[Objective] To study the effects of plant oil mixture on production performance, carcass and beef quality in beef cattle. [Method] Single-factor randomized blocks design was used. Sixteen healthy Yanbian yellow bulls ...[Objective] To study the effects of plant oil mixture on production performance, carcass and beef quality in beef cattle. [Method] Single-factor randomized blocks design was used. Sixteen healthy Yanbian yellow bulls having close body weight were selected and randomly divided into four groups, four cattle per group. Been oil, safflower oil and sunflower oil were mixed respectively at a volume ratio of 11:5:4. The oil blend was added to the daily diets of beef cattle respectively at a proportion of 4%, 5% and 6%. The effects of the plant oil mixture on production performance, carcass and beef quality were investigated. [ Result.] Compared with the control cattle, the experimental cattle had significantly lower feed intake (P 〈 0.05), non-significantly higher efficiency of feed utilization, and significantly lower digestibility of crude fiber and calcium (P 〈 0.05). With the increasing level of plant oil, the digestibility of dry matter showed a decreasing trend. The digestibility of dry matter was significantly lower in the cattle fed on the plant oil mixture at a level of 6% than in the control ( P 〈 0.05). The plant oil mixture had no effect on the digestibility of crude protein, ether extract, crude ash, nitrogen-free extract and phosphorus. With the increasing level of plant oil, the serum content of high-density lipoprotein showed an increasing trend. The serum content of high-density lipoprotein was significantly higher in the cattle fed on the plant oil mixture at a level of 6% than in the control ( P 〈 0.05). With the increasing level of plant oil, the content of total cholesterol showed an increasing trend, whereas the content of low-density lipoprotein showed a decreasing trend. Moreover, other indicators did not change significantly. The experimental cattle had larger eye muscle area and better beef quality than the control group. The content of crude protein and ether extract in beef increased with the increasing level of plant oil. [ Conclusion] The plant oil mixture added to the daily feed decreases intake and digestibility of crude fiber and calcium but has no remarkable effect on production performance of beef cattle. The addition also increases eye muscle area and improves beef quality, thereby improving quality of carcass and beef. The proportion of the plant oil mixture should be added at a proportion lower than 5%.展开更多
Background: Grass-fed and grain-fed Angus cattle differ in the diet regimes. However, the intricate mechanisms of different beef quality and other phenotypes induced by diet differences are still unclear. Diet affects...Background: Grass-fed and grain-fed Angus cattle differ in the diet regimes. However, the intricate mechanisms of different beef quality and other phenotypes induced by diet differences are still unclear. Diet affects mitochondrial function and dynamic behavior in response to changes in energy demand and supply. In this study, we examined the mtDNA copy number, mitochondria-related genes expression, and metabolic biomarkers in grass-fed and grainfed Angus cattle.Results: We found that the grass-fed group had a higher mtDNA copy number than the grain-fed group. Among different tissues, the mtDNA copy number was the highest in the liver than muscle, rumen, and spleen. Based on the transcriptome of the four tissues, a lower expression of mtDNA-encoded genes in the grass-fed group compared to the grain-fed group was discovered. For the mitochondria-related nuclear genes, however, most of them were significantly down-regulated in the muscle of the grass-fed group and up-regulated in the other three tissues. In which, COX6 A2, POLG2, PPIF, DCN, and NDUFA12, involving in ATP synthesis, mitochondrial replication,transcription, and maintenance, might contribute to the alterations of mtDNA copy number and gene expression.Meanwhile, 40 and 23 metabolic biomarkers were identified in the blood and muscle of the grain-fed group compared to a grass-fed group, respectively. Integrated analysis of the altered metabolites and gene expression revealed the high expression level of MDH1 in the grain-fed group might contribute to the mitochondrial NADH oxidation and spermidine metabolism for adapting the deletion mtDNA copy number.Conclusions: Overall, the study may provide further deep insight into the adaptive and regulatory modulations of the mitochondrial function in response to different feeding systems in Angus cattle.展开更多
Oxidation is one of the major causes of hamburger deterioration. Antioxidants are used to minimize oxidation process. There is a growing interest in the substitution of synthetic food antioxidants by natural ones from...Oxidation is one of the major causes of hamburger deterioration. Antioxidants are used to minimize oxidation process. There is a growing interest in the substitution of synthetic food antioxidants by natural ones from vegetable sources. In meat industry, sodium erythorbate is antioxidant that is usually used and is an example of chemical antioxidant. Effect of olive leaf extract rich in olenropein on the quality of frozen hamburger was investigated. The objective of this study was to evaluate the usage of oleuropein from olive leaf extract as natural antioxidant in frozen hamburger stored at -12 ℃ compared with sodium erythorbate. Results suggested that olive leaf extracts might be useful to the meat industry as an efficient alternative to synthetic antioxidants by retarding oxidation of hamburger compared with sodium erythorbate 0.5% of olenropein and 0.5% of sodium erythorbate are the best concentrations to be used in frozen hamburger.展开更多
文摘[Objective] To study the effects of plant oil mixture on production performance, carcass and beef quality in beef cattle. [Method] Single-factor randomized blocks design was used. Sixteen healthy Yanbian yellow bulls having close body weight were selected and randomly divided into four groups, four cattle per group. Been oil, safflower oil and sunflower oil were mixed respectively at a volume ratio of 11:5:4. The oil blend was added to the daily diets of beef cattle respectively at a proportion of 4%, 5% and 6%. The effects of the plant oil mixture on production performance, carcass and beef quality were investigated. [ Result.] Compared with the control cattle, the experimental cattle had significantly lower feed intake (P 〈 0.05), non-significantly higher efficiency of feed utilization, and significantly lower digestibility of crude fiber and calcium (P 〈 0.05). With the increasing level of plant oil, the digestibility of dry matter showed a decreasing trend. The digestibility of dry matter was significantly lower in the cattle fed on the plant oil mixture at a level of 6% than in the control ( P 〈 0.05). The plant oil mixture had no effect on the digestibility of crude protein, ether extract, crude ash, nitrogen-free extract and phosphorus. With the increasing level of plant oil, the serum content of high-density lipoprotein showed an increasing trend. The serum content of high-density lipoprotein was significantly higher in the cattle fed on the plant oil mixture at a level of 6% than in the control ( P 〈 0.05). With the increasing level of plant oil, the content of total cholesterol showed an increasing trend, whereas the content of low-density lipoprotein showed a decreasing trend. Moreover, other indicators did not change significantly. The experimental cattle had larger eye muscle area and better beef quality than the control group. The content of crude protein and ether extract in beef increased with the increasing level of plant oil. [ Conclusion] The plant oil mixture added to the daily feed decreases intake and digestibility of crude fiber and calcium but has no remarkable effect on production performance of beef cattle. The addition also increases eye muscle area and improves beef quality, thereby improving quality of carcass and beef. The proportion of the plant oil mixture should be added at a proportion lower than 5%.
基金supported by Maryland Agricultural Experiment Station(MAES),Jorgensen Endowment Funds。
文摘Background: Grass-fed and grain-fed Angus cattle differ in the diet regimes. However, the intricate mechanisms of different beef quality and other phenotypes induced by diet differences are still unclear. Diet affects mitochondrial function and dynamic behavior in response to changes in energy demand and supply. In this study, we examined the mtDNA copy number, mitochondria-related genes expression, and metabolic biomarkers in grass-fed and grainfed Angus cattle.Results: We found that the grass-fed group had a higher mtDNA copy number than the grain-fed group. Among different tissues, the mtDNA copy number was the highest in the liver than muscle, rumen, and spleen. Based on the transcriptome of the four tissues, a lower expression of mtDNA-encoded genes in the grass-fed group compared to the grain-fed group was discovered. For the mitochondria-related nuclear genes, however, most of them were significantly down-regulated in the muscle of the grass-fed group and up-regulated in the other three tissues. In which, COX6 A2, POLG2, PPIF, DCN, and NDUFA12, involving in ATP synthesis, mitochondrial replication,transcription, and maintenance, might contribute to the alterations of mtDNA copy number and gene expression.Meanwhile, 40 and 23 metabolic biomarkers were identified in the blood and muscle of the grain-fed group compared to a grass-fed group, respectively. Integrated analysis of the altered metabolites and gene expression revealed the high expression level of MDH1 in the grain-fed group might contribute to the mitochondrial NADH oxidation and spermidine metabolism for adapting the deletion mtDNA copy number.Conclusions: Overall, the study may provide further deep insight into the adaptive and regulatory modulations of the mitochondrial function in response to different feeding systems in Angus cattle.
文摘Oxidation is one of the major causes of hamburger deterioration. Antioxidants are used to minimize oxidation process. There is a growing interest in the substitution of synthetic food antioxidants by natural ones from vegetable sources. In meat industry, sodium erythorbate is antioxidant that is usually used and is an example of chemical antioxidant. Effect of olive leaf extract rich in olenropein on the quality of frozen hamburger was investigated. The objective of this study was to evaluate the usage of oleuropein from olive leaf extract as natural antioxidant in frozen hamburger stored at -12 ℃ compared with sodium erythorbate. Results suggested that olive leaf extracts might be useful to the meat industry as an efficient alternative to synthetic antioxidants by retarding oxidation of hamburger compared with sodium erythorbate 0.5% of olenropein and 0.5% of sodium erythorbate are the best concentrations to be used in frozen hamburger.