采用溶胶凝胶法制备x Mn-Ba0.2Sr0.8Zr0.18Ti0.82O3(BSZT)(x=0mol%、1mol%、2mol%、3mol%)的陶瓷粉末,以传统工艺制备Mn离子掺杂的BSZT陶瓷。研究Mn离子掺杂浓度对BSZT陶瓷烧结特性、物相结构、介电性能、击穿场强以及储能密度的影响。...采用溶胶凝胶法制备x Mn-Ba0.2Sr0.8Zr0.18Ti0.82O3(BSZT)(x=0mol%、1mol%、2mol%、3mol%)的陶瓷粉末,以传统工艺制备Mn离子掺杂的BSZT陶瓷。研究Mn离子掺杂浓度对BSZT陶瓷烧结特性、物相结构、介电性能、击穿场强以及储能密度的影响。结果表明,Mn离子掺杂降低了BSZT陶瓷的烧结温度,同时降低其介电常数以及介电损耗,提高了击穿场强和储能密度。在1400℃下烧结的2mol%Mn离子掺杂BSZT陶瓷较未掺杂BSZT陶瓷的烧结温度降低了100℃,相对密度为96.3%;1 k Hz处介电常数约为497、介电损耗为0.36%;最大击穿场强为12.595 k V/mm;最大储能密度为0.374 J/cm3。展开更多
通过静电纺丝制备了定向排列的0.5(Ba_(0.7)Ca_(0.3))TiO_3-0.5Ba(Zr_(0.2)Ti_(0.8))O_3(BCZT)纳米线,并利用纳米线制备了纳米发电机。研究了定向排列纳米线对纳米发电机输出性能的影响。X射线粉末衍射谱和拉曼光谱显示:制备的纳米线具...通过静电纺丝制备了定向排列的0.5(Ba_(0.7)Ca_(0.3))TiO_3-0.5Ba(Zr_(0.2)Ti_(0.8))O_3(BCZT)纳米线,并利用纳米线制备了纳米发电机。研究了定向排列纳米线对纳米发电机输出性能的影响。X射线粉末衍射谱和拉曼光谱显示:制备的纳米线具有良好的四方相钙钛矿结构。扫描电子显微镜照片显示,利用平行电极收集器可以实现大部分纳米线的定向排列。测试了纳米发电机的压电性能,结果显示:基于定向排列纳米线的纳米发电机平均输出电流为89.69 n A,而基于无序排列纳米线的纳米发电机平均输出电流为52.36 n A。相比而言,发电机的电流输出性能提升了71.3%。利用发电机制备的自供电式可穿戴肢体动作传感器响应非常好,能在不需要外部电源的情况下很好地区分不同肢体部位的弯曲动作。展开更多
The perovskite-type-oxide solid solution Ba0.97Ce0.8Ho0.2O3-α was prepared by high temperature solidstate reaction and its single-phase character was confirmed by X-ray diffraction. The ionic conduction of the sample...The perovskite-type-oxide solid solution Ba0.97Ce0.8Ho0.2O3-α was prepared by high temperature solidstate reaction and its single-phase character was confirmed by X-ray diffraction. The ionic conduction of the sample was investigated using electrical methods at elevated temperatures, and the performance of the hydrogen-air fuel cell using the sample as solid electrolyte was measured, which were compared with those of BaCe0.8Ho0.2O3-α. In wet hydrogen, BaCe0.8Ho0.2O3-α almost exhibits pure protonic conduction at 600-1000℃, and its protonic transport number is 1 at 600-900 ℃ and 0.99 at 1000 ℃. Similarly, Ba0.97Ce9.8Ho0.2O3-α exhibits pure protonic conduction with the protonic transport number of 1 at 600- 700℃, but its protonic conduction is slightly lower than that of BaCe0.8Ho0.2O3-α, and the protonic transport number are 0.99-0.96 at 800-1000 ℃. In wet air, the two samples both show low protonic and oxide ionic conduction. For Ba0.97Ce0.8Ho0.2O3-α, the protonic and oxide ionic transport numbers are 0.01-0.11 and 0.30-0.31 respectively, and for BaCe0.8Ho0.2O3-α, 0.01-0.09 and 0.27-0.33 respectively. Ionic conductivities of Ba0.97Ce0.8Ho0.2O3-α are higher than those of BaCe0.8Ho0.2O3-α under wet hydrogen and wet air. The performance of the fuel cell using Ba0.97Ce0.8Ho0.2O3-α as solid electrolyte is better than that of BaCe0.8Ho0.2O3-α. At 1000 ℃, its maximum short-circuit current density and power output density are 465 mA/cm^2 and 112 mW/cm^2, respectively.展开更多
The La0.6Ba0.4Co0.2Fe0.8O3 (LBCF) nano ceramic powders were prepared by Sol-Gel process using nitrate based chemicals for SOFC applications since these powders are considered to be more promising cathode materials for...The La0.6Ba0.4Co0.2Fe0.8O3 (LBCF) nano ceramic powders were prepared by Sol-Gel process using nitrate based chemicals for SOFC applications since these powders are considered to be more promising cathode materials for SOFC. Citric acid was used as a chelant agent and ethylene glycol as a dispersant. The powders were calcined at 650oC/6 h, 900oC/3 h in air using Thermolyne 47,900 furnace. These powders were charac terized by SEM/EDS, XRD and Porosimetry techniques. The SEM images indicate that the particle sizes of the LBCF powders are in the range of 50 - 200 nm. The LBCF perovskite phases are seen from the XRD patterns. From XRD Line broadening technique, the average particle size for the powders (as prepared and calcined at 650oC/6 h and 900oC/3 h) were found to be around 12.97 nm, 22.24 nm and 26 nm respectively. The surface area of the LBCF powders for the as prepared and calcined at 650oC were found to be 28.92 and 19.54 m2/g respectively.展开更多
文摘采用溶胶凝胶法制备x Mn-Ba0.2Sr0.8Zr0.18Ti0.82O3(BSZT)(x=0mol%、1mol%、2mol%、3mol%)的陶瓷粉末,以传统工艺制备Mn离子掺杂的BSZT陶瓷。研究Mn离子掺杂浓度对BSZT陶瓷烧结特性、物相结构、介电性能、击穿场强以及储能密度的影响。结果表明,Mn离子掺杂降低了BSZT陶瓷的烧结温度,同时降低其介电常数以及介电损耗,提高了击穿场强和储能密度。在1400℃下烧结的2mol%Mn离子掺杂BSZT陶瓷较未掺杂BSZT陶瓷的烧结温度降低了100℃,相对密度为96.3%;1 k Hz处介电常数约为497、介电损耗为0.36%;最大击穿场强为12.595 k V/mm;最大储能密度为0.374 J/cm3。
文摘通过静电纺丝制备了定向排列的0.5(Ba_(0.7)Ca_(0.3))TiO_3-0.5Ba(Zr_(0.2)Ti_(0.8))O_3(BCZT)纳米线,并利用纳米线制备了纳米发电机。研究了定向排列纳米线对纳米发电机输出性能的影响。X射线粉末衍射谱和拉曼光谱显示:制备的纳米线具有良好的四方相钙钛矿结构。扫描电子显微镜照片显示,利用平行电极收集器可以实现大部分纳米线的定向排列。测试了纳米发电机的压电性能,结果显示:基于定向排列纳米线的纳米发电机平均输出电流为89.69 n A,而基于无序排列纳米线的纳米发电机平均输出电流为52.36 n A。相比而言,发电机的电流输出性能提升了71.3%。利用发电机制备的自供电式可穿戴肢体动作传感器响应非常好,能在不需要外部电源的情况下很好地区分不同肢体部位的弯曲动作。
基金V. ACKN0WLEDGMENT This work was supported by the National Natural Science Foundation of China (No.20171034) and the Natural Science Foundation of Education Department of Jiangsu Province (No.04KJD150218).
文摘The perovskite-type-oxide solid solution Ba0.97Ce0.8Ho0.2O3-α was prepared by high temperature solidstate reaction and its single-phase character was confirmed by X-ray diffraction. The ionic conduction of the sample was investigated using electrical methods at elevated temperatures, and the performance of the hydrogen-air fuel cell using the sample as solid electrolyte was measured, which were compared with those of BaCe0.8Ho0.2O3-α. In wet hydrogen, BaCe0.8Ho0.2O3-α almost exhibits pure protonic conduction at 600-1000℃, and its protonic transport number is 1 at 600-900 ℃ and 0.99 at 1000 ℃. Similarly, Ba0.97Ce9.8Ho0.2O3-α exhibits pure protonic conduction with the protonic transport number of 1 at 600- 700℃, but its protonic conduction is slightly lower than that of BaCe0.8Ho0.2O3-α, and the protonic transport number are 0.99-0.96 at 800-1000 ℃. In wet air, the two samples both show low protonic and oxide ionic conduction. For Ba0.97Ce0.8Ho0.2O3-α, the protonic and oxide ionic transport numbers are 0.01-0.11 and 0.30-0.31 respectively, and for BaCe0.8Ho0.2O3-α, 0.01-0.09 and 0.27-0.33 respectively. Ionic conductivities of Ba0.97Ce0.8Ho0.2O3-α are higher than those of BaCe0.8Ho0.2O3-α under wet hydrogen and wet air. The performance of the fuel cell using Ba0.97Ce0.8Ho0.2O3-α as solid electrolyte is better than that of BaCe0.8Ho0.2O3-α. At 1000 ℃, its maximum short-circuit current density and power output density are 465 mA/cm^2 and 112 mW/cm^2, respectively.
文摘The La0.6Ba0.4Co0.2Fe0.8O3 (LBCF) nano ceramic powders were prepared by Sol-Gel process using nitrate based chemicals for SOFC applications since these powders are considered to be more promising cathode materials for SOFC. Citric acid was used as a chelant agent and ethylene glycol as a dispersant. The powders were calcined at 650oC/6 h, 900oC/3 h in air using Thermolyne 47,900 furnace. These powders were charac terized by SEM/EDS, XRD and Porosimetry techniques. The SEM images indicate that the particle sizes of the LBCF powders are in the range of 50 - 200 nm. The LBCF perovskite phases are seen from the XRD patterns. From XRD Line broadening technique, the average particle size for the powders (as prepared and calcined at 650oC/6 h and 900oC/3 h) were found to be around 12.97 nm, 22.24 nm and 26 nm respectively. The surface area of the LBCF powders for the as prepared and calcined at 650oC were found to be 28.92 and 19.54 m2/g respectively.