Tissue engineering allows the design of functionally active cells within supportive bio-scaffolds to promote the development of new tissues such as cartilage and bone for the restoration of pathologically altered tiss...Tissue engineering allows the design of functionally active cells within supportive bio-scaffolds to promote the development of new tissues such as cartilage and bone for the restoration of pathologically altered tissues. However, all bone tissue engineering applications are limited by a shortage of stem cells. The adult bone marrow stroma contains a subset of nonhematopoietic cells referred to as bone marrow mesenchymal stem cells (BMSCs). BMSCs are of interest because they are easily isolated from a small aspirate of bone marrow and readily generate singlecell-derived colonies. These cells have the capacity to undergo extensive replication in an undifferentiated state ex vivo. In addition, BMSCs have the potential to develop either in vitro or in vivo into distinct mesenchymal tissues,including bone, cartilage, fat, tendon, muscle, and marrow stroma. Thus, BMSCs are an attractive cell source for tissue engineering approaches. However, BMSCs are not homogeneous and the quantity of stem cells decreases in the bone marrow in aged population. A sequential loss of lineage differentiation potential has been found in the mixed culture of bone marrow stromal cells due to a heterogenous popu- lation. Therefore, a number of studies have proposed that homogenous bone marrow stem cells can be generated from clonal culture of bone marrow cells and that BMSC clones have the greatest potential for the application of bone regeneration in vivo.展开更多
文摘Tissue engineering allows the design of functionally active cells within supportive bio-scaffolds to promote the development of new tissues such as cartilage and bone for the restoration of pathologically altered tissues. However, all bone tissue engineering applications are limited by a shortage of stem cells. The adult bone marrow stroma contains a subset of nonhematopoietic cells referred to as bone marrow mesenchymal stem cells (BMSCs). BMSCs are of interest because they are easily isolated from a small aspirate of bone marrow and readily generate singlecell-derived colonies. These cells have the capacity to undergo extensive replication in an undifferentiated state ex vivo. In addition, BMSCs have the potential to develop either in vitro or in vivo into distinct mesenchymal tissues,including bone, cartilage, fat, tendon, muscle, and marrow stroma. Thus, BMSCs are an attractive cell source for tissue engineering approaches. However, BMSCs are not homogeneous and the quantity of stem cells decreases in the bone marrow in aged population. A sequential loss of lineage differentiation potential has been found in the mixed culture of bone marrow stromal cells due to a heterogenous popu- lation. Therefore, a number of studies have proposed that homogenous bone marrow stem cells can be generated from clonal culture of bone marrow cells and that BMSC clones have the greatest potential for the application of bone regeneration in vivo.