Objective To study the biomechanical mechanism of Essex-Lopresti injury,and provide biomechanical basis for diagnosis and treatment of Essex-Lopresti injury.Methods Twelve fresh frozen adult upper limbs were addressed...Objective To study the biomechanical mechanism of Essex-Lopresti injury,and provide biomechanical basis for diagnosis and treatment of Essex-Lopresti injury.Methods Twelve fresh frozen adult upper limbs were addressed.Firstly,12展开更多
The spinal cord is composed of gray matter and white matter.It is well known that the properties of these two tissues differ considerably.Spinal diseases often present with symptoms that are caused by spinal cord comp...The spinal cord is composed of gray matter and white matter.It is well known that the properties of these two tissues differ considerably.Spinal diseases often present with symptoms that are caused by spinal cord compression.Understanding the mechanical properties of gray and white matter would allow us to gain a deep understanding of the injuries caused to the spinal cord and provide information on the pathological changes to these distinct tissues in several disorders.Previous studies have reported on the physical properties of gray and white matter,however,these were focused on longitudinal tension tests.Little is known about the differences between gray and white matter in terms of their response to compression.We therefore performed mechanical compression test of the gray and white matter of spinal cords harvested from cows and analyzed the differences between them in response to compression.We conducted compression testing of gray matter and white matter to detect possible differences in the collapse rate.We found that increased compression(especially more than 50%compression)resulted in more severe injuries to both the gray and white matter.The present results on the mechanical differences between gray and white matter in response to compression will be useful when interpreting findings from medical imaging in patients with spinal conditions.展开更多
Objective To study the effects of radiation emitted by mobile phones on bone strength and caffeic acid phenethyl ester (CAPE) on the changes induced by radiation. Methods Forty-eight Sprague-Dawley rats were divided...Objective To study the effects of radiation emitted by mobile phones on bone strength and caffeic acid phenethyl ester (CAPE) on the changes induced by radiation. Methods Forty-eight Sprague-Dawley rats were divided into five groups. Rats in the control group (first group) were left within the experimental setup for 30 min/day for 28 days without radiation exposure. Nine hundred MHz radiation group was broke down into 2 subgroups (group 1/2). Both subgroups were exposed to radiation for 28 days (30 min/day). The next group was also divided into 2 subgroups (group 3/4). Each was exposed to 1800 MHz of radiation for 28 days (30 mirdday). The third and fifth groups were also treated with CAPE for 28 days. Treatment groups received ip caffeic acid phenethyl ester (10 ktmol/kg per day) before radiation session. Bone fracture was analyzed. Results Breaking force, bending strength, and total fracture energy decreased in the irradiated groups but increased in the treatment groups. Conclusion Radiation and CAPE can significantly improve bone.展开更多
文摘Objective To study the biomechanical mechanism of Essex-Lopresti injury,and provide biomechanical basis for diagnosis and treatment of Essex-Lopresti injury.Methods Twelve fresh frozen adult upper limbs were addressed.Firstly,12
基金supported by JSPS KAKENHI(No.JP 15K20002)Yamaguchi University School of Medicine Affiliated Hospital:Translational Promotion Grant and President of Yamaguchi University Strategic Expenses:Young Researcher Support Project(all to NN)
文摘The spinal cord is composed of gray matter and white matter.It is well known that the properties of these two tissues differ considerably.Spinal diseases often present with symptoms that are caused by spinal cord compression.Understanding the mechanical properties of gray and white matter would allow us to gain a deep understanding of the injuries caused to the spinal cord and provide information on the pathological changes to these distinct tissues in several disorders.Previous studies have reported on the physical properties of gray and white matter,however,these were focused on longitudinal tension tests.Little is known about the differences between gray and white matter in terms of their response to compression.We therefore performed mechanical compression test of the gray and white matter of spinal cords harvested from cows and analyzed the differences between them in response to compression.We conducted compression testing of gray matter and white matter to detect possible differences in the collapse rate.We found that increased compression(especially more than 50%compression)resulted in more severe injuries to both the gray and white matter.The present results on the mechanical differences between gray and white matter in response to compression will be useful when interpreting findings from medical imaging in patients with spinal conditions.
文摘Objective To study the effects of radiation emitted by mobile phones on bone strength and caffeic acid phenethyl ester (CAPE) on the changes induced by radiation. Methods Forty-eight Sprague-Dawley rats were divided into five groups. Rats in the control group (first group) were left within the experimental setup for 30 min/day for 28 days without radiation exposure. Nine hundred MHz radiation group was broke down into 2 subgroups (group 1/2). Both subgroups were exposed to radiation for 28 days (30 min/day). The next group was also divided into 2 subgroups (group 3/4). Each was exposed to 1800 MHz of radiation for 28 days (30 mirdday). The third and fifth groups were also treated with CAPE for 28 days. Treatment groups received ip caffeic acid phenethyl ester (10 ktmol/kg per day) before radiation session. Bone fracture was analyzed. Results Breaking force, bending strength, and total fracture energy decreased in the irradiated groups but increased in the treatment groups. Conclusion Radiation and CAPE can significantly improve bone.