BACKGROUND Analyzing the variations in serum bile acid(BA)profile can provide a certain biological basis for early warning and prevention of various diseases.There is currently no comprehensive study on the relationsh...BACKGROUND Analyzing the variations in serum bile acid(BA)profile can provide a certain biological basis for early warning and prevention of various diseases.There is currently no comprehensive study on the relationship between the serum BA profile and colonic polyps.AIM To study the serum BA profile detection results of patients with colonic polyps,and analyze the correlation between BA and colonic polyps.METHODS From January 1,2022,to June 1,2023,204 patients with colonic polyps who were diagnosed and treated at Zhongda Hospital Southeast University were chosen as the study subjects,and 135 non-polyp people who underwent physical examination were chosen as the control group.Gathering all patients'clinical information,typical biochemical indicators,and BA profile.RESULTS Compared with the control group,the serum levels of taurocholic acid,glycocholic acid,glycochenodeoxycholic acid,and taurochenodeoxycholic acid in the colonic polyp group were significantly higher than those in the control group,while the content of deoxycholic acid(DCA)was lower than that in the control group(P<0.05).When colonic polyps were analyzed as subgroups,it was shown that there was a strong correlation between changes in the BA profile and polyp diameter,location,morphology,pathological kind,etc.CONCLUSION The serum BA profile showed significant changes in patients with colonic polyps,with a significant increase in primary conjugated BA content and a decrease in secondary free bile acid DCA content.There is a certain correlation between primary free BA and pathological parameters of polyps.展开更多
In this study,the structural characters,antioxidant activities and bile acid-binding ability of sea buckthorn polysaccharides(HRPs)obtained by the commonly used hot water(HRP-W),pressurized hot water(HRP-H),ultrasonic...In this study,the structural characters,antioxidant activities and bile acid-binding ability of sea buckthorn polysaccharides(HRPs)obtained by the commonly used hot water(HRP-W),pressurized hot water(HRP-H),ultrasonic(HRP-U),acid(HRP-C)and alkali(HRP-A)assisted extraction methods were investigated.The results demonstrated that extraction methods had significant effects on extraction yield,monosaccharide composition,molecular weight,particle size,triple-helical structure,and surface morphology of HRPs except for the major linkage bands.Thermogravimetric analysis showed that HRP-U with filamentous reticular microstructure exhibited better thermal stability.The HRP-A with the lowest molecular weight and highest arabinose content possessed the best antioxidant activities.Moreover,the rheological analysis indicated that HRPs with higher galacturonic acid content and molecular weight showed higher viscosity and stronger crosslinking network(HRP-C,HRP-W and HRP-U),which exhibited stronger bile acid binding capacity.The present findings provide scientific evidence in the preparation technology of sea buckthorn polysaccharides with good antioxidant and bile acid binding capacity which are related to the structure affected by the extraction methods.展开更多
Hepatocellular carcinoma(HCC)is a prevalent and aggressive liver malignancy.The interplay between bile acids(BAs)and the gut microbiota has emerged as a critical factor in HCC development and progression.Under normal ...Hepatocellular carcinoma(HCC)is a prevalent and aggressive liver malignancy.The interplay between bile acids(BAs)and the gut microbiota has emerged as a critical factor in HCC development and progression.Under normal conditions,BA metabolism is tightly regulated through a bidirectional interplay between gut microorganisms and BAs.The gut microbiota plays a critical role in BA metabolism,and BAs are endogenous signaling molecules that help maintain liver and intestinal homeostasis.Of note,dysbiotic changes in the gut microbiota during pathogenesis and cancer development can disrupt BA homeostasis,thereby leading to liver inflammation and fibrosis,and ultimately contributing to HCC development.Therefore,understanding the intricate interplay between BAs and the gut microbiota is crucial for elucidating the mechanisms underlying hepatocarcinogenesis.In this review,we comprehensively explore the roles and functions of BA metabolism,with a focus on the interactions between BAs and gut microorganisms in HCC.Additionally,therapeutic strategies targeting BA metabolism and the gut microbiota are discussed,including the use of BA agonists/antagonists,probiotic/prebiotic and dietary interventions,fecal microbiota transplantation,and engineered bacteria.In summary,understanding the complex BA-microbiota crosstalk can provide valuable insights into HCC development and facilitate the development of innovative therapeutic approaches for liver malignancy.展开更多
Infectious diseases are a global public health problem,with emerging and re-emerging infectious diseases on the rise worldwide.Therefore,their prevention and treatment are still major challenges.Bile acids are common ...Infectious diseases are a global public health problem,with emerging and re-emerging infectious diseases on the rise worldwide.Therefore,their prevention and treatment are still major challenges.Bile acids are common metabolites in both hosts and microorganisms that play a significant role in controlling the metabolism of lipids,glucose,and energy.Bile acids have historically been utilized as first-line,valuable therapeutic agents for related metabolic and hepatobiliary diseases.Notably,bile acids are the major active ingredients of cow bezoar and bear bile,which are commonly used traditional Chinese medicines(TCMs)with the therapeutic effects of clearing heat,detoxification,and relieving wind and spasm.In recent years,the promising performance of bile acids against infectious diseases has attracted attention from the scientific community.This paper reviews for the first time the biological activities,possible mechanisms,production routes,and potential applications of bile acids in the treatment and prevention of infectious diseases.Compared with previous reviews,we comprehensively summarize existing studies on the use of bile acids against infectious diseases caused by pathogenic microorganisms that are leading causes of global morbidity and mortality.In addition,to ensure a stable supply of bile acids at affordable prices,it is necessary to clarify the biosynthesis of bile acids in vivo,which will assist scientists in elucidating the accumulation of bile acids and discovering how to engineer various bile acids by means of chemosynthesis,biosynthesis,and chemoenzymatic synthesis.Finally,we explore the current challenges in the field and recommend a development strategy for bile-acid-based drugs and the sustainable production of bile acids.The presented studies suggest that bile acids are potential novel therapeutic agents for managing infectious diseases and can be artificially synthesized in a sustainable way.展开更多
Pien Tze Huang(PZH),a class-1 nationally protected traditional Chinese medicine(TCM),has been used to treat liver diseases such as hepatitis;however,the effect of PZH on the progression of sepsis is unknown.Here,we re...Pien Tze Huang(PZH),a class-1 nationally protected traditional Chinese medicine(TCM),has been used to treat liver diseases such as hepatitis;however,the effect of PZH on the progression of sepsis is unknown.Here,we reported that PZH attenuated lipopolysaccharide(LPS)-induced sepsis in mice and reduced LPS-induced production of proinflammatory cytokines in macrophages by inhibiting the activation of mitogen-activated protein kinase(MAPK)and nuclear factor-kappa B(NF-κB)signalling.Mechanistically,PZH stimulated signal transducer and activator of transcription 3(STAT3)phosphorylation to induce the expression of A20,which could inhibit the activation of NF-κB and MAPK signalling.Knockdown of the bile acid(BA)receptor G protein-coupled bile acid receptor 1(TGR5)in macrophages abolished the effects of PZH on STAT3 phosphorylation and A20 induction,as well as the LPS-induced inflammatory response,suggesting that BAs in PZH may mediate its anti-inflammatory effects by activating TGR5.Consistently,deprivation of BAs in PZH by cholestyramine resin reduced the effects of PZH on the expression of phosphorylated-STAT3 and A20,the activation of NF-κB and MAPK signalling,and the production of proinflammatory cytokines,whereas the addition of BAs to cholestyramine resin-treated PZH partially restored the inhibitory effects on the production of proinflammatory cytokines.Overall,our study identifies BAs as the effective components in PZH that activate TGR5-STAT3-A20 signalling to ameliorate LPS-induced sepsis.展开更多
Background Diets rich in starch have been shown to increase a risk of reducing milk fat content in dairy goats.While bile acids(BAs)have been used as a lipid emulsifier in monogastric and aquatic animals,their effect ...Background Diets rich in starch have been shown to increase a risk of reducing milk fat content in dairy goats.While bile acids(BAs)have been used as a lipid emulsifier in monogastric and aquatic animals,their effect on ruminants is not well understood.This study aimed to investigate the impact of BAs supplementation on various aspects of dairy goat physiology,including milk composition,rumen fermentation,gut microbiota,and BA metabolism.Results We randomly divided eighteen healthy primiparity lactating dairy goats(days in milk=100±6 d)into two groups and supplemented them with 0 or 4 g/d of BAs undergoing 5 weeks of feeding on a starch-rich diet.The results showed that BAs supplementation positively influenced milk yield and improved the quality of fatty acids in goat milk.BAs supplementation led to a reduction in saturated fatty acids(C16:0)and an increase in monounsaturated fatty acids(cis-9 C18:1),resulting in a healthier milk fatty acid profile.We observed a significant increase in plasma total bile acid concentration while the proportion of rumen short-chain fatty acids was not affected.Furthermore,BAs supplementation induced significant changes in the composition of the gut microbiota,favoring the enrichment of specific bacterial groups and altering the balance of microbial populations.Correlation analysis revealed associations between specific bacterial groups(Bacillus and Christensenellaceae R-7 group)and BA types,suggesting a role for the gut microbiota in BA metabolism.Functional prediction analysis revealed notable changes in pathways associated with lipid metabolism,suggesting that BAs supplementation has the potential to modulate lipid-related processes.Conclusion These findings highlight the potential benefits of BAs supplementation in enhancing milk production,improving milk quality,and influencing metabolic pathways in dairy goats.Further research is warranted to elucidate the underlying mechanisms and explore the broader implications of these findings.展开更多
Atherosclerosis(AS)is the main pathological basis of cardiovascular diseases.Hence,the prevention and treatment strategies of AS have attracted great research attention.As a potential probiotic,Pararabacteroides dista...Atherosclerosis(AS)is the main pathological basis of cardiovascular diseases.Hence,the prevention and treatment strategies of AS have attracted great research attention.As a potential probiotic,Pararabacteroides distasonis has a positive regulatory effect on lipid metabolism and bile acids(BAs)profile.Oligomeric procyanidins have been confirmed to be conducive to the prevention and treatment of AS,whose antiatherosclerotic effect may be associated with the promotion of gut probiotics.However,it remains unclear whether and how oligomeric procyanidins and P.distasonis combined(PPC)treatment can effectively alleviate high-fat diet(HFD)-induced AS.In this study,PPC treatment was found to significantly decrease atherosclerotic lesion,as well as alleviate the lipid metabolism disorder,inflammation and oxidative stress injury in ApoE^(-/-)mice.Surprisingly,targeted metabolomics demonstrated that PPC intervention altered the BA profile in mice by regulating the ratio of secondary BAs to primary BAs,and increased fecal BAs excretion.Further,quantitative polymerase chain reaction(qPCR)analysis showed that PPC intervention facilitated reverse cholesterol transport by upregulating Srb1 expression;In addition,PPC intervention promoted BA synthesis from cholesterol in liver by upregulating Cyp7a1 expression via suppression of the farnesoid X receptor(FXR)pathway,thus exhibiting a significant serum cholesterol-lowering effect.In summary,PPC attenuated HFD-induced AS in ApoE^(-/-)mice,which provides new insights into the design of novel and efficient anti-atherosclerotic strategies to prevent AS based on probiotics and prebiotics.展开更多
BACKGROUND Gastric cancer(GC)is associated with high mortality rates.Bile acids(BAs)reflux is a well-known risk factor for GC,but the specific mechanism remains unclear.During GC development in both humans and animals...BACKGROUND Gastric cancer(GC)is associated with high mortality rates.Bile acids(BAs)reflux is a well-known risk factor for GC,but the specific mechanism remains unclear.During GC development in both humans and animals,BAs serve as signaling molecules that induce metabolic reprogramming.This confers additional cancer phenotypes,including ferroptosis sensitivity.Ferroptosis is a novel mode of cell death characterized by lipid peroxidation that contributes universally to malignant progression.However,it is not fully defined if BAs can influence GC progression by modulating ferroptosis.AIM To reveal the mechanism of BAs regulation in ferroptosis of GC cells.METHODS In this study,we treated GC cells with various stimuli and evaluated the effect of BAs on the sensitivity to ferroptosis.We used gain and loss of function assays to examine the impacts of farnesoid X receptor(FXR)and BTB and CNC homology 1(BACH1)overexpression and knockdown to obtain further insights into the molecular mechanism involved.RESULTS Our data suggested that BAs could reverse erastin-induced ferroptosis in GC cells.This effect correlated with increased glutathione(GSH)concentrations,a reduced GSH to oxidized GSH ratio,and higher GSH peroxidase 4(GPX4)expression levels.Subsequently,we confirmed that BAs exerted these effects by activating FXR,which markedly increased the expression of GSH synthetase and GPX4.Notably,BACH1 was detected as an essential intermediate molecule in the promotion of GSH synthesis by BAs and FXR.Finally,our results suggested that FXR could significantly promote GC cell proliferation,which may be closely related to its anti-ferroptosis effect.CONCLUSION This study revealed for the first time that BAs could inhibit ferroptosis sensitivity through the FXR-BACH1-GSHGPX4 axis in GC cells.This work provided new insights into the mechanism associated with BA-mediated promotion of GC and may help identify potential therapeutic targets for GC patients with BAs reflux.展开更多
Background Infection with pathogenic bacteria during nonantibiotic breeding is one of the main causes of animal intestinal diseases.Oleanolic acid(OA)is a pentacyclic triterpene that is ubiquitous in plants.Our previo...Background Infection with pathogenic bacteria during nonantibiotic breeding is one of the main causes of animal intestinal diseases.Oleanolic acid(OA)is a pentacyclic triterpene that is ubiquitous in plants.Our previous work demonstrated the protective effect of OA on intestinal health,but the underlying molecular mechanisms remain unclear.This study investigated whether dietary supplementation with OA can prevent diarrhea and intestinal immune dysregulation caused by enterotoxigenic Escherichia coli(ETEC)in piglets.The key molecular role of bile acid receptor signaling in this process has also been explored.Results Our results demonstrated that OA supplementation alleviated the disturbance of bile acid metabolism in ETEC-infected piglets(P<0.05).OA supplementation stabilized the composition of the bile acid pool in piglets by regulating the enterohepatic circulation of bile acids and significantly increased the contents of UDCA and CDCA in the ileum and cecum(P<0.05).This may also explain why OA can maintain the stability of the intestinal microbiota structure in ETEC-challenged piglets.In addition,as a natural ligand of bile acid receptors,OA can reduce the severity of intestinal inflammation and enhance the strength of intestinal epithelial cell antimicrobial programs through the bile acid receptors TGR5 and FXR(P<0.05).Specifically,OA inhibited NF-κB-mediated intestinal inflammation by directly activating TGR5 and its downstream c AMP-PKA-CREB signaling pathway(P<0.05).Furthermore,OA enhanced CDCA-mediated MEK-ERK signaling in intestinal epithelial cells by upregulating the expression of FXR(P<0.05),thereby upregulating the expression of endogenous defense molecules in intestinal epithelial cells.Conclusions In conclusion,our findings suggest that OA-mediated regulation of bile acid metabolism plays an important role in the innate immune response,which provides a new diet-based intervention for intestinal diseases caused by pathogenic bacterial infections in piglets.展开更多
Non-alcoholic fatty liver disease(NAFLD)is the main cause of chronic liver disease worldwide.Bupleurum is widely used in the treatment of non-alcoholic fatty liver,and saikosaponin D(SSD)is one of the main active comp...Non-alcoholic fatty liver disease(NAFLD)is the main cause of chronic liver disease worldwide.Bupleurum is widely used in the treatment of non-alcoholic fatty liver,and saikosaponin D(SSD)is one of the main active components of Bupleurum.The purpose of this study was to investigate the efficacy of SSD in the treatment of NAFLD and to explore the mechanism of SSD in the improvement of NAFLD based on“gut-liver axis”.Our results showed that SSD dose-dependently alleviated high fat diet-induced weight gain in mice,improved insulin sensitivity,and also reduced liver lipid accumulation and injury-related biomarkers aspartate aminotransferase(AST)and alanine aminotransferase(ALT).Further exploration found that SSD inhibited the mRNA expression levels of farnesoid X receptor(Fxr),small heterodimer partner(Shp),recombinant fibroblast growth factor 15(Fgf15)and apical sodium dependent bile acid transporter(Asbt)in the intestine,suggesting that SSD improved liver lipid metabolism by inhibiting intestinal FXR signaling.SSD can significantly reduce the gut microbiota associated with bile salt hydrolase(BSH)expression,such as Clostridium.Decreased BSH expression reduced the ratio of unconjugated to conjugated bile acids,thereby inhibiting the intestinal FXR.These data demonstrated that SSD ameliorated NAFLD potentially through the gut microbiota-bile acidintestinal FXR pathway and suggested that SSD is a promising therapeutic agent for the treatment of NAFLD.展开更多
BACKGROUND The understanding of bile acid(BA)and unsaturated fatty acid(UFA)profiles,as well as their dysregulation,remains elusive in individuals with type 2 diabetes mellitus(T2DM)coexisting with non-alcoholic fatty...BACKGROUND The understanding of bile acid(BA)and unsaturated fatty acid(UFA)profiles,as well as their dysregulation,remains elusive in individuals with type 2 diabetes mellitus(T2DM)coexisting with non-alcoholic fatty liver disease(NAFLD).Investigating these metabolites could offer valuable insights into the pathophy-siology of NAFLD in T2DM.AIM To identify potential metabolite biomarkers capable of distinguishing between NAFLD and T2DM.METHODS A training model was developed involving 399 participants,comprising 113 healthy controls(HCs),134 individuals with T2DM without NAFLD,and 152 individuals with T2DM and NAFLD.External validation encompassed 172 participants.NAFLD patients were divided based on liver fibrosis scores.The analytical approach employed univariate testing,orthogonal partial least squares-discriminant analysis,logistic regression,receiver operating characteristic curve analysis,and decision curve analysis to pinpoint and assess the diagnostic value of serum biomarkers.RESULTS Compared to HCs,both T2DM and NAFLD groups exhibited diminished levels of specific BAs.In UFAs,particular acids exhibited a positive correlation with NAFLD risk in T2DM,while theω-6:ω-3 UFA ratio demonstrated a negative correlation.Levels ofα-linolenic acid andγ-linolenic acid were linked to significant liver fibrosis in NAFLD.The validation cohort substantiated the predictive efficacy of these biomarkers for assessing NAFLD risk in T2DM patients.CONCLUSION This study underscores the connection between altered BA and UFA profiles and the presence of NAFLD in individuals with T2DM,proposing their potential as biomarkers in the pathogenesis of NAFLD.展开更多
Chronic and recurrent inflammatory disorders of the gastrointestinal tract caused by a complex interplay between genetics and intestinal dysbiosis are called inflammatory bowel disease.As a result of the interaction b...Chronic and recurrent inflammatory disorders of the gastrointestinal tract caused by a complex interplay between genetics and intestinal dysbiosis are called inflammatory bowel disease.As a result of the interaction between the liver and the gut microbiota,bile acids are an atypical class of steroids produced in mammals and traditionally known for their function in food absorption.With the development of genomics and metabolomics,more and more data suggest that the pathophysiological mechanisms of inflammatory bowel disease are regulated by bile acids and their receptors.Bile acids operate as signalling molecules by activating a variety of bile acid receptors that impact intestinal flora,epithelial barrier function,and intestinal immunology.Inflammatory bowel disease can be treated in new ways by using these potential molecules.This paper mainly discusses the increasing function of bile acids and their receptors in inflammatory bowel disease and their prospective therapeutic applications.In addition,we explore bile acid metabolism and the interaction of bile acids and the gut microbiota.展开更多
The biliary tract has been considered for several decades a passive system just leading the hepatic bile to the intestine.Nowadays several researches demonstrated an important role of biliary epithelia(i.e.cholangiocy...The biliary tract has been considered for several decades a passive system just leading the hepatic bile to the intestine.Nowadays several researches demonstrated an important role of biliary epithelia(i.e.cholangiocytes)in bile formation.The study of biliary processes therefore maintains a continuous interest since the possible important implications regarding chronic cholestatic human diseases,such as primary biliary cholangitis or primary sclerosing cholangitis.Bile acids(BAs),produced by the liver,are the most represented organic molecules in bile.The physiologic importance of BAs was initially attributed to their behavior as natural detergents but several studies now demonstrate they are also important signaling molecules.In this minireview the effect of BAs on the biliary epithelia are reported focusing in particular on secondary(deriving by bacterial manipulation of primary molecules)ones.This class of BAs is demonstrated to have relevant biological effects,ranging from toxic to therapeutic ones.In this family ursodeoxycholic and lithocholic acid present the most interesting features.The molecular mechanisms linking ursodeoxycholic acid to its beneficial effects on the biliary tract are discussed in details as well as data on the processes leading to lithocholic damage.These findings suggest that expansion of research in the field of BAs/cholangiocytes interaction may increase our understanding of cholestatic diseases and should be helpful in designing more effective therapies for biliary disorders.展开更多
Background Intrauterine growth restriction(IUGR)can cause lipid disorders in infants and have long-term adverse effects on their growth and development.Clostridium butyricum(C.butyricum),a kind of emerging probiotics,...Background Intrauterine growth restriction(IUGR)can cause lipid disorders in infants and have long-term adverse effects on their growth and development.Clostridium butyricum(C.butyricum),a kind of emerging probiotics,has been reported to effectively attenuate lipid metabolism dysfunctions.Therefore,the objective of this study was to investigate the effects of C.butyricum supplementation on hepatic lipid disorders in IUGR suckling piglets.Methods Sixteen IUGR and eight normal birth weight(NBW)neonatal male piglets were used in this study.From d 3to d 24,in addition to drinking milk,the eight NBW piglets(NBW-CON group,n=8)and eight IUGR piglets(IUGR-CON group,n=8)were given 10 mL sterile saline once a day,while the remaining IUGR piglets(IUGR-CB group,n=8)were orally administered C.butyricum at a dose of 2×108colony-forming units(CFU)/kg body weight(suspended in 10 mL sterile saline)at the same frequency.Results The IUGR-CON piglets exhibited restricted growth,impaired hepatic morphology,disordered lipid metabolism,increased abundance of opportunistic pathogens and altered ileum and liver bile acid(BA)profiles.However,C.butyricum supplementation reshaped the gut microbiota of the IUGR-CB piglets,characterized by a decreased abundance of opportunistic pathogens in the ileum,including Streptococcus and Enterococcus.The decrease in these bile salt hydrolase(BSH)-producing microbes increased the content of conjugated BAs,which could be transported to the liver and function as signaling molecules to activate liver X receptorα(LXRα)and farnesoid X receptor(FXR).This activation effectively accelerated the synthesis and oxidation of fatty acids and down-regulated the total cholesterol level by decreasing the synthesis and promoting the efflux of cholesterol.As a result,the growth performance and morphological structure of the liver improved in the IUGR piglets.Conclusion These results indicate that C.butyricum supplementation in IUGR suckling piglets could decrease the abundance of BSH-producing microbes(Streptococcus and Enterococcus).This decrease altered the ileum and liver BA profiles and consequently activated the expression of hepatic LXRαand FXR.The activation of these two signaling molecules could effectively normalize the lipid metabolism and improve the growth performance of IUGR suckling piglets.展开更多
Background Intrauterine growth retardation(IUGR)is one of the major constraints in animal production.Our previ-ous study showed that piglets with IUGR are associated with abnormal bile acid(BA)metabolism.This study ex...Background Intrauterine growth retardation(IUGR)is one of the major constraints in animal production.Our previ-ous study showed that piglets with IUGR are associated with abnormal bile acid(BA)metabolism.This study explored whether dietary BA supplementation could improve growth performance and colonic development,function,micro-biota,and metabolites in the normal birth weight(NBW)and IUGR piglets.A total of 48 weaned piglets(24 IUGR and 24 NBW)were allocated to four groups(12 piglets per group):(i)NBW group,(ii)NBW+BA group,(iii)IUGR group,and(iv)IUGR+BA group.Samples were collected after 28 days of feeding.Results The results showed that dietary BA supplementation increased the length and weight of the colon and colon weight to body weight ratio,while decreased the plasma diamine oxidase(DAO)concentration in the NBW pig-lets(P<0.05).Dietary BA supplementation to IUGR piglets decreased(P<0.05)the plasma concentrations of D-lactate and endotoxin and colonic DAO and endotoxin,suggesting a beneficial effect on epithelial integrity.Moreover,dietary BA supplementation to NBW and IUGR piglets increased Firmicutes abundance and decreased Bacteroidetes abundance(P<0.05),whereas Lactobacillus was the dominant genus in the colon.Metabolome analysis revealed 65 and 51 differential metabolites in the colon of piglets fed a diet with/without BA,respectively,which was associated with the colonic function of IUGR piglets.Furthermore,dietary BA supplementation to IUGR piglets upregulated the expressions of CAT,GPX,SOD,Nrf1,IL-2,and IFN-γin colonic mucosa(P<0.05).Conclusions Collectively,dietary BA supplementation could improve the colonic function of IUGR piglets,which was associated with increasing proportions of potentially beneficial bacteria and metabolites.Furthermore,BA shows a promising application prospect in improving the intestinal ecosystem and health of animals.展开更多
Bile acids(BAs)are synthesized by the liver from cholesterol through several complementary pathways and aberrant cholesterol metabolism plays pivotal roles in the pathogeneses of cholesterol gallbladder polyps(CGP)and...Bile acids(BAs)are synthesized by the liver from cholesterol through several complementary pathways and aberrant cholesterol metabolism plays pivotal roles in the pathogeneses of cholesterol gallbladder polyps(CGP)and cholesterol gallstones(CGS).To date,there is neither systematic study on BAs profile of CGP or CGS,nor the relationship between them.To explore the metabolomics profile of plasma BAs in healthy volunteers,CGP and CGS patients,an ultra-performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS)method was developed and validated for simultaneous determination of 42 free and conjugated BAs in human plasma.The developed method was sensitive and reproducible to be applied for the quantification of BAs in the investigation of plasma samples.The results show that,compared to healthy volunteers,CGP and CGS were both characterized by the significant decrease in plasma BAs pool size,furthermore CGP and CGS shared aberrant BAs metabolic characteristics.Chenodeoxycholic acid,glycochenodeoxycholic acid,l-muricholic acid,deoxycholic acid,and 7-ketolithocholic acid were shared potential markers of these two cholesterol gallbladder diseases.Subsequent analysis showed that clinical characteristics including cysteine,ornithine and body mass index might be closely related to metabolisms of certain BA modules.This work provides metabolomic information for the study of gallbladder diseases and analytical methodologies for clinical target analysis and efficacy evaluation related to BAs in medical institutions.展开更多
It is necessary to explore potent therapeutic agents via regulating gut microbiota and metabolism to combat Parkinson's disease(PD).Dioscin,a bioactive steroidal saponin,shows various activities.However,its effect...It is necessary to explore potent therapeutic agents via regulating gut microbiota and metabolism to combat Parkinson's disease(PD).Dioscin,a bioactive steroidal saponin,shows various activities.However,its effects and mechanisms against PD are limited.In this study,dioscin dramatically alleviated neuroinflammation and oxidative stress,and restored the disorders of mice induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP).16 S rDNA sequencing assay demonstrated that dioscin reversed MPTP-induced gut dysbiosis to decrease Firmicutes-to-Bacteroidetes ratio and the abundances of Enterococcus,Streptococcus,Bacteroides and Lactobacillus genera,which further inhibited bile salt hydrolase(BSH)activity and blocked bile acid(BA)deconjugation.Fecal microbiome transplantation test showed that the anti-PD effect of dioscin was gut microbiota-dependent.In addition,non-targeted fecal metabolomics assays revealed many differential metabolites in adjusting steroid biosynthesis and primary bile acid biosynthesis.Moreover,targeted bile acid metabolomics assay indicated that dioscin increased the levels of ursodeoxycholic acid,tauroursodeoxycholic acid,taurodeoxycholic acid and bmuricholic acid in feces and serum.In addition,ursodeoxycholic acid administration markedly improved the protective effects of dioscin against PD in mice.Mechanistic test indicated that dioscin significantly up-regulated the levels of takeda G protein-coupled receptor 5(TGR5),glucagon-like peptide-1 receptor(GLP-1R),GLP-1,superoxide dismutase(SOD),and down-regulated NADPH oxidases 2(NOX2)and nuclear factor-kappaB(NF-kB)levels.Our data indicated that dioscin ameliorated PD phenotype by restoring gut dysbiosis and regulating bile acid-mediated oxidative stress and neuroinflammation via targeting GLP-1 signal in MPTP-induced PD mice,suggesting that the compound should be considered as a prebiotic agent to treat PD in the future.展开更多
The synthesis of bile acids(BAs)is carried out by complex pathways characterized by sequential chemical reactions in the liver through various cytochromes P450(CYP)and other enzymes.Maintaining the integrity of these ...The synthesis of bile acids(BAs)is carried out by complex pathways characterized by sequential chemical reactions in the liver through various cytochromes P450(CYP)and other enzymes.Maintaining the integrity of these pathways is crucial for normal physiological function in mammals,encompassing hepatic and neurological processes.Studying on the deficiencies in BA synthesis genes offers valuable insights into the significance of BAs in modulating farnesoid X receptor(FXR)signaling and metabolic homeostasis.By creating mouse knockout(KO)models,researchers can manipulate deficiencies in genes involved in BA synthesis,which can be used to study human diseases with BA dysregulation.These KO mouse models allow for a more profound understanding of the functions and regulations of genes responsible for BA synthesis.Furthermore,KO mouse models shed light on the distinct characteristics of individual BA and their roles in nuclear receptor signaling.Notably,alterations of BA synthesis genes in mouse models have distinct differences when compared to human diseases caused by the same BA synthesis gene deficiencies.This review summarizes several mouse KO models used to study BA synthesis and related human diseases,including mice deficient in Cyp7a1,Cyp27a1,Cyp7a1/Cyp27a1,Cyp8b1,Cyp7b1,Cyp2c70,Cyp2a12,and Cyp2c70/Cyp2a12,as well as germ-free mice.展开更多
Background:Intrauterine growth retardation(IUGR)is associated with severely impaired nutrient metabolism and intestinal development of pigs.Our previous study found that IUGR altered intestinal microbiota and metaboli...Background:Intrauterine growth retardation(IUGR)is associated with severely impaired nutrient metabolism and intestinal development of pigs.Our previous study found that IUGR altered intestinal microbiota and metabolites in the colon.However,the consequences of IUGR on bile acid metabolism in pigs remained unclear.The present study aimed to investigate the bile acid metabolism in the liver and the profile of bile acid derivatives in the colon of grow-ing pigs with IUGR using bile acid targeted metabolomics.Furthermore,we determined correlations between colonic microbiota composition and metabolites of IUGR and normal birth weight(NBW)pigs at different growth stages that were 7,21,and 28-day-old,and the average body weight(BW)of 25,50,and 100 kg of the NBW pigs.Results:The results showed that the plasma total bile acid concentration was higher(P<0.05)at the 25 kg BW stage and tended to increase(P=0.08)at 28-day-old in IUGR pigs.The hepatic gene expressions related to bile acid synthe-sis(CYP7A1,CYP27A1,and NTCP)were up-regulated(P<0.05),and the genes related to glucose and lipid metabolism(ATGL,HSL,and PC)were down-regulated(P<0.05)at the 25 kg BW stage in IUGR pigs when compared with the NBW group.Targeted metabolomics analysis showed that 29 bile acids and related compounds were detected in the colon of pigs.The colonic concentrations of dehydrolithocholic acid and apocholic acid were increased(P<0.05),while isodeoxycholic acid and 6,7-diketolithocholic acid were decreased(P<0.05)in IUGR pigs,when compared with the NBW pigs at the 25 kg BW stage.Moreover,Spearman’s correlation analysis revealed that colonic Unclassified_[Mogi-bacteriaceae],Lachnospira,and Slackia abundances were negatively correlated(P<0.05)with dehydrolithocholic acid,as well as the Unclassified_Clostridiaceae abundance with 6,7-diketolithocholic acid at the 25 kg BW stage.Conclusions:These findings suggest that IUGR could affect bile acid and glucolipid metabolism in growing pigs,especially at the 25 kg BW stage,these effects being paralleled by a modification of bile acid derivatives concentra-tions in the colonic content.The plausible links between these modified parameters are discussed.展开更多
BACKGROUND Fibroblast growth factor(FGF)15/19,which is expressed in and secreted from the distal ileum,can regulate hepatic glucose metabolism in an endocrine manner.The levels of both bile acids(BAs)and FGF15/19 are ...BACKGROUND Fibroblast growth factor(FGF)15/19,which is expressed in and secreted from the distal ileum,can regulate hepatic glucose metabolism in an endocrine manner.The levels of both bile acids(BAs)and FGF15/19 are elevated after bariatric surgery.However,it is unclear whether the increase in FGF15/19 is induced by BAs.Moreover,it remains to be understood whether FGF15/19 elevations contribute to improvements in hepatic glucose metabolism after bariatric surgery.AIM To investigate the mechanism of improvement of hepatic glucose metabolism by elevated BAs after sleeve gastrectomy(SG).METHODS By calculating and comparing the changes of body weight after SG with SHAM group,we examined the weight-loss effect of SG.The oral glucose tolerance test(OGTT)test and area under the curve of OGTT curves were used to assess the anti-diabetic effects of SG.By detecting the glycogen content,expression and activity of glycogen synthase as well as the glucose-6-phosphatase(G6Pase)and phosphoenolpyruvate carboxykinase(Pepck),we evaluated the hepatic glycogen content and gluconeogenesis activity.We examined the levels of total BA(TBA)together with the farnesoid X receptor(FXR)-agonistic BA subspecies in systemic serum and portal vein at week 12 post-surgery.Then the histological expression of ileal FXR and FGF15 and hepatic FGF receptor 4(FGFR4)with its corresponding signal pathways involved in glucose metabolism were detected.RESULTS After surgery,food intake and body weight gain of SG group was decreased compare with the SHAM group.The hepatic glycogen content and glycogen synthase activity was significantly stimulated after SG,while the expression of the key enzyme for hepatic gluconeogenesis:G6Pase and Pepck,were depressed.TBA levels in serum and portal vein were both elevated after SG,the FXR-agonistic BA subspecies:Chenodeoxycholic acid(CDCA),lithocholic acid(LCA)in serum and CDCA,DCA,LCA in portal vein were all higher in SG group than that in SHAM group.Consequently,the ileal expression of FXR and FGF15 were also advanced in SG group.Moreover,the hepatic expression of FGFR4 was stimulated in SG-operated rats.As a result,the activity of its corresponding pathway for glycogen synthesis:FGFR4-Ras-extracellular signal regulated kinase pathway was stimulated,while the corresponding pathway for hepatic gluconeogenesis:FGFR4-cAMP regulatory element-binding protein-peroxisome proliferator-activated receptorγcoactivator-1αpathway was suppressed.CONCLUSION Elevated BAs after SG induced FGF15 expression in distal ileum by activating their receptor FXR.Furthermore,the promoted FGF15 partly mediated the improving effects on hepatic glucose metabolism of SG.展开更多
文摘BACKGROUND Analyzing the variations in serum bile acid(BA)profile can provide a certain biological basis for early warning and prevention of various diseases.There is currently no comprehensive study on the relationship between the serum BA profile and colonic polyps.AIM To study the serum BA profile detection results of patients with colonic polyps,and analyze the correlation between BA and colonic polyps.METHODS From January 1,2022,to June 1,2023,204 patients with colonic polyps who were diagnosed and treated at Zhongda Hospital Southeast University were chosen as the study subjects,and 135 non-polyp people who underwent physical examination were chosen as the control group.Gathering all patients'clinical information,typical biochemical indicators,and BA profile.RESULTS Compared with the control group,the serum levels of taurocholic acid,glycocholic acid,glycochenodeoxycholic acid,and taurochenodeoxycholic acid in the colonic polyp group were significantly higher than those in the control group,while the content of deoxycholic acid(DCA)was lower than that in the control group(P<0.05).When colonic polyps were analyzed as subgroups,it was shown that there was a strong correlation between changes in the BA profile and polyp diameter,location,morphology,pathological kind,etc.CONCLUSION The serum BA profile showed significant changes in patients with colonic polyps,with a significant increase in primary conjugated BA content and a decrease in secondary free bile acid DCA content.There is a certain correlation between primary free BA and pathological parameters of polyps.
基金The Guangdong Basic and Applied Basic Research Foundation(2022A1515010730)National Natural Science Foundation of China(32001647)+2 种基金National Natural Science Foundation of China(31972022)Financial and moral assistance supported by the Guangdong Basic and Applied Basic Research Foundation(2019A1515011996)111 Project(B17018)。
文摘In this study,the structural characters,antioxidant activities and bile acid-binding ability of sea buckthorn polysaccharides(HRPs)obtained by the commonly used hot water(HRP-W),pressurized hot water(HRP-H),ultrasonic(HRP-U),acid(HRP-C)and alkali(HRP-A)assisted extraction methods were investigated.The results demonstrated that extraction methods had significant effects on extraction yield,monosaccharide composition,molecular weight,particle size,triple-helical structure,and surface morphology of HRPs except for the major linkage bands.Thermogravimetric analysis showed that HRP-U with filamentous reticular microstructure exhibited better thermal stability.The HRP-A with the lowest molecular weight and highest arabinose content possessed the best antioxidant activities.Moreover,the rheological analysis indicated that HRPs with higher galacturonic acid content and molecular weight showed higher viscosity and stronger crosslinking network(HRP-C,HRP-W and HRP-U),which exhibited stronger bile acid binding capacity.The present findings provide scientific evidence in the preparation technology of sea buckthorn polysaccharides with good antioxidant and bile acid binding capacity which are related to the structure affected by the extraction methods.
基金supported by Fujian Provincial Natural Science(2020J01122587)National Natural Science Foundation of China(82103355,82102255,and 82222901)+1 种基金RGC Theme-based Research Scheme(T12-703/19-R)Research grants Council-General Research Fund(14117422 and 14117123)。
文摘Hepatocellular carcinoma(HCC)is a prevalent and aggressive liver malignancy.The interplay between bile acids(BAs)and the gut microbiota has emerged as a critical factor in HCC development and progression.Under normal conditions,BA metabolism is tightly regulated through a bidirectional interplay between gut microorganisms and BAs.The gut microbiota plays a critical role in BA metabolism,and BAs are endogenous signaling molecules that help maintain liver and intestinal homeostasis.Of note,dysbiotic changes in the gut microbiota during pathogenesis and cancer development can disrupt BA homeostasis,thereby leading to liver inflammation and fibrosis,and ultimately contributing to HCC development.Therefore,understanding the intricate interplay between BAs and the gut microbiota is crucial for elucidating the mechanisms underlying hepatocarcinogenesis.In this review,we comprehensively explore the roles and functions of BA metabolism,with a focus on the interactions between BAs and gut microorganisms in HCC.Additionally,therapeutic strategies targeting BA metabolism and the gut microbiota are discussed,including the use of BA agonists/antagonists,probiotic/prebiotic and dietary interventions,fecal microbiota transplantation,and engineered bacteria.In summary,understanding the complex BA-microbiota crosstalk can provide valuable insights into HCC development and facilitate the development of innovative therapeutic approaches for liver malignancy.
基金funded by the China Academy of Chinese Medical Sciences(CACMS)Innovation Fund(CI2021A00601)the Fundamental Research Funds for the Central Public Welfare Research Institutes(ZZ16-YQ-037 and JJPY2022022)the Scientific and Technological Innovation Project of the China Academy of Chinese Medical Sciences(CI2021B017-09).
文摘Infectious diseases are a global public health problem,with emerging and re-emerging infectious diseases on the rise worldwide.Therefore,their prevention and treatment are still major challenges.Bile acids are common metabolites in both hosts and microorganisms that play a significant role in controlling the metabolism of lipids,glucose,and energy.Bile acids have historically been utilized as first-line,valuable therapeutic agents for related metabolic and hepatobiliary diseases.Notably,bile acids are the major active ingredients of cow bezoar and bear bile,which are commonly used traditional Chinese medicines(TCMs)with the therapeutic effects of clearing heat,detoxification,and relieving wind and spasm.In recent years,the promising performance of bile acids against infectious diseases has attracted attention from the scientific community.This paper reviews for the first time the biological activities,possible mechanisms,production routes,and potential applications of bile acids in the treatment and prevention of infectious diseases.Compared with previous reviews,we comprehensively summarize existing studies on the use of bile acids against infectious diseases caused by pathogenic microorganisms that are leading causes of global morbidity and mortality.In addition,to ensure a stable supply of bile acids at affordable prices,it is necessary to clarify the biosynthesis of bile acids in vivo,which will assist scientists in elucidating the accumulation of bile acids and discovering how to engineer various bile acids by means of chemosynthesis,biosynthesis,and chemoenzymatic synthesis.Finally,we explore the current challenges in the field and recommend a development strategy for bile-acid-based drugs and the sustainable production of bile acids.The presented studies suggest that bile acids are potential novel therapeutic agents for managing infectious diseases and can be artificially synthesized in a sustainable way.
基金supported by research funds from Zhangzhou Pien Tze Huang Pharmaceutical Co.Ltd(Grant Nos.:437b8f31,d6092dae,YHT-19064 to Chundong Yu)the National Natural Science Foundation of China(Grant Nos.:81970485,82173086 to Chundong Yu)the Natural Science Foundation of Fujian Province(Grant No.:2023J01249 to Shicong Wang).
文摘Pien Tze Huang(PZH),a class-1 nationally protected traditional Chinese medicine(TCM),has been used to treat liver diseases such as hepatitis;however,the effect of PZH on the progression of sepsis is unknown.Here,we reported that PZH attenuated lipopolysaccharide(LPS)-induced sepsis in mice and reduced LPS-induced production of proinflammatory cytokines in macrophages by inhibiting the activation of mitogen-activated protein kinase(MAPK)and nuclear factor-kappa B(NF-κB)signalling.Mechanistically,PZH stimulated signal transducer and activator of transcription 3(STAT3)phosphorylation to induce the expression of A20,which could inhibit the activation of NF-κB and MAPK signalling.Knockdown of the bile acid(BA)receptor G protein-coupled bile acid receptor 1(TGR5)in macrophages abolished the effects of PZH on STAT3 phosphorylation and A20 induction,as well as the LPS-induced inflammatory response,suggesting that BAs in PZH may mediate its anti-inflammatory effects by activating TGR5.Consistently,deprivation of BAs in PZH by cholestyramine resin reduced the effects of PZH on the expression of phosphorylated-STAT3 and A20,the activation of NF-κB and MAPK signalling,and the production of proinflammatory cytokines,whereas the addition of BAs to cholestyramine resin-treated PZH partially restored the inhibitory effects on the production of proinflammatory cytokines.Overall,our study identifies BAs as the effective components in PZH that activate TGR5-STAT3-A20 signalling to ameliorate LPS-induced sepsis.
基金funded by grants from the National Natural Science Foundation of China(grant number 32072761,32102570)Shaanxi Livestock and Poultry Breeding Double-chain Fusion Key Project(grant number 2022GDTSLD-46-0501)the fellowship of China Postdoctoral Science Foundation(grant number 2021M702691).
文摘Background Diets rich in starch have been shown to increase a risk of reducing milk fat content in dairy goats.While bile acids(BAs)have been used as a lipid emulsifier in monogastric and aquatic animals,their effect on ruminants is not well understood.This study aimed to investigate the impact of BAs supplementation on various aspects of dairy goat physiology,including milk composition,rumen fermentation,gut microbiota,and BA metabolism.Results We randomly divided eighteen healthy primiparity lactating dairy goats(days in milk=100±6 d)into two groups and supplemented them with 0 or 4 g/d of BAs undergoing 5 weeks of feeding on a starch-rich diet.The results showed that BAs supplementation positively influenced milk yield and improved the quality of fatty acids in goat milk.BAs supplementation led to a reduction in saturated fatty acids(C16:0)and an increase in monounsaturated fatty acids(cis-9 C18:1),resulting in a healthier milk fatty acid profile.We observed a significant increase in plasma total bile acid concentration while the proportion of rumen short-chain fatty acids was not affected.Furthermore,BAs supplementation induced significant changes in the composition of the gut microbiota,favoring the enrichment of specific bacterial groups and altering the balance of microbial populations.Correlation analysis revealed associations between specific bacterial groups(Bacillus and Christensenellaceae R-7 group)and BA types,suggesting a role for the gut microbiota in BA metabolism.Functional prediction analysis revealed notable changes in pathways associated with lipid metabolism,suggesting that BAs supplementation has the potential to modulate lipid-related processes.Conclusion These findings highlight the potential benefits of BAs supplementation in enhancing milk production,improving milk quality,and influencing metabolic pathways in dairy goats.Further research is warranted to elucidate the underlying mechanisms and explore the broader implications of these findings.
基金supported by the National Natural Science Foundation of China(32272331)。
文摘Atherosclerosis(AS)is the main pathological basis of cardiovascular diseases.Hence,the prevention and treatment strategies of AS have attracted great research attention.As a potential probiotic,Pararabacteroides distasonis has a positive regulatory effect on lipid metabolism and bile acids(BAs)profile.Oligomeric procyanidins have been confirmed to be conducive to the prevention and treatment of AS,whose antiatherosclerotic effect may be associated with the promotion of gut probiotics.However,it remains unclear whether and how oligomeric procyanidins and P.distasonis combined(PPC)treatment can effectively alleviate high-fat diet(HFD)-induced AS.In this study,PPC treatment was found to significantly decrease atherosclerotic lesion,as well as alleviate the lipid metabolism disorder,inflammation and oxidative stress injury in ApoE^(-/-)mice.Surprisingly,targeted metabolomics demonstrated that PPC intervention altered the BA profile in mice by regulating the ratio of secondary BAs to primary BAs,and increased fecal BAs excretion.Further,quantitative polymerase chain reaction(qPCR)analysis showed that PPC intervention facilitated reverse cholesterol transport by upregulating Srb1 expression;In addition,PPC intervention promoted BA synthesis from cholesterol in liver by upregulating Cyp7a1 expression via suppression of the farnesoid X receptor(FXR)pathway,thus exhibiting a significant serum cholesterol-lowering effect.In summary,PPC attenuated HFD-induced AS in ApoE^(-/-)mice,which provides new insights into the design of novel and efficient anti-atherosclerotic strategies to prevent AS based on probiotics and prebiotics.
基金Supported by the Major Basic Research Project of Natural Science Foundation of Shandong Province,No.ZR2020ZD15.
文摘BACKGROUND Gastric cancer(GC)is associated with high mortality rates.Bile acids(BAs)reflux is a well-known risk factor for GC,but the specific mechanism remains unclear.During GC development in both humans and animals,BAs serve as signaling molecules that induce metabolic reprogramming.This confers additional cancer phenotypes,including ferroptosis sensitivity.Ferroptosis is a novel mode of cell death characterized by lipid peroxidation that contributes universally to malignant progression.However,it is not fully defined if BAs can influence GC progression by modulating ferroptosis.AIM To reveal the mechanism of BAs regulation in ferroptosis of GC cells.METHODS In this study,we treated GC cells with various stimuli and evaluated the effect of BAs on the sensitivity to ferroptosis.We used gain and loss of function assays to examine the impacts of farnesoid X receptor(FXR)and BTB and CNC homology 1(BACH1)overexpression and knockdown to obtain further insights into the molecular mechanism involved.RESULTS Our data suggested that BAs could reverse erastin-induced ferroptosis in GC cells.This effect correlated with increased glutathione(GSH)concentrations,a reduced GSH to oxidized GSH ratio,and higher GSH peroxidase 4(GPX4)expression levels.Subsequently,we confirmed that BAs exerted these effects by activating FXR,which markedly increased the expression of GSH synthetase and GPX4.Notably,BACH1 was detected as an essential intermediate molecule in the promotion of GSH synthesis by BAs and FXR.Finally,our results suggested that FXR could significantly promote GC cell proliferation,which may be closely related to its anti-ferroptosis effect.CONCLUSION This study revealed for the first time that BAs could inhibit ferroptosis sensitivity through the FXR-BACH1-GSHGPX4 axis in GC cells.This work provided new insights into the mechanism associated with BA-mediated promotion of GC and may help identify potential therapeutic targets for GC patients with BAs reflux.
基金financially supported by the National Natural Science Foundation of China(Grant No.31972580 and U21A20252)the China Agriculture Research System(CARS-35)+1 种基金the Science Fund for Distinguished Young Scholars of Heilongjiang Province(JQ2022C002)the Support Project of Young Leading Talents of Northeast Agricultural University(NEAU2023QNLJ-017)。
文摘Background Infection with pathogenic bacteria during nonantibiotic breeding is one of the main causes of animal intestinal diseases.Oleanolic acid(OA)is a pentacyclic triterpene that is ubiquitous in plants.Our previous work demonstrated the protective effect of OA on intestinal health,but the underlying molecular mechanisms remain unclear.This study investigated whether dietary supplementation with OA can prevent diarrhea and intestinal immune dysregulation caused by enterotoxigenic Escherichia coli(ETEC)in piglets.The key molecular role of bile acid receptor signaling in this process has also been explored.Results Our results demonstrated that OA supplementation alleviated the disturbance of bile acid metabolism in ETEC-infected piglets(P<0.05).OA supplementation stabilized the composition of the bile acid pool in piglets by regulating the enterohepatic circulation of bile acids and significantly increased the contents of UDCA and CDCA in the ileum and cecum(P<0.05).This may also explain why OA can maintain the stability of the intestinal microbiota structure in ETEC-challenged piglets.In addition,as a natural ligand of bile acid receptors,OA can reduce the severity of intestinal inflammation and enhance the strength of intestinal epithelial cell antimicrobial programs through the bile acid receptors TGR5 and FXR(P<0.05).Specifically,OA inhibited NF-κB-mediated intestinal inflammation by directly activating TGR5 and its downstream c AMP-PKA-CREB signaling pathway(P<0.05).Furthermore,OA enhanced CDCA-mediated MEK-ERK signaling in intestinal epithelial cells by upregulating the expression of FXR(P<0.05),thereby upregulating the expression of endogenous defense molecules in intestinal epithelial cells.Conclusions In conclusion,our findings suggest that OA-mediated regulation of bile acid metabolism plays an important role in the innate immune response,which provides a new diet-based intervention for intestinal diseases caused by pathogenic bacterial infections in piglets.
基金supported by National Natural Science Foundation of China (82222071, 82273990, 82104253)the opening project of State Key Laboratory of Natural Medicines (SKLNMKF202208)
文摘Non-alcoholic fatty liver disease(NAFLD)is the main cause of chronic liver disease worldwide.Bupleurum is widely used in the treatment of non-alcoholic fatty liver,and saikosaponin D(SSD)is one of the main active components of Bupleurum.The purpose of this study was to investigate the efficacy of SSD in the treatment of NAFLD and to explore the mechanism of SSD in the improvement of NAFLD based on“gut-liver axis”.Our results showed that SSD dose-dependently alleviated high fat diet-induced weight gain in mice,improved insulin sensitivity,and also reduced liver lipid accumulation and injury-related biomarkers aspartate aminotransferase(AST)and alanine aminotransferase(ALT).Further exploration found that SSD inhibited the mRNA expression levels of farnesoid X receptor(Fxr),small heterodimer partner(Shp),recombinant fibroblast growth factor 15(Fgf15)and apical sodium dependent bile acid transporter(Asbt)in the intestine,suggesting that SSD improved liver lipid metabolism by inhibiting intestinal FXR signaling.SSD can significantly reduce the gut microbiota associated with bile salt hydrolase(BSH)expression,such as Clostridium.Decreased BSH expression reduced the ratio of unconjugated to conjugated bile acids,thereby inhibiting the intestinal FXR.These data demonstrated that SSD ameliorated NAFLD potentially through the gut microbiota-bile acidintestinal FXR pathway and suggested that SSD is a promising therapeutic agent for the treatment of NAFLD.
基金Supported by the Scientific Research Projects of Jiangsu Provincial Health and Health Commission,No.ZDB2020034 and No.M2021056.
文摘BACKGROUND The understanding of bile acid(BA)and unsaturated fatty acid(UFA)profiles,as well as their dysregulation,remains elusive in individuals with type 2 diabetes mellitus(T2DM)coexisting with non-alcoholic fatty liver disease(NAFLD).Investigating these metabolites could offer valuable insights into the pathophy-siology of NAFLD in T2DM.AIM To identify potential metabolite biomarkers capable of distinguishing between NAFLD and T2DM.METHODS A training model was developed involving 399 participants,comprising 113 healthy controls(HCs),134 individuals with T2DM without NAFLD,and 152 individuals with T2DM and NAFLD.External validation encompassed 172 participants.NAFLD patients were divided based on liver fibrosis scores.The analytical approach employed univariate testing,orthogonal partial least squares-discriminant analysis,logistic regression,receiver operating characteristic curve analysis,and decision curve analysis to pinpoint and assess the diagnostic value of serum biomarkers.RESULTS Compared to HCs,both T2DM and NAFLD groups exhibited diminished levels of specific BAs.In UFAs,particular acids exhibited a positive correlation with NAFLD risk in T2DM,while theω-6:ω-3 UFA ratio demonstrated a negative correlation.Levels ofα-linolenic acid andγ-linolenic acid were linked to significant liver fibrosis in NAFLD.The validation cohort substantiated the predictive efficacy of these biomarkers for assessing NAFLD risk in T2DM patients.CONCLUSION This study underscores the connection between altered BA and UFA profiles and the presence of NAFLD in individuals with T2DM,proposing their potential as biomarkers in the pathogenesis of NAFLD.
基金National Natural Science Foundation of China,No.81900466and Hunan Provincial Natural Science Foundation of China,No.2020JJ5307.
文摘Chronic and recurrent inflammatory disorders of the gastrointestinal tract caused by a complex interplay between genetics and intestinal dysbiosis are called inflammatory bowel disease.As a result of the interaction between the liver and the gut microbiota,bile acids are an atypical class of steroids produced in mammals and traditionally known for their function in food absorption.With the development of genomics and metabolomics,more and more data suggest that the pathophysiological mechanisms of inflammatory bowel disease are regulated by bile acids and their receptors.Bile acids operate as signalling molecules by activating a variety of bile acid receptors that impact intestinal flora,epithelial barrier function,and intestinal immunology.Inflammatory bowel disease can be treated in new ways by using these potential molecules.This paper mainly discusses the increasing function of bile acids and their receptors in inflammatory bowel disease and their prospective therapeutic applications.In addition,we explore bile acid metabolism and the interaction of bile acids and the gut microbiota.
文摘The biliary tract has been considered for several decades a passive system just leading the hepatic bile to the intestine.Nowadays several researches demonstrated an important role of biliary epithelia(i.e.cholangiocytes)in bile formation.The study of biliary processes therefore maintains a continuous interest since the possible important implications regarding chronic cholestatic human diseases,such as primary biliary cholangitis or primary sclerosing cholangitis.Bile acids(BAs),produced by the liver,are the most represented organic molecules in bile.The physiologic importance of BAs was initially attributed to their behavior as natural detergents but several studies now demonstrate they are also important signaling molecules.In this minireview the effect of BAs on the biliary epithelia are reported focusing in particular on secondary(deriving by bacterial manipulation of primary molecules)ones.This class of BAs is demonstrated to have relevant biological effects,ranging from toxic to therapeutic ones.In this family ursodeoxycholic and lithocholic acid present the most interesting features.The molecular mechanisms linking ursodeoxycholic acid to its beneficial effects on the biliary tract are discussed in details as well as data on the processes leading to lithocholic damage.These findings suggest that expansion of research in the field of BAs/cholangiocytes interaction may increase our understanding of cholestatic diseases and should be helpful in designing more effective therapies for biliary disorders.
基金supported by the National Natural Science Foundation of China (No.31802101)the Fundamental Research Funds for the Central Universities (No.KJQN201935)。
文摘Background Intrauterine growth restriction(IUGR)can cause lipid disorders in infants and have long-term adverse effects on their growth and development.Clostridium butyricum(C.butyricum),a kind of emerging probiotics,has been reported to effectively attenuate lipid metabolism dysfunctions.Therefore,the objective of this study was to investigate the effects of C.butyricum supplementation on hepatic lipid disorders in IUGR suckling piglets.Methods Sixteen IUGR and eight normal birth weight(NBW)neonatal male piglets were used in this study.From d 3to d 24,in addition to drinking milk,the eight NBW piglets(NBW-CON group,n=8)and eight IUGR piglets(IUGR-CON group,n=8)were given 10 mL sterile saline once a day,while the remaining IUGR piglets(IUGR-CB group,n=8)were orally administered C.butyricum at a dose of 2×108colony-forming units(CFU)/kg body weight(suspended in 10 mL sterile saline)at the same frequency.Results The IUGR-CON piglets exhibited restricted growth,impaired hepatic morphology,disordered lipid metabolism,increased abundance of opportunistic pathogens and altered ileum and liver bile acid(BA)profiles.However,C.butyricum supplementation reshaped the gut microbiota of the IUGR-CB piglets,characterized by a decreased abundance of opportunistic pathogens in the ileum,including Streptococcus and Enterococcus.The decrease in these bile salt hydrolase(BSH)-producing microbes increased the content of conjugated BAs,which could be transported to the liver and function as signaling molecules to activate liver X receptorα(LXRα)and farnesoid X receptor(FXR).This activation effectively accelerated the synthesis and oxidation of fatty acids and down-regulated the total cholesterol level by decreasing the synthesis and promoting the efflux of cholesterol.As a result,the growth performance and morphological structure of the liver improved in the IUGR piglets.Conclusion These results indicate that C.butyricum supplementation in IUGR suckling piglets could decrease the abundance of BSH-producing microbes(Streptococcus and Enterococcus).This decrease altered the ileum and liver BA profiles and consequently activated the expression of hepatic LXRαand FXR.The activation of these two signaling molecules could effectively normalize the lipid metabolism and improve the growth performance of IUGR suckling piglets.
基金the Key Project of Regional Innovation and Development Joint Fund of the National Natural Science Foundation of China(U20A2056)the Special Funds for Construction of Innovative Provinces in Hunan Province(2019RS3022).
文摘Background Intrauterine growth retardation(IUGR)is one of the major constraints in animal production.Our previ-ous study showed that piglets with IUGR are associated with abnormal bile acid(BA)metabolism.This study explored whether dietary BA supplementation could improve growth performance and colonic development,function,micro-biota,and metabolites in the normal birth weight(NBW)and IUGR piglets.A total of 48 weaned piglets(24 IUGR and 24 NBW)were allocated to four groups(12 piglets per group):(i)NBW group,(ii)NBW+BA group,(iii)IUGR group,and(iv)IUGR+BA group.Samples were collected after 28 days of feeding.Results The results showed that dietary BA supplementation increased the length and weight of the colon and colon weight to body weight ratio,while decreased the plasma diamine oxidase(DAO)concentration in the NBW pig-lets(P<0.05).Dietary BA supplementation to IUGR piglets decreased(P<0.05)the plasma concentrations of D-lactate and endotoxin and colonic DAO and endotoxin,suggesting a beneficial effect on epithelial integrity.Moreover,dietary BA supplementation to NBW and IUGR piglets increased Firmicutes abundance and decreased Bacteroidetes abundance(P<0.05),whereas Lactobacillus was the dominant genus in the colon.Metabolome analysis revealed 65 and 51 differential metabolites in the colon of piglets fed a diet with/without BA,respectively,which was associated with the colonic function of IUGR piglets.Furthermore,dietary BA supplementation to IUGR piglets upregulated the expressions of CAT,GPX,SOD,Nrf1,IL-2,and IFN-γin colonic mucosa(P<0.05).Conclusions Collectively,dietary BA supplementation could improve the colonic function of IUGR piglets,which was associated with increasing proportions of potentially beneficial bacteria and metabolites.Furthermore,BA shows a promising application prospect in improving the intestinal ecosystem and health of animals.
基金supported by the National Natural Science Foundation of China(Grant Nos.:81920108033,and 82274223).
文摘Bile acids(BAs)are synthesized by the liver from cholesterol through several complementary pathways and aberrant cholesterol metabolism plays pivotal roles in the pathogeneses of cholesterol gallbladder polyps(CGP)and cholesterol gallstones(CGS).To date,there is neither systematic study on BAs profile of CGP or CGS,nor the relationship between them.To explore the metabolomics profile of plasma BAs in healthy volunteers,CGP and CGS patients,an ultra-performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS)method was developed and validated for simultaneous determination of 42 free and conjugated BAs in human plasma.The developed method was sensitive and reproducible to be applied for the quantification of BAs in the investigation of plasma samples.The results show that,compared to healthy volunteers,CGP and CGS were both characterized by the significant decrease in plasma BAs pool size,furthermore CGP and CGS shared aberrant BAs metabolic characteristics.Chenodeoxycholic acid,glycochenodeoxycholic acid,l-muricholic acid,deoxycholic acid,and 7-ketolithocholic acid were shared potential markers of these two cholesterol gallbladder diseases.Subsequent analysis showed that clinical characteristics including cysteine,ornithine and body mass index might be closely related to metabolisms of certain BA modules.This work provides metabolomic information for the study of gallbladder diseases and analytical methodologies for clinical target analysis and efficacy evaluation related to BAs in medical institutions.
基金funding from the Spring City Plan:The High-Level Talent Promotion and Training Project of Kunming and the Independent Research Fund of Yunnan Characteristic Plant Extraction Laboratory(Grant No.:2022YKZY001).
文摘It is necessary to explore potent therapeutic agents via regulating gut microbiota and metabolism to combat Parkinson's disease(PD).Dioscin,a bioactive steroidal saponin,shows various activities.However,its effects and mechanisms against PD are limited.In this study,dioscin dramatically alleviated neuroinflammation and oxidative stress,and restored the disorders of mice induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP).16 S rDNA sequencing assay demonstrated that dioscin reversed MPTP-induced gut dysbiosis to decrease Firmicutes-to-Bacteroidetes ratio and the abundances of Enterococcus,Streptococcus,Bacteroides and Lactobacillus genera,which further inhibited bile salt hydrolase(BSH)activity and blocked bile acid(BA)deconjugation.Fecal microbiome transplantation test showed that the anti-PD effect of dioscin was gut microbiota-dependent.In addition,non-targeted fecal metabolomics assays revealed many differential metabolites in adjusting steroid biosynthesis and primary bile acid biosynthesis.Moreover,targeted bile acid metabolomics assay indicated that dioscin increased the levels of ursodeoxycholic acid,tauroursodeoxycholic acid,taurodeoxycholic acid and bmuricholic acid in feces and serum.In addition,ursodeoxycholic acid administration markedly improved the protective effects of dioscin against PD in mice.Mechanistic test indicated that dioscin significantly up-regulated the levels of takeda G protein-coupled receptor 5(TGR5),glucagon-like peptide-1 receptor(GLP-1R),GLP-1,superoxide dismutase(SOD),and down-regulated NADPH oxidases 2(NOX2)and nuclear factor-kappaB(NF-kB)levels.Our data indicated that dioscin ameliorated PD phenotype by restoring gut dysbiosis and regulating bile acid-mediated oxidative stress and neuroinflammation via targeting GLP-1 signal in MPTP-induced PD mice,suggesting that the compound should be considered as a prebiotic agent to treat PD in the future.
基金This study was supported by grants from National Institutes of Health(GM135258,GM093854)the Department of Veteran Affairs(BX002741)the Rutgers NIEHS Center for Environmental Expo-sure and Diseases(CEED)(P30 ES005022).
文摘The synthesis of bile acids(BAs)is carried out by complex pathways characterized by sequential chemical reactions in the liver through various cytochromes P450(CYP)and other enzymes.Maintaining the integrity of these pathways is crucial for normal physiological function in mammals,encompassing hepatic and neurological processes.Studying on the deficiencies in BA synthesis genes offers valuable insights into the significance of BAs in modulating farnesoid X receptor(FXR)signaling and metabolic homeostasis.By creating mouse knockout(KO)models,researchers can manipulate deficiencies in genes involved in BA synthesis,which can be used to study human diseases with BA dysregulation.These KO mouse models allow for a more profound understanding of the functions and regulations of genes responsible for BA synthesis.Furthermore,KO mouse models shed light on the distinct characteristics of individual BA and their roles in nuclear receptor signaling.Notably,alterations of BA synthesis genes in mouse models have distinct differences when compared to human diseases caused by the same BA synthesis gene deficiencies.This review summarizes several mouse KO models used to study BA synthesis and related human diseases,including mice deficient in Cyp7a1,Cyp27a1,Cyp7a1/Cyp27a1,Cyp8b1,Cyp7b1,Cyp2c70,Cyp2a12,and Cyp2c70/Cyp2a12,as well as germ-free mice.
基金supported by the National Natural Science Foundation of China(U20A2056)Special Funds for Construction of Innovative Provinces in Hunan Province(2019RS3022).
文摘Background:Intrauterine growth retardation(IUGR)is associated with severely impaired nutrient metabolism and intestinal development of pigs.Our previous study found that IUGR altered intestinal microbiota and metabolites in the colon.However,the consequences of IUGR on bile acid metabolism in pigs remained unclear.The present study aimed to investigate the bile acid metabolism in the liver and the profile of bile acid derivatives in the colon of grow-ing pigs with IUGR using bile acid targeted metabolomics.Furthermore,we determined correlations between colonic microbiota composition and metabolites of IUGR and normal birth weight(NBW)pigs at different growth stages that were 7,21,and 28-day-old,and the average body weight(BW)of 25,50,and 100 kg of the NBW pigs.Results:The results showed that the plasma total bile acid concentration was higher(P<0.05)at the 25 kg BW stage and tended to increase(P=0.08)at 28-day-old in IUGR pigs.The hepatic gene expressions related to bile acid synthe-sis(CYP7A1,CYP27A1,and NTCP)were up-regulated(P<0.05),and the genes related to glucose and lipid metabolism(ATGL,HSL,and PC)were down-regulated(P<0.05)at the 25 kg BW stage in IUGR pigs when compared with the NBW group.Targeted metabolomics analysis showed that 29 bile acids and related compounds were detected in the colon of pigs.The colonic concentrations of dehydrolithocholic acid and apocholic acid were increased(P<0.05),while isodeoxycholic acid and 6,7-diketolithocholic acid were decreased(P<0.05)in IUGR pigs,when compared with the NBW pigs at the 25 kg BW stage.Moreover,Spearman’s correlation analysis revealed that colonic Unclassified_[Mogi-bacteriaceae],Lachnospira,and Slackia abundances were negatively correlated(P<0.05)with dehydrolithocholic acid,as well as the Unclassified_Clostridiaceae abundance with 6,7-diketolithocholic acid at the 25 kg BW stage.Conclusions:These findings suggest that IUGR could affect bile acid and glucolipid metabolism in growing pigs,especially at the 25 kg BW stage,these effects being paralleled by a modification of bile acid derivatives concentra-tions in the colonic content.The plausible links between these modified parameters are discussed.
基金the National Natural Science Foundation of China, No. 81600617
文摘BACKGROUND Fibroblast growth factor(FGF)15/19,which is expressed in and secreted from the distal ileum,can regulate hepatic glucose metabolism in an endocrine manner.The levels of both bile acids(BAs)and FGF15/19 are elevated after bariatric surgery.However,it is unclear whether the increase in FGF15/19 is induced by BAs.Moreover,it remains to be understood whether FGF15/19 elevations contribute to improvements in hepatic glucose metabolism after bariatric surgery.AIM To investigate the mechanism of improvement of hepatic glucose metabolism by elevated BAs after sleeve gastrectomy(SG).METHODS By calculating and comparing the changes of body weight after SG with SHAM group,we examined the weight-loss effect of SG.The oral glucose tolerance test(OGTT)test and area under the curve of OGTT curves were used to assess the anti-diabetic effects of SG.By detecting the glycogen content,expression and activity of glycogen synthase as well as the glucose-6-phosphatase(G6Pase)and phosphoenolpyruvate carboxykinase(Pepck),we evaluated the hepatic glycogen content and gluconeogenesis activity.We examined the levels of total BA(TBA)together with the farnesoid X receptor(FXR)-agonistic BA subspecies in systemic serum and portal vein at week 12 post-surgery.Then the histological expression of ileal FXR and FGF15 and hepatic FGF receptor 4(FGFR4)with its corresponding signal pathways involved in glucose metabolism were detected.RESULTS After surgery,food intake and body weight gain of SG group was decreased compare with the SHAM group.The hepatic glycogen content and glycogen synthase activity was significantly stimulated after SG,while the expression of the key enzyme for hepatic gluconeogenesis:G6Pase and Pepck,were depressed.TBA levels in serum and portal vein were both elevated after SG,the FXR-agonistic BA subspecies:Chenodeoxycholic acid(CDCA),lithocholic acid(LCA)in serum and CDCA,DCA,LCA in portal vein were all higher in SG group than that in SHAM group.Consequently,the ileal expression of FXR and FGF15 were also advanced in SG group.Moreover,the hepatic expression of FGFR4 was stimulated in SG-operated rats.As a result,the activity of its corresponding pathway for glycogen synthesis:FGFR4-Ras-extracellular signal regulated kinase pathway was stimulated,while the corresponding pathway for hepatic gluconeogenesis:FGFR4-cAMP regulatory element-binding protein-peroxisome proliferator-activated receptorγcoactivator-1αpathway was suppressed.CONCLUSION Elevated BAs after SG induced FGF15 expression in distal ileum by activating their receptor FXR.Furthermore,the promoted FGF15 partly mediated the improving effects on hepatic glucose metabolism of SG.