The paleoposition of North China Craton in Rodinia has long been in controversial. This paper mainly focuses on the U-Pb geochronological studies of detrital zircons obtained from Bayan Obo Group exposed in the Shangd...The paleoposition of North China Craton in Rodinia has long been in controversial. This paper mainly focuses on the U-Pb geochronological studies of detrital zircons obtained from Bayan Obo Group exposed in the Shangdu area, Inner Mongolia, aiming to provide more information for interprating this problem. Based on the acquired data, this paper comes to the following conclusions. Firstly, the depositional age of Bayan Obo Group might be from Meso- to Neoproterozoic according to the zircons U-Pb dating results. The lower succession of this group, namely Dulahala and Jianshan formations deposited between 1800 and 1650 Ma. The Halahuogete and Bilute formations deposited between 1500 and 1350 Ma. For Baiyinbaolage and Hujiertu formations, their depositional age was 1250-900 Ma. Secondly, for the provenance of Bayan Obo Group, this paper believes detrital zircons with age of 2.51-2.71 Ga and 2.00-2.48 Ga were from Guyang, Xi Ulanbulang and Zhuozi area;the Khondalite Belt provided detrital zircons with age of 1.95-1.80 Ga;zircons with age of 1.60-1.75 Ga might come from granitic rocks in Miyun Area. The magmatism after 1.60 Ga was rarely recorded in the NCC, therefore those zircons with ages younger than 1.60 Ga might come from outside of NCC. The magmatism with the same age existed in Baltic, Amazonia and Laurentia. Based on previous paleomagnetic researches, this paper proposes that NCC might receive detritus from Baltic during 1560-1350 Ma and had affinity with Laurentia and Amazonia at ~0.9 Ga in Rodinia. Baltic, Amazonia and Laurentia might be potential provenances for non-NCC detritus in Bayan Obo Group.展开更多
Based on studies of sequence stratigraphy, event stratigraphy, biostratigraphy and lithostratigraphy, it is concluded that the Sailinhudong Group is a part of the Bayan Obo Group. Some trilobite fragments are first fo...Based on studies of sequence stratigraphy, event stratigraphy, biostratigraphy and lithostratigraphy, it is concluded that the Sailinhudong Group is a part of the Bayan Obo Group. Some trilobite fragments are first found in thin sections of the rock from the lower part of the Sailinhudong Group and some Ordovician acritarchs and chitinozoans are also found in this group. A formationa unit of carbonate seismites is first recognized in the upper part and a huge micrite mound is first identified at the top. Dolomite, the host rock of the super giant Bayan Obo Fe-Nb-REE deposits, is neither an igneous carbonatite nor a common bedded sedimentary carbonate, but a huge micrite mound. It has the same macroscopic characters as the micrite mounds at the top of the Sailinhudong Group, which suggests that they should be of the same horizon. According to the fossils, the Sailinhudong and Bayan Obo Groups should be of the Early Palaeozoic rather than the Middle Proterozoic. The new discovery and new idea will throw light on the explanation of the genesis of the supergiant Bayan Obo Fe-Nb-REE deposits.展开更多
基金financially supported by the National Natural Science Foundation of China (No.41872203)China Geological Survey (No.1212011120709)Doctoral Candidate Inter Discipline Fund of Jilin University (No.10183201837)
文摘The paleoposition of North China Craton in Rodinia has long been in controversial. This paper mainly focuses on the U-Pb geochronological studies of detrital zircons obtained from Bayan Obo Group exposed in the Shangdu area, Inner Mongolia, aiming to provide more information for interprating this problem. Based on the acquired data, this paper comes to the following conclusions. Firstly, the depositional age of Bayan Obo Group might be from Meso- to Neoproterozoic according to the zircons U-Pb dating results. The lower succession of this group, namely Dulahala and Jianshan formations deposited between 1800 and 1650 Ma. The Halahuogete and Bilute formations deposited between 1500 and 1350 Ma. For Baiyinbaolage and Hujiertu formations, their depositional age was 1250-900 Ma. Secondly, for the provenance of Bayan Obo Group, this paper believes detrital zircons with age of 2.51-2.71 Ga and 2.00-2.48 Ga were from Guyang, Xi Ulanbulang and Zhuozi area;the Khondalite Belt provided detrital zircons with age of 1.95-1.80 Ga;zircons with age of 1.60-1.75 Ga might come from granitic rocks in Miyun Area. The magmatism after 1.60 Ga was rarely recorded in the NCC, therefore those zircons with ages younger than 1.60 Ga might come from outside of NCC. The magmatism with the same age existed in Baltic, Amazonia and Laurentia. Based on previous paleomagnetic researches, this paper proposes that NCC might receive detritus from Baltic during 1560-1350 Ma and had affinity with Laurentia and Amazonia at ~0.9 Ga in Rodinia. Baltic, Amazonia and Laurentia might be potential provenances for non-NCC detritus in Bayan Obo Group.
基金This research was jointly supported by the National Natural Science Foundation of China (Grant No. 4962008)the "Sequence Sea Level Change"-a state key project of the State Science and Technology Commission
文摘Based on studies of sequence stratigraphy, event stratigraphy, biostratigraphy and lithostratigraphy, it is concluded that the Sailinhudong Group is a part of the Bayan Obo Group. Some trilobite fragments are first found in thin sections of the rock from the lower part of the Sailinhudong Group and some Ordovician acritarchs and chitinozoans are also found in this group. A formationa unit of carbonate seismites is first recognized in the upper part and a huge micrite mound is first identified at the top. Dolomite, the host rock of the super giant Bayan Obo Fe-Nb-REE deposits, is neither an igneous carbonatite nor a common bedded sedimentary carbonate, but a huge micrite mound. It has the same macroscopic characters as the micrite mounds at the top of the Sailinhudong Group, which suggests that they should be of the same horizon. According to the fossils, the Sailinhudong and Bayan Obo Groups should be of the Early Palaeozoic rather than the Middle Proterozoic. The new discovery and new idea will throw light on the explanation of the genesis of the supergiant Bayan Obo Fe-Nb-REE deposits.