 and GJJ170021+1 种基金Jiangxi Provincial Department of Science and Technology,No.20192BAB205043Health and Family Planning Commission of Jiangxi Province,Nos.20181019 and 202210002(all to RX)。
文摘The onset of amyotrophic lateral sclerosis is usually characterized by focal death of both upper and/or lower motor neurons occurring in the motor cortex,basal ganglia,brainstem,and spinal cord,and commonly involves the muscles of the upper and/or lower extremities,and the muscles of the bulbar and/or respiratory regions.However,as the disease progresses,it affects the adjacent body regions,leading to generalized muscle weakness,occasionally along with memory,cognitive,behavioral,and language impairments;respiratory dysfunction occurs at the final stage of the disease.The disease has a complicated pathophysiology and currently,only riluzole,edaravone,and phenylbutyrate/taurursodiol are licensed to treat amyotrophic lateral sclerosis in many industrialized countries.The TAR DNA-binding protein 43 inclusions are observed in 97%of those diagnosed with amyotrophic lateral sclerosis.This review provides a preliminary overview of the potential effects of TAR DNAbinding protein 43 in the pathogenesis of amyotrophic lateral sclerosis,including the abnormalities in nucleoplasmic transport,RNA function,post-translational modification,liquid-liquid phase separation,stress granules,mitochondrial dysfunction,oxidative stress,axonal transport,protein quality control system,and non-cellular autonomous functions(e.g.,glial cell functions and prion-like propagation).
基金supported by the National Natural Science Foundation of China,No.81801787(to XZS)China Postdoctoral Science Foundation,No.2018M640238(to XZS)the Natural Science Foundation of Tianjin,No.20JCQNJC01690(XLC).
文摘Previous studies on the mechanisms of peripheral nerve injury(PNI)have mainly focused on the pathophysiological changes within a single injury site.However,recent studies have indicated that within the central nervous system,PNI can lead to changes in both injury sites and target organs at the cellular and molecular levels.Therefore,the basic mechanisms of PNI have not been comprehensively understood.Although electrical stimulation was found to promote axonal regeneration and functional rehabilitation after PNI,as well as to alleviate neuropathic pain,the specific mechanisms of successful PNI treatment are unclear.We summarize and discuss the basic mechanisms of PNI and of treatment via electrical stimulation.After PNI,activity in the central nervous system(spinal cord)is altered,which can limit regeneration of the damaged nerve.For example,cell apoptosis and synaptic stripping in the anterior horn of the spinal cord can reduce the speed of nerve regeneration.The pathological changes in the posterior horn of the spinal cord can modulate sensory abnormalities after PNI.This can be observed in cases of ectopic discharge of the dorsal root ganglion leading to increased pain signal transmission.The injured site of the peripheral nerve is also an important factor affecting post-PNI repair.After PNI,the proximal end of the injured site sends out axial buds to innervate both the skin and muscle at the injury site.A slow speed of axon regeneration leads to low nerve regeneration.Therefore,it can take a long time for the proximal nerve to reinnervate the skin and muscle at the injured site.From the perspective of target organs,long-term denervation can cause atrophy of the corresponding skeletal muscle,which leads to abnormal sensory perception and hyperalgesia,and finally,the loss of target organ function.The mechanisms underlying the use of electrical stimulation to treat PNI include the inhibition of synaptic stripping,addressing the excessive excitability of the dorsal root ganglion,alleviating neuropathic pain,improving neurological function,and accelerating nerve regeneration.Electrical stimulation of target organs can reduce the atrophy of denervated skeletal muscle and promote the recovery of sensory function.Findings from the included studies confirm that after PNI,a series of physiological and pathological changes occur in the spinal cord,injury site,and target organs,leading to dysfunction.Electrical stimulation may address the pathophysiological changes mentioned above,thus promoting nerve regeneration and ameliorating dysfunction.
基金supported by the Health Commission of Hubei Province Medical Leading Talent Project,No.LJ20200405(to AXY)。
文摘Neuroma formation after peripheral nerve transection often leads to severe neuropathic pain.Regenerative peripheral nerve interface has been shown to reduce painful neuroma in the clinic.However,no reports have investigated the underlying mechanisms,and no comparative animal studies on regenerative peripheral nerve interface and other means of neuroma prevention have been conducted to date.In this study,we established a rat model of left sciatic nerve transfection,and subsequently interfered with the model using the regenerative peripheral nerve interface or proximal nerve stump implantation inside a fully innervated muscle.Results showed that,compared with rats subjected to nerve stump implantation inside the muscle,rats subjected to regenerative peripheral nerve interface intervention showed greater inhibition of the proliferation of collagenous fibers and irregular regenerated axons,lower expressions of the fibrosis markerα-smooth muscle actin and the inflammatory marker sigma-1 receptor in the proximal nerve stump,lower autophagy behaviors,lower expressions of c-fos and substance P,higher expression of glial cell line-derived neurotrophic factor in the ipsilateral dorsal root ganglia.These findings suggested that regenerative peripheral nerve interface inhibits peripheral nerve injury-induced neuroma formation and neuropathic pain possibly via the upregulation of the expression of glial cell line-derived neurotrophic factor in the dorsal root ganglia and reducing neuroinflammation in the nerve stump.
基金supported by funding from the Key Research and Development Program of Sichuan(2021YFS0382 to CX)the Medical Research Project of Jiangsu Commission of Health(M2022004 to CWL)+2 种基金Huai'an Natural Science Research Program(HAB202239 to CWL)the National Natural Science Foundation of China(General Program)(82271524 to LWD)the National Natural Science Foundation of China(Key Program)(32220103006 to LWD).
文摘Tremendous research efforts have been made regarding the pathogenesis of Parkinson’s disease(PD).However,there are still no effective strategies to restore midbrain dopaminergic(mDA)innervation and prevent disease progression.One possibility is that we may have been neglecting the role of axons in mDA neuronal degeneration.This review first summarizes mDA axon development during the early stage of PD and discusses how axon guidance defects contribute to PD vulnerability.Furthermore,we review axonal transport dysregulation in the numerous PD-related genetic mutations,including Parkin,PINK1,DJ1,LRRK2 and SNCA.The evidence suggests that proper axonal transport is crucial for neuronal function and survival.Finally,advanced tools for axonal studies were evaluated,including light-sheet and super-resolution microscopy.These adapted microscopes have been used to help solve questions unanswered before.Overall,the role of axon terminals in the initiation of the degeneration cascade remains undeciphered,and more research in the related area may be conducted further to restore dopamine levels in the striatum to alleviate the motor complications of PD.
基金the Medical Research Council(MR/R004544/1,MR/R004463/1,to RE)EU ERA-NET NEURON(AxonRepair grant,to BN)+1 种基金Fight for Sight(5119/5120,and 5065-5066,to RE)National Eye Research Centre(to RE).
文摘Much research has focused on the PI3-kinase and PTEN signaling pathway with the aim to stimulate repair of the injured central nervous system.Axons in the central nervous system fail to regenerate,meaning that injuries or diseases that cause loss of axonal connectivity have life-changing consequences.In 2008,genetic deletion of PTEN was identified as a means of stimulating robust regeneration in the optic nerve.PTEN is a phosphatase that opposes the actions of PI3-kinase,a family of enzymes that function to generate the membrane phospholipid PIP_(3) from PIP_(2)(phosphatidylinositol(3,4,5)-trisphosphate from phosphatidylinositol(4,5)-bisphosphate).Deletion of PTEN therefore allows elevated signaling downstream of PI3-kinase,and was initially demonstrated to promote axon regeneration by signaling through mTOR.More recently,additional mechanisms have been identified that contribute to the neuron-intrinsic control of regenerative ability.This review describes neuronal signaling pathways downstream of PI3-kinase and PIP3,and considers them in relation to both developmental and regenerative axon growth.We briefly discuss the key neuron-intrinsic mechanisms that govern regenerative ability,and describe how these are affected by signaling through PI3-kinase.We highlight the recent finding of a developmental decline in the generation of PIP_(3) as a key reason for regenerative failure,and summarize the studies that target an increase in signaling downstream of PI3-kinase to facilitate regeneration in the adult central nervous system.Finally,we discuss obstacles that remain to be overcome in order to generate a robust strategy for repairing the injured central nervous system through manipulation of PI3-kinase signaling.
基金supported by The Key Project of National Natural Science Foundation of China(31030036)to Shanghai。
文摘Optic neuropathies lead to blindness;the common pathology is the degeneration of axons of the retinal ganglion cells. In this study, we used a rat model of retinal ischemia-reperfusion and a one-time intravitreal brain-derived neurotrophic factor(BDNF)injection;then we examined axon transportation function, continuity, physical presence of axons in different part of the optic nerve, and the expression level of proteins involved in axon transportation. We found that in the disease model, axon transportation was the most severely affected, followed by axon continuity, then the number of axons in the distal and proximal optic nerve. BDNF treatment relieved all reductions and significantly restored function. The molecular changes were more minor,probably due to massive gliosis of the optic nerve, so interpretation of protein expression data should be done with some caution.The process in this acute model resembles a fast-forward of changes in the chronic model of glaucoma. Therefore, impairment in axon transportation appears to be a common early process underlying different optic neuropathies. This research on effective intervention can be used to develop interventions for all optic neuropathies targeting axon transportation.
基金ThisstudywassupportedbygrantsfromtheNationalNaturalSciencFoundationofChina (No 3 9670 775or39770811)andGuangdongKeyProgram (1998)
文摘OBJECTIVE: To investigate in vivo survival of retinal ganglion cells (RGCs) after partial blockage of optic nerve (ON) axoplasmic flow by sub-retinal space or vitreous cavity injection of brain-derived neural factor (BDNF) produced by genetically modified neural progenitor cells (NPCs). METHODS: Adult Sprague-Dawley (SD) rat RGCs were labeled with granular blue (GB) applied to their main targets in the brain. Seven days later, the left ON was intra-obitally crushed with a 40 g power forceps to partially block ON axoplasmic flow. Animals were randomized to three groups. The left eye of each rat received a sham injection, NPCs injection or an injection of genetically modified neural progenitors producing BDNF (BDNF-NPCs). Seven, 15 and 30 days after ON crush, retinas were examined under a fluorescence microscope. By calculating and comparing the average RGCs densities and RGC apoptosis density, RGC survival was estimated and the neuro-protective effect of transplanted cells was evaluated. RESULTS: Seven, 15 and 30 days after crush, in the intra-vitreous injection group, mean RGC densities had decreased to 1885 +/- 68, 1562 +/- 20, 1380 +/- 7 and 1837 +/- 46, 1561 +/- 58, 1370 +/- 16, respectively with sham injection or neural progenitors injection. However, RGCs density in the groups treated with intra-vitreous injection of BDNF-NPC was 2101 +/- 15, 1809 +/- 19 and 1625 +/- 34. Similar results were found in groups after sub-retinal injection. Higher densities were observed in groups treated with BDNF-NPCs. There were statistically significant differences among groups through nonparametric tests followed by the Mann-Whitely test. RGC apoptosis density in BDNF-NPC at each follow-up time was less than in other groups. CONCLUSIONS: A continuous supply of neurotrophic factors by the injection of genetically modified neural progenitors presents a highly effective approach to counteract optic neuropathy and RGC degeneration after partial ON axoplasmic flow blockage.
基金supported through the Australian National Health&Medical Research Council(NHMRC APP1163249).
文摘Amyotrophic lateral sclerosis(ALS)is a progressive neurodegenerative disease characterized by selective,early degeneration of motor neurons in the brain and spinal cord.Motor neurons have long axonal projections,which rely on the integrity of neuronal cytoskeleton and mitochondria to regulate energy requirements for maintaining axonal stability,anterograde and retrograde transport,and signaling between neurons.The formation of protein aggregates which contain cytoskeletal proteins,and mitochondrial dysfunction both have devastating effects on the function of neurons and are shared pathological features across several neurodegenerative conditions,including ALS,Alzheimer's disease,Parkinson's disease,Huntington's disease and Charcot-Marie-Tooth disease.Furthermore,it is becoming increasingly clear that cytoskeletal integrity and mitochondrial function are intricately linked.Therefore,dysregulations of the cytoskeletal network and mitochondrial homeostasis and localization,may be common pathways in the initial steps of neurodegeneration.Here we review and discuss known contributors,including variants in genetic loci and aberrant protein activities,which modify cytoskeletal integrity,axonal transport and mitochondrial localization in ALS and have overlapping features with other neurodegenerative diseases.Additionally,we explore some emerging pathways that may contribute to this disruption in ALS.
基金the National Key R&D Program of China(2021YFA0805200)the National Major Projects in Brain Science and Brain-like Research(2021ZD0201803 to J.W.)+7 种基金the National Natural Science Foundation of China(82171431,81671120,81300981 to J.W.,31872778 and 82171506 to Z.H.)the National Key Research and Development Program of China(#2018YFC1312003 to J.W.)the Natural Science Fund for Distinguished Young Scholars of Hunan Province,China(2020JJ2057 to J.W.)the Project Program of National Clinical Research Center for Geriatric Disorders at Xiangya Hospital(2020LNJJ13 to J.W.)Key Research and Development Programs from Hunan Province(2021DK2001 to Z.H.)the Innovative Team Program from Hunan Province(2019RS1010)the Innovation-driven Team Project from Central South University(2020CX016)the Discipline Innovative Engineering Plan(111 Program)of China(B13036).Z.H.is supported by the Hunan Hundred Talents Program for Young Outstanding Scientists.
文摘Background:Amyotrophic lateral sclerosis(ALS)is a devastating progressive neurodegenerative disease that affects neurons in the central nervous system and the spinal cord.As in many other neurodegenerative disorders,the genetic risk factors and pathogenesis of ALS involve dysregulation of cytoskeleton and neuronal transport.Notably,sen-sory and motor neuron diseases such as hereditary sensory and autonomic neuropathy type 2(HSAN2)and spastic paraplegia 30(SPG30)share several causative genes with ALS,as well as having common clinical phenotypes.KIF1A encodes a kinesin 3 motor that transports presynaptic vesicle precursors(SVPs)and dense core vesicles and has been reported as a causative gene for HSAN2 and SPG30.Methods:Here,we analyzed whole-exome sequencing data from 941 patients with ALS to investigate the genetic association of KIF1A with ALS.Results:We identified rare damage variants(RDVs)in the KIF1A gene associated with ALS and delineated the clini-cal characteristics of ALS patients with KIF1A RDVs.Clinically,these patients tended to exhibit sensory disturbance.Interestingly,the majority of these variants are located at the C-terminal cargo-binding region of the KIF1A protein.Functional examination revealed that the ALS-associated KIF1A variants located in the C-terminal region preferentially enhanced the binding of SVPs containing RAB3A,VAMP2,and synaptophysin.Expression of several disease-related KIF1A mutants in cultured mouse cortical neurons led to enhanced colocalization of RAB3A or VAMP2 with the KIF1A motor.Conclusions:Our study highlighted the importance of KIF1A motor-mediated transport in the pathogenesis of ALS,indicating KIF1A as an important player in the oligogenic scenario of ALS.