Exosomes,ubiquitously present in body fluids,serve as non-invasive biomarkers for disease diagnosis,monitoring,and treatment.As intercellular messengers,exosomes encapsulate a rich array of proteins,nucleic acids,and ...Exosomes,ubiquitously present in body fluids,serve as non-invasive biomarkers for disease diagnosis,monitoring,and treatment.As intercellular messengers,exosomes encapsulate a rich array of proteins,nucleic acids,and metabolites,although most studies have primarily focused on proteins and RNA.Recently,exosome metabolomics has demonstrated clinical value and potential advantages in disease detection and pathophysiology,despite significant challenges,particularly in exosome isolation and metabolite detection.This review discusses the significant technical challenges in exosome isolation and metabolite detection,highlighting the advancements in these areas that support the clinical application of exosome metabolomics,and illustrates the potential of exosomal metabolites from various body fluids as biomarkers for early disease diagnosis and treatment.展开更多
Hydroxyapatite coatings were directly prepared on anodized titanium by electro-deposition method in a modified simulated body fluid.The configuration,structure and bioactivity of the coating were investigated with sca...Hydroxyapatite coatings were directly prepared on anodized titanium by electro-deposition method in a modified simulated body fluid.The configuration,structure and bioactivity of the coating were investigated with scanning electron microscopy(SEM),X-ray diffraction analyzer(XRD)and Fourier transform infrared spectros-copy(FTIR)techniques.The results demonstrated that pure and homogeneous hydroxyapatite coating can be obtained without any post-treatment.The prepared coating showed good bioactivity in simulated body fluid(SBF).The time required for a fully covered dense hydroxyapatite coatings was 4 days immersion in SBF.展开更多
Magnesium alloys were considered to be used as biodegradable implants due to their biocompatibility,biodegradability and nontoxicity.However,under the simultaneous action of corrosive environment and mechanical loadin...Magnesium alloys were considered to be used as biodegradable implants due to their biocompatibility,biodegradability and nontoxicity.However,under the simultaneous action of corrosive environment and mechanical loading in human body,magnesium alloys are easy to be affected by corrosion fatigue and stress corrosion cracking.In this work,the fatigue behavior of the extruded Mg-Zn-Y-Nd alloy used for vascular stents was studied both in air and in simulated body fluid(SBF).It was revealed that the fatigue limit of as-extruded Mg-Zn-Y-Nd alloy in air is about 65 MPa at 10^7 cycles,while there is no limit in SBF and shows a linear relationship between the fatigue life and stress amplitudes.The fatigue crack source in air was formed by the inclusions and defects.However,the stress corrosion and hydrogen embrittlement are the main reasons for the formation of the fatigue initial crack source in SBF.展开更多
In this study,a KrF excimer laser was used to modify the biodegradable Mg-1Ca alloy and the time-evolution degradation behavior of the alloy before and after laser treatment was investigated in simulated body fluid(SB...In this study,a KrF excimer laser was used to modify the biodegradable Mg-1Ca alloy and the time-evolution degradation behavior of the alloy before and after laser treatment was investigated in simulated body fluid(SBF)solution using immersion tests and electrochemical impedance spectroscopy(EIS).A 5μm melted layer with a homogeneous microstructure and an MgO film on the surface were achieved by laser radiation.Corrosion observations(hydrogen evolution,morphology and corrosion products)and EIS results revealed an improvement of corrosion resistance after laser treatment for 48 h.It was found a two-layer structure developed after 2 h immersion on both the untreated and laser-treated alloys,but the sequence of forming the two layers was opposite and greatly influenced by the laser-treated layer.The time-evolution corrosion processes on the untreated and laser-treated alloys were discussed,providing a better understanding of corrosion behavior of biodegradable Mg alloys modified by excimer laser.展开更多
Porous and dense TiNi alloys were successfully fabricated by powder metallurgy(P/M) method, and to further improve their surface biocompatibility, surface modification techniques including grind using silicon-carbide(...Porous and dense TiNi alloys were successfully fabricated by powder metallurgy(P/M) method, and to further improve their surface biocompatibility, surface modification techniques including grind using silicon-carbide(SiC) paper, acid etching and alkali treatment were employed to produce either irregularly rough surface or micro-porous surface roughness. X-ray diffractometry(XRD), scanning electron microscopy(SEM) and energy dispersive X-ray spectroscopy(EDX) attached to SEM were used to characterize surface structure and the Ca-P coatings. Effects of the above surface treatments on the surface morphology, apatite forming ability were systematically investigated. Results indicate that all the above surface treatments increase the apatite forming ability of TiNi alloys in varying degrees when soaked in simulated body fluid(SBF). More apatite coatings formed on TiNi samples sintered at 1050℃ and 1100℃ due to their high porosity and pure TiNi phase that is beneficial to heterogeneous nucleation. Furthermore, more uniform apatite was fabricated on the sample sintered from the mixture of Ni and Ti powders.展开更多
Two critical issues in forensic science are identifying body fluid traces found at crime scenes and preserving them for DNA analysis. However, the majority of current biochemical tests for body fluid identification, w...Two critical issues in forensic science are identifying body fluid traces found at crime scenes and preserving them for DNA analysis. However, the majority of current biochemical tests for body fluid identification, which are applicable at the crime scene, are presumptive and destructive to the sample. Raman Spectroscopy provides a suitable alternative to current methods as a nondestructive, confirmatory, and potentially in field method. Our laboratory has developed a chemometric model for the identification of five main body fluids using Raman spectroscopy. This model was developed using samples obtained from healthy donors. Thus, it is of most importance for the forensic application of the method to validate its performance for donors with diseases that might affect the biochemical composition of body fluids. In this study, the developed method was validated using peripheral blood samples acquired from donors with Celiac Disease, Sickle Cell Anemia, and Type 2 Diabetes. It was shown that the method correctly identified all samples as peripheral blood indicating that no false positives could occur because the blood traces were originated from donors suffering from the diseases.展开更多
Dense natural wollastonite bioceramics (CaSiO3) were prepared by a sintering method, varying the pressing load and sintering temperature, in order to obtain different phases of wollastonite, and different physical pro...Dense natural wollastonite bioceramics (CaSiO3) were prepared by a sintering method, varying the pressing load and sintering temperature, in order to obtain different phases of wollastonite, and different physical properties in the materials. The products were characterized by TGA-DTA, XRD, FT-IR, SEM-EDS, TEM and XPS techniques. The results indicate the presence of two polymorphic phases of wollastonite, the β-wollastonite and α-wollastonite with a transition temperature of the β phase to α phase at approximately 1250℃. These materials were soaked in a simulated body fluid (SBF) during 1, 2 and 3 weeks, to study their solubility and bioactivity. The effect of different wollastonite phases on the solubility of Ca and Si, as well as the capacity of producing layers of “newly formed apatite” on the surfaces of these materials in SBF solution were analyzed.展开更多
The results and main findings of studies reported in the literature in relation to the deposition of calcium phosphate on Ti in simulated body fluids are summarized. The effects of the surface hydroxyl groups and the ...The results and main findings of studies reported in the literature in relation to the deposition of calcium phosphate on Ti in simulated body fluids are summarized. The effects of the surface hydroxyl groups and the sign of surface charge on the nucleation of calcium phosphate are reviewed. One major controversy among the conclusions of different studies is the order of adsorption of the calcium ions and the phosphate ions in the initial stage of immersion. A simple model based on the amphoteric nature of the hydroxyl groups on Ti is proposed in an attempt to delineate the nucleation process for calcium phosphate on Ti in simulated body fluids. HPO4^2- ions interact with the hydroxyl groups via ion exchange and/or electrostatic attraction, and Ca^2+ ions, via electrostatic attraction only. There is no preferential order of adsorption. Seemingly inconsistent results in different studies possibly arise from different prior treatments of the samples, which affect the adsorption properties.展开更多
Objective Body fluid mixtures are complex biological samples that frequently occur in crime scenes,and can provide important clues for criminal case analysis.DNA methylation assay has been applied in the identificatio...Objective Body fluid mixtures are complex biological samples that frequently occur in crime scenes,and can provide important clues for criminal case analysis.DNA methylation assay has been applied in the identification of human body fluids,and has exhibited excellent performance in predicting single-source body fluids.The present study aims to develop a methylation SNaPshot multiplex system for body fluid identification,and accurately predict the mixture samples.In addition,the value of DNA methylation in the prediction of body fluid mixtures was further explored.Methods In the present study,420 samples of body fluid mixtures and 250 samples of single body fluids were tested using an optimized multiplex methylation system.Each kind of body fluid sample presented the specific methylation profiles of the 10 markers.Results Significant differences in methylation levels were observed between the mixtures and single body fluids.For all kinds of mixtures,the Spearman’s correlation analysis revealed a significantly strong correlation between the methylation levels and component proportions(1:20,1:10,1:5,1:1,5:1,10:1 and 20:1).Two random forest classification models were trained for the prediction of mixture types and the prediction of the mixture proportion of 2 components,based on the methylation levels of 10 markers.For the mixture prediction,Model-1 presented outstanding prediction accuracy,which reached up to 99.3%in 427 training samples,and had a remarkable accuracy of 100%in 243 independent test samples.For the mixture proportion prediction,Model-2 demonstrated an excellent accuracy of 98.8%in 252 training samples,and 98.2%in 168 independent test samples.The total prediction accuracy reached 99.3%for body fluid mixtures and 98.6%for the mixture proportions.Conclusion These results indicate the excellent capability and powerful value of the multiplex methylation system in the identification of forensic body fluid mixtures.展开更多
It is confirmed that the essential condition for glasses and glass-ceramics to bond to living bone is the formation of an apatite layer on their surfaces in the body.It is proposed that a hydrated silica formed on the...It is confirmed that the essential condition for glasses and glass-ceramics to bond to living bone is the formation of an apatite layer on their surfaces in the body.It is proposed that a hydrated silica formed on the surfaces of these materials in the body plays an important role in forming the surface apatite layer,which has not been proved yet.It is shown experimentally that a pure hydrated silica gel can induce the apatite formation on its surface in a simulated body fluid when its starting pH is increased from 7.2 to 7.4.展开更多
Hepatocellular carcinoma(HCC)is the most prevalent primary liver cancer and one of the major causes of cancer-related death.The development of specific noninvasive or diagnostic markers from blood,urine and feces may ...Hepatocellular carcinoma(HCC)is the most prevalent primary liver cancer and one of the major causes of cancer-related death.The development of specific noninvasive or diagnostic markers from blood,urine and feces may represent a valuable tool for detecting HCC at an early stage.Biomarkers are considered novel potential targets for therapeutic intervention.It helps in the prediction of prognosis or recurrence of HCC,and also assist in the selection of appropriate treatment modality.We summarize the most relevant existing data about various biomarkers that play a key role in the progression of HCC.展开更多
Because of no exact name about obesity in traditional Chinese medicine, clinically there have no unified syndrome types about obesity. The present paper uses the original syndrome differentiation of body fluid and sel...Because of no exact name about obesity in traditional Chinese medicine, clinically there have no unified syndrome types about obesity. The present paper uses the original syndrome differentiation of body fluid and selects classical acupuncture and moxibustion prescriptions to treat obesity, which is conducive to further systematizing classical acupuncture and moxibustion prescriptions and providing sufficient basis for clinical popularization.展开更多
Dry immersion is an effective and useful model for research in physiology and physiopathology. The focus of this study was to provide integrative insight into renal, endocrine, circulatory, autonomic and metabolic eff...Dry immersion is an effective and useful model for research in physiology and physiopathology. The focus of this study was to provide integrative insight into renal, endocrine, circulatory, autonomic and metabolic effects of dry immersion. We assessed if the principal changes were restored within 24 h of recovery, and determined which changes were mainly associated with immersion-induced orthostatic intolerance. Five-day dry immersion without countermeasures, and with ad libitum water intake, standardized diet and a permitted short daily rise was performed in a relatively large sample for this experiment type (14 healthy young men). Reduction of total body water derived mostly from extracellular compartment, and stabilized rapidly at the new operating point. Decrease in plasma volume was estimated at 20% - 25%. Five-day immersion was sufficient to impair metabolism with a decrease in glucose tolerance and hypercholesterolemia, but was not associated with pronounced autonomic changes. Five-day immersion induced marked cardiovascular impairment. Immediately after immersion, over half of the subjects were unable to accomplish the 20-min 70° tilt;during tilt, heart rate and total peripheral resistance were increased, and stroke volume was decreased. However, 24 hours of normal physical activity appeared sufficient to reverse orthostatic tolerance and all signs of cardiovascular impairment, and to restitute plasma volume and extracellular fluid volume. Similarly, metabolic impairment was restored. In our study, the major factor responsible for orthostatic intolerance appeared to be hypovolemia. The absence of pronounced autonomic dysfunction might be explained by relatively short duration of dry immersion and daily short-time orthostatic stimulation.展开更多
Zinc was recently suggested to be a potential candidate material for degradable coronary artery stent.The corrosion behavior of pure zinc exposed to r-SBF up to 336 h was investigated by electrochemical measurements a...Zinc was recently suggested to be a potential candidate material for degradable coronary artery stent.The corrosion behavior of pure zinc exposed to r-SBF up to 336 h was investigated by electrochemical measurements and immersion tests. The morphology and chemical composites of the corrosion products were investigated by scanning electron microscope, grazing-incidence X-ray diffraction, X-ray photoelectron spectroscopy and Fourier transform infrared spectrometer. The results demonstrate that the initial corrosion products on the pure zinc mainly consist of zinc oxide/hydroxide and zinc/calcium phosphate compounds. The pure Zn encounters uniform corrosion with an estimated corrosion rate of 0.02-0.07 mmy;during the immersion, which suggests the suitability of pure Zn for biomedical applications.展开更多
Disinfection by-products(DBPs)are formed in swimming pools by the reactions of bather inputs with the disinfectant.Although a wide range of molecules has been identified within DBPs,only few kinetic rates have been re...Disinfection by-products(DBPs)are formed in swimming pools by the reactions of bather inputs with the disinfectant.Although a wide range of molecules has been identified within DBPs,only few kinetic rates have been reported.This study investigates the kinetics of chlorine consumption,chloroform formation and dichloroacetonitrile formation caused by human releases.Since the flux and main components of human inputs have been determined and formalized through Body Fluid Analogs(BFAs),it is possible to model the DBPs formation kinetics by studying a limited number of precursor molecules.For each parameter the individual contributions of BFA components have been quantified and kinetic rates have been determined,based on reaction mechanisms proposed in the literature.With a molar consumption of 4 mol Cl2/mol,urea is confirmed as the major chlorine consumer in the BFA because of its high concentration in human releases.The higher reactivity of ammonia is however highlighted.Citric acid is responsible for most of the chloroform produced during BFA chlorination.Chloroform formation is relatively slow with a limiting rate constant determined at 5.50×10^-3 L/mol/sec.L-histidine is the only precursor for dichloroacetonitrile in the BFA.This DBP is rapidly formed and its degradation by hydrolysis and by reaction with hypochlorite shortens its lifetime in the basin.Reaction rates of dichloroacetonitrile formation by L-histidine chlorination have been established based on the latest chlorination mechanisms proposed.Moreover,this study shows that the reactivity toward chlorine differs whether L-histidine is isolated or mixed with BFA components.展开更多
In this study, CoCrMo alloy was oxidized in plasma environment at the temperatures of 600 ℃ to 800 ℃ for 1 h to 5 h with 100% 02 gas and its tribological behavior was investigated. After the plasma oxidizing process...In this study, CoCrMo alloy was oxidized in plasma environment at the temperatures of 600 ℃ to 800 ℃ for 1 h to 5 h with 100% 02 gas and its tribological behavior was investigated. After the plasma oxidizing process, the compound and diffusion layers were formed on the surface. XRD results show that Cr203, a-Co and ε-Co phases diffracted from the modified layers after plasma oxidizing. The untreated and treated CoCrMo samples were subjected to wear tests both in dry and simulated body fluid conditions, and normal loads of 2 N and 10 N were used. For the sliding wear test, alumina balls were used as counter materials. It was observed that the wear resistance of CoCrMo alloy was increased after the plasma oxidizing process. The lowest wear rate was obtained from the samples that were oxidized at 800 ℃ for 5 h. It was detected that both wear environment and load have significant effects on the wear behavior of this alloy, and the wear resistance of oxidized CoCrMo alloy is higher when oxide-based counterface is used. The wear rates of both untreated and plasma oxidized samples increase under high loads.展开更多
TiO2 films including different amounts of Ag obtained by sol-gel method on commercially pure titanium (CP-Ti) and the corrosion properties of Ag-doped TiO2 films were investigated by potentiodynamic polarisation and...TiO2 films including different amounts of Ag obtained by sol-gel method on commercially pure titanium (CP-Ti) and the corrosion properties of Ag-doped TiO2 films were investigated by potentiodynamic polarisation and Electrochemical ImpedanceSpectroscopy (EIS) tests in Simulated Body Fluid (SBF) solution. The results were compared with untreated and un-doped samples. Surface characterizations before and after the corrosion tests were performed by the Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD) analysis. It was observed that Ag-doping for TiO2 films improved the corrosion resistance when compared with untreated and un-doped TiO2 film coated samples. The highest corrosion resistance was obtained from Ag-doped samples coated with a solution of 0.05 M Ag.展开更多
The main purpose of this paper is to investigate the effect of corrosion on mechanical behaviors of the Mg-Zn-Zr alloy immersed in simulated body fluid (SBF) with different immersion times. The corrosion behavior of...The main purpose of this paper is to investigate the effect of corrosion on mechanical behaviors of the Mg-Zn-Zr alloy immersed in simulated body fluid (SBF) with different immersion times. The corrosion behavior of the materials in SBF was determined by immersion tests. The surfaces of the corroded alloys were examined by SEM. The tensile samples of the extruded Mg-2Zn-0.8Zr magnesium alloy were immersed in the SBF for 0, 4, 7, 10, 14, 21 and 28 d. The tensile mechanical behaviors of test samples were performed on an electronic tensile testing machine. SEM was used to observe the fracture morphology. It was found that with extension of the immersion time, the ultimate tensile strength (UTS), yield strength (YS) and elongation (EL) of the Mg-2Zn-0.8Zr samples decreased rapidly at first and then decreased slowly. The main fracture mechanism of the alloy transformed from ductile fracture to cleavage fracture with the increasing immersion times, which can be attributed to stress concentration and embrittlement caused by pit corrosion.展开更多
Fatigue behaviors of a biocompatible Ni-free Zr60.14Cu22.31Fe4.85Al9.7Ag3 Zr-based bulk metallic glass (BMG) have been studied under three-point-bending test in a simulated body fluid (SBF) at 37 ℃ and compared w...Fatigue behaviors of a biocompatible Ni-free Zr60.14Cu22.31Fe4.85Al9.7Ag3 Zr-based bulk metallic glass (BMG) have been studied under three-point-bending test in a simulated body fluid (SBF) at 37 ℃ and compared with those in air at room temperature (RT). The BMG shows a high fatigue limit of approximately 366 MPa in SBF, which was slightly lower than that in air (400 MPa). The fatigue cracks tended to initiate from the defects such as cast-pores, inclusions and corners of the samples and propagate in a similar path in SBF and in air. Three distinct regions, i.e. a crack-initiation region, a stable crack-growth region and an unstable fast-fracture region were clearly observed on the fatigue-fractured surface. Although pitting occurred at the defects where crack initiated, it does not affect significantly the fatigue life of the BMG, because the lifetime in the present BMG is mainly determined by crack propagation. The high corrosion-fatigue limit of the studied BMG results from its excellent corrosion resistance in SBF and intrinsically good toughness.展开更多
α-Synuclein is a protein that mainly exists in the presynaptic terminals.Abnormal folding and accumulation of α-synuclein are found in several neurodegenerative diseases,including Parkinson’s disease.Aggregated and...α-Synuclein is a protein that mainly exists in the presynaptic terminals.Abnormal folding and accumulation of α-synuclein are found in several neurodegenerative diseases,including Parkinson’s disease.Aggregated and highly phospho rylated a-synuclein constitutes the main component of Lewy bodies in the brain,the pathological hallmark of Parkinson s disease.For decades,much attention has been focused on the accumulation of α-synuclein in the brain parenchyma rather than considering Parkinson s disease as a systemic disease.Recent evidence demonstrates that,at least in some patients,the initial α-synuclein pathology originates in the peripheral organs and spreads to the brain.Injection of α-synuclein preformed fibrils into the gastrointestinal tra ct trigge rs the gutto-brain propagation of α-synuclein pathology.However,whether α-synuclein pathology can occur spontaneously in peripheral organs independent of exogenous α-synuclein preformed fibrils or pathological α-synuclein leakage from the central nervous system remains under investigation.In this review,we aimed to summarize the role of peripheral α-synuclein pathology in the pathogenesis of Parkinson’s disease.We also discuss the pathways by which α-synuclein pathology spreads from the body to the brain.展开更多
文摘Exosomes,ubiquitously present in body fluids,serve as non-invasive biomarkers for disease diagnosis,monitoring,and treatment.As intercellular messengers,exosomes encapsulate a rich array of proteins,nucleic acids,and metabolites,although most studies have primarily focused on proteins and RNA.Recently,exosome metabolomics has demonstrated clinical value and potential advantages in disease detection and pathophysiology,despite significant challenges,particularly in exosome isolation and metabolite detection.This review discusses the significant technical challenges in exosome isolation and metabolite detection,highlighting the advancements in these areas that support the clinical application of exosome metabolomics,and illustrates the potential of exosomal metabolites from various body fluids as biomarkers for early disease diagnosis and treatment.
基金Supported by the Young Scholars Fund of Beijing University of Chemical Technology(QN0713)
文摘Hydroxyapatite coatings were directly prepared on anodized titanium by electro-deposition method in a modified simulated body fluid.The configuration,structure and bioactivity of the coating were investigated with scanning electron microscopy(SEM),X-ray diffraction analyzer(XRD)and Fourier transform infrared spectros-copy(FTIR)techniques.The results demonstrated that pure and homogeneous hydroxyapatite coating can be obtained without any post-treatment.The prepared coating showed good bioactivity in simulated body fluid(SBF).The time required for a fully covered dense hydroxyapatite coatings was 4 days immersion in SBF.
基金The authors are grateful for the financial support of Key Projects of the Joint Fund of the National Natural Science Foundation of China(No.U1804251)the National Key Research and Development Program of China(No.2018YFC1106703,2017YFB0702504 and 2016YFC1102403).
文摘Magnesium alloys were considered to be used as biodegradable implants due to their biocompatibility,biodegradability and nontoxicity.However,under the simultaneous action of corrosive environment and mechanical loading in human body,magnesium alloys are easy to be affected by corrosion fatigue and stress corrosion cracking.In this work,the fatigue behavior of the extruded Mg-Zn-Y-Nd alloy used for vascular stents was studied both in air and in simulated body fluid(SBF).It was revealed that the fatigue limit of as-extruded Mg-Zn-Y-Nd alloy in air is about 65 MPa at 10^7 cycles,while there is no limit in SBF and shows a linear relationship between the fatigue life and stress amplitudes.The fatigue crack source in air was formed by the inclusions and defects.However,the stress corrosion and hydrogen embrittlement are the main reasons for the formation of the fatigue initial crack source in SBF.
文摘In this study,a KrF excimer laser was used to modify the biodegradable Mg-1Ca alloy and the time-evolution degradation behavior of the alloy before and after laser treatment was investigated in simulated body fluid(SBF)solution using immersion tests and electrochemical impedance spectroscopy(EIS).A 5μm melted layer with a homogeneous microstructure and an MgO film on the surface were achieved by laser radiation.Corrosion observations(hydrogen evolution,morphology and corrosion products)and EIS results revealed an improvement of corrosion resistance after laser treatment for 48 h.It was found a two-layer structure developed after 2 h immersion on both the untreated and laser-treated alloys,but the sequence of forming the two layers was opposite and greatly influenced by the laser-treated layer.The time-evolution corrosion processes on the untreated and laser-treated alloys were discussed,providing a better understanding of corrosion behavior of biodegradable Mg alloys modified by excimer laser.
基金Project(51274247) supported by the National Natural Science Foundation of ChinaProject(2014zzts177) support by the Fundamental Research Funds for the Central Universities,China
文摘Porous and dense TiNi alloys were successfully fabricated by powder metallurgy(P/M) method, and to further improve their surface biocompatibility, surface modification techniques including grind using silicon-carbide(SiC) paper, acid etching and alkali treatment were employed to produce either irregularly rough surface or micro-porous surface roughness. X-ray diffractometry(XRD), scanning electron microscopy(SEM) and energy dispersive X-ray spectroscopy(EDX) attached to SEM were used to characterize surface structure and the Ca-P coatings. Effects of the above surface treatments on the surface morphology, apatite forming ability were systematically investigated. Results indicate that all the above surface treatments increase the apatite forming ability of TiNi alloys in varying degrees when soaked in simulated body fluid(SBF). More apatite coatings formed on TiNi samples sintered at 1050℃ and 1100℃ due to their high porosity and pure TiNi phase that is beneficial to heterogeneous nucleation. Furthermore, more uniform apatite was fabricated on the sample sintered from the mixture of Ni and Ti powders.
文摘Two critical issues in forensic science are identifying body fluid traces found at crime scenes and preserving them for DNA analysis. However, the majority of current biochemical tests for body fluid identification, which are applicable at the crime scene, are presumptive and destructive to the sample. Raman Spectroscopy provides a suitable alternative to current methods as a nondestructive, confirmatory, and potentially in field method. Our laboratory has developed a chemometric model for the identification of five main body fluids using Raman spectroscopy. This model was developed using samples obtained from healthy donors. Thus, it is of most importance for the forensic application of the method to validate its performance for donors with diseases that might affect the biochemical composition of body fluids. In this study, the developed method was validated using peripheral blood samples acquired from donors with Celiac Disease, Sickle Cell Anemia, and Type 2 Diabetes. It was shown that the method correctly identified all samples as peripheral blood indicating that no false positives could occur because the blood traces were originated from donors suffering from the diseases.
文摘Dense natural wollastonite bioceramics (CaSiO3) were prepared by a sintering method, varying the pressing load and sintering temperature, in order to obtain different phases of wollastonite, and different physical properties in the materials. The products were characterized by TGA-DTA, XRD, FT-IR, SEM-EDS, TEM and XPS techniques. The results indicate the presence of two polymorphic phases of wollastonite, the β-wollastonite and α-wollastonite with a transition temperature of the β phase to α phase at approximately 1250℃. These materials were soaked in a simulated body fluid (SBF) during 1, 2 and 3 weeks, to study their solubility and bioactivity. The effect of different wollastonite phases on the solubility of Ca and Si, as well as the capacity of producing layers of “newly formed apatite” on the surfaces of these materials in SBF solution were analyzed.
文摘The results and main findings of studies reported in the literature in relation to the deposition of calcium phosphate on Ti in simulated body fluids are summarized. The effects of the surface hydroxyl groups and the sign of surface charge on the nucleation of calcium phosphate are reviewed. One major controversy among the conclusions of different studies is the order of adsorption of the calcium ions and the phosphate ions in the initial stage of immersion. A simple model based on the amphoteric nature of the hydroxyl groups on Ti is proposed in an attempt to delineate the nucleation process for calcium phosphate on Ti in simulated body fluids. HPO4^2- ions interact with the hydroxyl groups via ion exchange and/or electrostatic attraction, and Ca^2+ ions, via electrostatic attraction only. There is no preferential order of adsorption. Seemingly inconsistent results in different studies possibly arise from different prior treatments of the samples, which affect the adsorption properties.
基金supported by the grants from the Natural Science Foundation of Hubei Province(No.2020CFB780)the Fundamental Research Funds for the Central Universities(No.2017KFYXJJ020).
文摘Objective Body fluid mixtures are complex biological samples that frequently occur in crime scenes,and can provide important clues for criminal case analysis.DNA methylation assay has been applied in the identification of human body fluids,and has exhibited excellent performance in predicting single-source body fluids.The present study aims to develop a methylation SNaPshot multiplex system for body fluid identification,and accurately predict the mixture samples.In addition,the value of DNA methylation in the prediction of body fluid mixtures was further explored.Methods In the present study,420 samples of body fluid mixtures and 250 samples of single body fluids were tested using an optimized multiplex methylation system.Each kind of body fluid sample presented the specific methylation profiles of the 10 markers.Results Significant differences in methylation levels were observed between the mixtures and single body fluids.For all kinds of mixtures,the Spearman’s correlation analysis revealed a significantly strong correlation between the methylation levels and component proportions(1:20,1:10,1:5,1:1,5:1,10:1 and 20:1).Two random forest classification models were trained for the prediction of mixture types and the prediction of the mixture proportion of 2 components,based on the methylation levels of 10 markers.For the mixture prediction,Model-1 presented outstanding prediction accuracy,which reached up to 99.3%in 427 training samples,and had a remarkable accuracy of 100%in 243 independent test samples.For the mixture proportion prediction,Model-2 demonstrated an excellent accuracy of 98.8%in 252 training samples,and 98.2%in 168 independent test samples.The total prediction accuracy reached 99.3%for body fluid mixtures and 98.6%for the mixture proportions.Conclusion These results indicate the excellent capability and powerful value of the multiplex methylation system in the identification of forensic body fluid mixtures.
文摘It is confirmed that the essential condition for glasses and glass-ceramics to bond to living bone is the formation of an apatite layer on their surfaces in the body.It is proposed that a hydrated silica formed on the surfaces of these materials in the body plays an important role in forming the surface apatite layer,which has not been proved yet.It is shown experimentally that a pure hydrated silica gel can induce the apatite formation on its surface in a simulated body fluid when its starting pH is increased from 7.2 to 7.4.
文摘Hepatocellular carcinoma(HCC)is the most prevalent primary liver cancer and one of the major causes of cancer-related death.The development of specific noninvasive or diagnostic markers from blood,urine and feces may represent a valuable tool for detecting HCC at an early stage.Biomarkers are considered novel potential targets for therapeutic intervention.It helps in the prediction of prognosis or recurrence of HCC,and also assist in the selection of appropriate treatment modality.We summarize the most relevant existing data about various biomarkers that play a key role in the progression of HCC.
文摘Because of no exact name about obesity in traditional Chinese medicine, clinically there have no unified syndrome types about obesity. The present paper uses the original syndrome differentiation of body fluid and selects classical acupuncture and moxibustion prescriptions to treat obesity, which is conducive to further systematizing classical acupuncture and moxibustion prescriptions and providing sufficient basis for clinical popularization.
文摘Dry immersion is an effective and useful model for research in physiology and physiopathology. The focus of this study was to provide integrative insight into renal, endocrine, circulatory, autonomic and metabolic effects of dry immersion. We assessed if the principal changes were restored within 24 h of recovery, and determined which changes were mainly associated with immersion-induced orthostatic intolerance. Five-day dry immersion without countermeasures, and with ad libitum water intake, standardized diet and a permitted short daily rise was performed in a relatively large sample for this experiment type (14 healthy young men). Reduction of total body water derived mostly from extracellular compartment, and stabilized rapidly at the new operating point. Decrease in plasma volume was estimated at 20% - 25%. Five-day immersion was sufficient to impair metabolism with a decrease in glucose tolerance and hypercholesterolemia, but was not associated with pronounced autonomic changes. Five-day immersion induced marked cardiovascular impairment. Immediately after immersion, over half of the subjects were unable to accomplish the 20-min 70° tilt;during tilt, heart rate and total peripheral resistance were increased, and stroke volume was decreased. However, 24 hours of normal physical activity appeared sufficient to reverse orthostatic tolerance and all signs of cardiovascular impairment, and to restitute plasma volume and extracellular fluid volume. Similarly, metabolic impairment was restored. In our study, the major factor responsible for orthostatic intolerance appeared to be hypovolemia. The absence of pronounced autonomic dysfunction might be explained by relatively short duration of dry immersion and daily short-time orthostatic stimulation.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51503014 and No.51501008)the State Key Laboratory for Advanced Metals and Materials(No.2016Z-03)
文摘Zinc was recently suggested to be a potential candidate material for degradable coronary artery stent.The corrosion behavior of pure zinc exposed to r-SBF up to 336 h was investigated by electrochemical measurements and immersion tests. The morphology and chemical composites of the corrosion products were investigated by scanning electron microscope, grazing-incidence X-ray diffraction, X-ray photoelectron spectroscopy and Fourier transform infrared spectrometer. The results demonstrate that the initial corrosion products on the pure zinc mainly consist of zinc oxide/hydroxide and zinc/calcium phosphate compounds. The pure Zn encounters uniform corrosion with an estimated corrosion rate of 0.02-0.07 mmy;during the immersion, which suggests the suitability of pure Zn for biomedical applications.
基金the Conseil Régional de Bretagne for financial support
文摘Disinfection by-products(DBPs)are formed in swimming pools by the reactions of bather inputs with the disinfectant.Although a wide range of molecules has been identified within DBPs,only few kinetic rates have been reported.This study investigates the kinetics of chlorine consumption,chloroform formation and dichloroacetonitrile formation caused by human releases.Since the flux and main components of human inputs have been determined and formalized through Body Fluid Analogs(BFAs),it is possible to model the DBPs formation kinetics by studying a limited number of precursor molecules.For each parameter the individual contributions of BFA components have been quantified and kinetic rates have been determined,based on reaction mechanisms proposed in the literature.With a molar consumption of 4 mol Cl2/mol,urea is confirmed as the major chlorine consumer in the BFA because of its high concentration in human releases.The higher reactivity of ammonia is however highlighted.Citric acid is responsible for most of the chloroform produced during BFA chlorination.Chloroform formation is relatively slow with a limiting rate constant determined at 5.50×10^-3 L/mol/sec.L-histidine is the only precursor for dichloroacetonitrile in the BFA.This DBP is rapidly formed and its degradation by hydrolysis and by reaction with hypochlorite shortens its lifetime in the basin.Reaction rates of dichloroacetonitrile formation by L-histidine chlorination have been established based on the latest chlorination mechanisms proposed.Moreover,this study shows that the reactivity toward chlorine differs whether L-histidine is isolated or mixed with BFA components.
文摘In this study, CoCrMo alloy was oxidized in plasma environment at the temperatures of 600 ℃ to 800 ℃ for 1 h to 5 h with 100% 02 gas and its tribological behavior was investigated. After the plasma oxidizing process, the compound and diffusion layers were formed on the surface. XRD results show that Cr203, a-Co and ε-Co phases diffracted from the modified layers after plasma oxidizing. The untreated and treated CoCrMo samples were subjected to wear tests both in dry and simulated body fluid conditions, and normal loads of 2 N and 10 N were used. For the sliding wear test, alumina balls were used as counter materials. It was observed that the wear resistance of CoCrMo alloy was increased after the plasma oxidizing process. The lowest wear rate was obtained from the samples that were oxidized at 800 ℃ for 5 h. It was detected that both wear environment and load have significant effects on the wear behavior of this alloy, and the wear resistance of oxidized CoCrMo alloy is higher when oxide-based counterface is used. The wear rates of both untreated and plasma oxidized samples increase under high loads.
文摘TiO2 films including different amounts of Ag obtained by sol-gel method on commercially pure titanium (CP-Ti) and the corrosion properties of Ag-doped TiO2 films were investigated by potentiodynamic polarisation and Electrochemical ImpedanceSpectroscopy (EIS) tests in Simulated Body Fluid (SBF) solution. The results were compared with untreated and un-doped samples. Surface characterizations before and after the corrosion tests were performed by the Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD) analysis. It was observed that Ag-doping for TiO2 films improved the corrosion resistance when compared with untreated and un-doped TiO2 film coated samples. The highest corrosion resistance was obtained from Ag-doped samples coated with a solution of 0.05 M Ag.
基金Acknowledgements Thc authors are grateful for the supports from the National Natural Science Foundation of China (Grant No. 51271131).
文摘The main purpose of this paper is to investigate the effect of corrosion on mechanical behaviors of the Mg-Zn-Zr alloy immersed in simulated body fluid (SBF) with different immersion times. The corrosion behavior of the materials in SBF was determined by immersion tests. The surfaces of the corroded alloys were examined by SEM. The tensile samples of the extruded Mg-2Zn-0.8Zr magnesium alloy were immersed in the SBF for 0, 4, 7, 10, 14, 21 and 28 d. The tensile mechanical behaviors of test samples were performed on an electronic tensile testing machine. SEM was used to observe the fracture morphology. It was found that with extension of the immersion time, the ultimate tensile strength (UTS), yield strength (YS) and elongation (EL) of the Mg-2Zn-0.8Zr samples decreased rapidly at first and then decreased slowly. The main fracture mechanism of the alloy transformed from ductile fracture to cleavage fracture with the increasing immersion times, which can be attributed to stress concentration and embrittlement caused by pit corrosion.
基金financially supported by the National Nature Science Foundation of China (Grant Nos. 51071072 and 51271081)
文摘Fatigue behaviors of a biocompatible Ni-free Zr60.14Cu22.31Fe4.85Al9.7Ag3 Zr-based bulk metallic glass (BMG) have been studied under three-point-bending test in a simulated body fluid (SBF) at 37 ℃ and compared with those in air at room temperature (RT). The BMG shows a high fatigue limit of approximately 366 MPa in SBF, which was slightly lower than that in air (400 MPa). The fatigue cracks tended to initiate from the defects such as cast-pores, inclusions and corners of the samples and propagate in a similar path in SBF and in air. Three distinct regions, i.e. a crack-initiation region, a stable crack-growth region and an unstable fast-fracture region were clearly observed on the fatigue-fractured surface. Although pitting occurred at the defects where crack initiated, it does not affect significantly the fatigue life of the BMG, because the lifetime in the present BMG is mainly determined by crack propagation. The high corrosion-fatigue limit of the studied BMG results from its excellent corrosion resistance in SBF and intrinsically good toughness.
基金supported by the National Natural Science Foundation of China,Nos.82271447,81771382the National Key Research and Development Program of China,No.2019 YFE0115900the"New 20 Terms of Universities in Jinan,No.202228022 (all to ZZ)。
文摘α-Synuclein is a protein that mainly exists in the presynaptic terminals.Abnormal folding and accumulation of α-synuclein are found in several neurodegenerative diseases,including Parkinson’s disease.Aggregated and highly phospho rylated a-synuclein constitutes the main component of Lewy bodies in the brain,the pathological hallmark of Parkinson s disease.For decades,much attention has been focused on the accumulation of α-synuclein in the brain parenchyma rather than considering Parkinson s disease as a systemic disease.Recent evidence demonstrates that,at least in some patients,the initial α-synuclein pathology originates in the peripheral organs and spreads to the brain.Injection of α-synuclein preformed fibrils into the gastrointestinal tra ct trigge rs the gutto-brain propagation of α-synuclein pathology.However,whether α-synuclein pathology can occur spontaneously in peripheral organs independent of exogenous α-synuclein preformed fibrils or pathological α-synuclein leakage from the central nervous system remains under investigation.In this review,we aimed to summarize the role of peripheral α-synuclein pathology in the pathogenesis of Parkinson’s disease.We also discuss the pathways by which α-synuclein pathology spreads from the body to the brain.