Though atomic decomposition is a very useful tool for studying the boundedness on Hardy spaces for some sublinear operators,untill now,the boundedness of operators on weighted Hardy spaces in a multi-parameter setting...Though atomic decomposition is a very useful tool for studying the boundedness on Hardy spaces for some sublinear operators,untill now,the boundedness of operators on weighted Hardy spaces in a multi-parameter setting has been established only by almost orthogonality estimates.In this paper,we mainly establish the boundedness on weighted multi-parameter local Hardy spaces via atomic decomposition.展开更多
This paper is concerned with the parabolic-parabolic-elliptic system■in a bounded domainΩ?Rnwith a smooth boundary,where the parametersχ,ζ1,ζ2are positive constants and m≥1.Based on the coupled energy estimates,...This paper is concerned with the parabolic-parabolic-elliptic system■in a bounded domainΩ?Rnwith a smooth boundary,where the parametersχ,ζ1,ζ2are positive constants and m≥1.Based on the coupled energy estimates,the boundedness of the global classical solution is established in any dimensions(n≥1)provided that m>1.展开更多
This paper deals with the supervisory control problem of discrete event systems modeled by labeled Petri nets. The system is originally unbounded. First, the solvability of the problem is confirmed. A necessary condit...This paper deals with the supervisory control problem of discrete event systems modeled by labeled Petri nets. The system is originally unbounded. First, the solvability of the problem is confirmed. A necessary condition is given and proven for the existence of a feasible priority-based controller based on the notions of liveness and transition invariants. Next, a cyclic behavior graph is constructed, which shows the reachable markings that guarantee the maximum liveness of the system within a given bound vector. Finally, an on-line control strategy is proposed to enforce boundedness and liveness to the given system by appending priority relations to transitions. The dynamic priority relation changes flexibly according to the current state of the system and enforces the system evolving in a bounded and live manner. In addition, numerical examples are studied to verify the validity of the proposed approach that remains the structure of the plant net and is efficient for on-line control.展开更多
We study types of boundedness of a semigroup on a Banach space in terms of the Cesáro-average and the behavior of the resolvent at the origin and also exhibit a characterization of type Hille-Yosida for the gener...We study types of boundedness of a semigroup on a Banach space in terms of the Cesáro-average and the behavior of the resolvent at the origin and also exhibit a characterization of type Hille-Yosida for the generators of ϕ<sup>j</sup>-bounded strongly continuous semigroups. Furthermore, these results are used to investigate the effect of the Perturbation on the type of the growth of sequences.展开更多
Several boundedness criteria for the impulsive integro-differential systems with fixed moments of impulse effects are established, employing the method of Lyapunov functions and Razumikhin technique.
This article considers the following higher-dimensional quasilinear parabolic-parabolic-ODE chemotaxis system with generalized Logistic source and homogeneous Neumann boundary conditions{ut=∇⋅(D(u)∇u)−∇⋅(S(u)∇v)+f(u),...This article considers the following higher-dimensional quasilinear parabolic-parabolic-ODE chemotaxis system with generalized Logistic source and homogeneous Neumann boundary conditions{ut=∇⋅(D(u)∇u)−∇⋅(S(u)∇v)+f(u),x∈Ω,t>0 vt=Δv+w−v,x∈Ω,t>0,wt=u−w,x∈Ω,t>0,in a bounded domainΩ⊂R^n(n≥2)with smooth boundary ∂Ω,where the diffusion coefficient D(u)and the chemotactic sensitivity function S(u)are supposed to satisfy D(u)≥M1(u+1)^−αand S(u)≤M2(u+1)^β,respectively,where M1,M2>0 and α,β∈R.Moreover,the logistic source f(u)is supposed to satisfy f(u)≤a−μu^γ with μ>0,γ≥1,and a≥0.Asα+2β<γ−1+2γ/n,we show that the solution of the above chemotaxis system with sufficiently smooth nonnegative initial data is uniformly bounded.展开更多
For a class of linear operators including Riesz potentials on R^d with a nonnegative Radon measure μ, which only satisfies some growth condition, the authors prove that their boundedness in Lebesgue spaces is equival...For a class of linear operators including Riesz potentials on R^d with a nonnegative Radon measure μ, which only satisfies some growth condition, the authors prove that their boundedness in Lebesgue spaces is equivalent to their boundedness in the Hardy space or certain weak type endpoint estimates, respectively. As an application, the authors obtain several new end estimates.展开更多
Let L = -△Hn + V be a SchrSdinger operator on Heisenberg group Hn, where AHn is the sublaplacian and the nonnegative potential V belongs to the reverse HSlder class BQ/2 where Q is the homogeneous dimension of Hn. L...Let L = -△Hn + V be a SchrSdinger operator on Heisenberg group Hn, where AHn is the sublaplacian and the nonnegative potential V belongs to the reverse HSlder class BQ/2 where Q is the homogeneous dimension of Hn. Let T1 = (--△Hn +V)-1V, T2 = (-△Hn +V)-1/2V1/2, and T3 = (--AHn +V)-I/2△Hn, then we verify that [b, Ti], i = 1, 2, 3 are bounded on some LP(Hn), where b ∈ BMO(Hn). Note that the kernel of Ti, i = 1, 2, 3 has no smoothness.展开更多
The thermistor problem is a coupled system of nonlinear PDEs with mixed boundary conditions. The goal of this paper is to study the existence, boundedness and uniqueness of the weak solution for this problem.
It is well known that, the singular integral operatorS defined as: ifL is a closed smooth contour in the complex plane C, thenS is a bounded linear operator fromH μ(L) intoH μ(L): ifL is an open smooth curve, thenS...It is well known that, the singular integral operatorS defined as: ifL is a closed smooth contour in the complex plane C, thenS is a bounded linear operator fromH μ(L) intoH μ(L): ifL is an open smooth curve, thenS is just a linear operator fromH * intoH *. In this paper, we define a Banach space , and prove that is a bounded linear operator, then verify the boundedness of other kinds of singular integral operators.展开更多
Applying the improved Rayleigh SchrSdinger perturbation theory based on an integral equation to helium-like ions in ground states and treating electron correlations as perturbations, we obtain the second-order correct...Applying the improved Rayleigh SchrSdinger perturbation theory based on an integral equation to helium-like ions in ground states and treating electron correlations as perturbations, we obtain the second-order corrections to wavefunctions consisting of a few terms and the third-order corrections to energicity. It is demonstrated that the corrected wavefunctions are bounded and quadratically integrable, and the corresponding perturbation series is convergent. The results clear off the previous distrust for the convergence in the quantum perturbation theory and show a reciprocal development on the quantum perturbation problem of the ground state helium-like systems.展开更多
The main topic in this note is to discuss the boundedness of pseudo-differential operators and para-product nptfators on ihe Holder and Sobotev space;, respectively It is the preparation of the thoery of Gibbs - Butze...The main topic in this note is to discuss the boundedness of pseudo-differential operators and para-product nptfators on ihe Holder and Sobotev space;, respectively It is the preparation of the thoery of Gibbs - Butzer deffereftital operators and differential equations.展开更多
Lp(Rn) boundedness is considered for the higher-dimensional Marcinkiewicz integral which was introduced by Stein. Some conditions implying the Lp(Rn) boundedness for the Marcinkiewicz integral are obtained.
This work explores the predator-prey chemotaxis system with two chemicals {u_(t) = Δu + ∇ ・ (u∇v) + μ_(1)u(1 − u − α_(1)w), x ∈ Ω, t > 0,v_(t )= Δv −α_(1)v + β_(1)w, x ∈ Ω, t > 0,w_(t) = Δw − ξ∇ ・ (w...This work explores the predator-prey chemotaxis system with two chemicals {u_(t) = Δu + ∇ ・ (u∇v) + μ_(1)u(1 − u − α_(1)w), x ∈ Ω, t > 0,v_(t )= Δv −α_(1)v + β_(1)w, x ∈ Ω, t > 0,w_(t) = Δw − ξ∇ ・ (w∇z) + μ_(2)w(1 + α_(2)u − w), x ∈ Ω, t > 0,z_(t) =Δz −α_(2)z +β_(2)u, x ∈ Ω, t > 0, in an arbitrary smooth bounded domainΩ■R^(n) under homogeneous Neumann boundary conditions.The parameters in the system are positive.We first prove that if n≤3,the corresponding initial-boundary value problem admits a unique global bounded classical solution,under the assumption thatχ,ξ,μ_(i),a_(i),α_(i) andβ_(i)(i=1,2)satisfy some suitable conditions.Subsequently,we also analyse the asymptotic behavior of solutions to the above system and show that·when a_(1)<1 and bothμ1/χ^(2) andμ2/ξ^(2) are sufficiently large,the global solution(u,v,w,z)of this system exponentially converges to(1-a_(1)/1+a_(1)a_(2),β_(1)(1+a_(2))/α_(1)(1+a_(1)a_(2)),1+a_(2)/1+a_(1)a_(2),β_(2)(1-a_(1))/α_(2)(1+a_(1)a_(2)))as t→∞;·when a1>1 andμ_(2)/ξ_(2) is sufficiently large,the global bounded classical solution(u,v,w,z)of this system exponentially converges to(0,α_(1)/β_(1),1,0)as t→∞;·when a1=1 andμ_(2)/ξ_(2) is sufficiently large,the global bounded classical solution(u,v,w,z)of this system polynomially converges to(0,α_(1)/β_(1),1,0)as t→∞.展开更多
In this paper we consider the initial Neumann boundary value problem for a degenerate Keller-Segel model which features a signal-dependent non-increasing motility function.The main obstacle of analysis comes from the ...In this paper we consider the initial Neumann boundary value problem for a degenerate Keller-Segel model which features a signal-dependent non-increasing motility function.The main obstacle of analysis comes from the possible degeneracy when the signal concentration becomes unbounded.In the current work,we are interested in the boundedness and exponential stability of the classical solution in higher dimensions.With the aid of a Lyapunov functional and a delicate Alikakos-Moser type iteration,we are able to establish a time-independent upper bound of the concentration provided that the motility function decreases algebraically.Then we further prove the uniform-in-time boundedness of the solution by constructing an estimation involving a weighted energy.Finally,thanks to the Lyapunov functional again,we prove the exponential stabilization toward the spatially homogeneous steady states.Our boundedness result improves those in[1]and the exponential stabilization is obtained for the first time.展开更多
The uniformly ultimate boundedness of discontinuous systems with time-delay in the sense of Filippov solutions is discussed.Based on the Lyapunov-Krasovskii functional,the Lyapunov theorem for the globally strongly un...The uniformly ultimate boundedness of discontinuous systems with time-delay in the sense of Filippov solutions is discussed.Based on the Lyapunov-Krasovskii functional,the Lyapunov theorem for the globally strongly uniformly ultimate boundedness of retarded discontinuous systems is presented.Furthermore,the result is applied to a class of mechanical systems with a retarded discontinuous friction item.展开更多
In this paper, some results concerning the relationship between the bounded-ness of some spheres and the local boundedness of the .F*-space are presented. Moreover, some results about the compactness are also given.
In this article, the author studies the boundedness and convergence for the non-Liénard type differential equation {^·x=a(y)-f(x),^·y=b(y)β(x)-g(x)+e(t),where a(y), b(y), f(x), g(x...In this article, the author studies the boundedness and convergence for the non-Liénard type differential equation {^·x=a(y)-f(x),^·y=b(y)β(x)-g(x)+e(t),where a(y), b(y), f(x), g(x),β(x) are real continuous functions in y ∈ R or x ∈ R, β(x) ≥ 0 for all x and e(t) is a real continuous function on R^+ = {t : t ≥ 0} such that the equation has a unique solution for the initial value problem. The necessary and sufficient conditions are obtained and some of the results in the literatures are improved and extended.展开更多
文摘Though atomic decomposition is a very useful tool for studying the boundedness on Hardy spaces for some sublinear operators,untill now,the boundedness of operators on weighted Hardy spaces in a multi-parameter setting has been established only by almost orthogonality estimates.In this paper,we mainly establish the boundedness on weighted multi-parameter local Hardy spaces via atomic decomposition.
基金supported by the NSF of China(11871226)Guangdong Basic and Applied Basic Research Foundation(2020A1515010140 and 2022B1515020032)Guangzhou Science and Technology Program(202002030363)。
文摘This paper is concerned with the parabolic-parabolic-elliptic system■in a bounded domainΩ?Rnwith a smooth boundary,where the parametersχ,ζ1,ζ2are positive constants and m≥1.Based on the coupled energy estimates,the boundedness of the global classical solution is established in any dimensions(n≥1)provided that m>1.
基金the Project of Industrial Internet and Integration of Industrialization and Industrialization of Guangxi,China under Grant No.Guigong2021-37.
文摘This paper deals with the supervisory control problem of discrete event systems modeled by labeled Petri nets. The system is originally unbounded. First, the solvability of the problem is confirmed. A necessary condition is given and proven for the existence of a feasible priority-based controller based on the notions of liveness and transition invariants. Next, a cyclic behavior graph is constructed, which shows the reachable markings that guarantee the maximum liveness of the system within a given bound vector. Finally, an on-line control strategy is proposed to enforce boundedness and liveness to the given system by appending priority relations to transitions. The dynamic priority relation changes flexibly according to the current state of the system and enforces the system evolving in a bounded and live manner. In addition, numerical examples are studied to verify the validity of the proposed approach that remains the structure of the plant net and is efficient for on-line control.
文摘We study types of boundedness of a semigroup on a Banach space in terms of the Cesáro-average and the behavior of the resolvent at the origin and also exhibit a characterization of type Hille-Yosida for the generators of ϕ<sup>j</sup>-bounded strongly continuous semigroups. Furthermore, these results are used to investigate the effect of the Perturbation on the type of the growth of sequences.
文摘Several boundedness criteria for the impulsive integro-differential systems with fixed moments of impulse effects are established, employing the method of Lyapunov functions and Razumikhin technique.
基金This work is supported by the Youth Doctor Science and Technology Talent Training Project of Xinjiang Uygur Autonomous Region(2017Q087).
文摘This article considers the following higher-dimensional quasilinear parabolic-parabolic-ODE chemotaxis system with generalized Logistic source and homogeneous Neumann boundary conditions{ut=∇⋅(D(u)∇u)−∇⋅(S(u)∇v)+f(u),x∈Ω,t>0 vt=Δv+w−v,x∈Ω,t>0,wt=u−w,x∈Ω,t>0,in a bounded domainΩ⊂R^n(n≥2)with smooth boundary ∂Ω,where the diffusion coefficient D(u)and the chemotactic sensitivity function S(u)are supposed to satisfy D(u)≥M1(u+1)^−αand S(u)≤M2(u+1)^β,respectively,where M1,M2>0 and α,β∈R.Moreover,the logistic source f(u)is supposed to satisfy f(u)≤a−μu^γ with μ>0,γ≥1,and a≥0.Asα+2β<γ−1+2γ/n,we show that the solution of the above chemotaxis system with sufficiently smooth nonnegative initial data is uniformly bounded.
基金Program for New Century Excellent Talents in University(NCET-04-0142)of China
文摘For a class of linear operators including Riesz potentials on R^d with a nonnegative Radon measure μ, which only satisfies some growth condition, the authors prove that their boundedness in Lebesgue spaces is equivalent to their boundedness in the Hardy space or certain weak type endpoint estimates, respectively. As an application, the authors obtain several new end estimates.
基金supported by NSFC 11171203, S2011040004131STU Scientific Research Foundation for Talents TNF 10026+1 种基金supported by NSFC No.10990012,10926179RFDP of China No.200800010009
文摘Let L = -△Hn + V be a SchrSdinger operator on Heisenberg group Hn, where AHn is the sublaplacian and the nonnegative potential V belongs to the reverse HSlder class BQ/2 where Q is the homogeneous dimension of Hn. Let T1 = (--△Hn +V)-1V, T2 = (-△Hn +V)-1/2V1/2, and T3 = (--AHn +V)-I/2△Hn, then we verify that [b, Ti], i = 1, 2, 3 are bounded on some LP(Hn), where b ∈ BMO(Hn). Note that the kernel of Ti, i = 1, 2, 3 has no smoothness.
文摘The thermistor problem is a coupled system of nonlinear PDEs with mixed boundary conditions. The goal of this paper is to study the existence, boundedness and uniqueness of the weak solution for this problem.
文摘It is well known that, the singular integral operatorS defined as: ifL is a closed smooth contour in the complex plane C, thenS is a bounded linear operator fromH μ(L) intoH μ(L): ifL is an open smooth curve, thenS is just a linear operator fromH * intoH *. In this paper, we define a Banach space , and prove that is a bounded linear operator, then verify the boundedness of other kinds of singular integral operators.
基金supported by the National Natural Science Foundation of China (Grant No 10575034)the Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics of China (Grant No T152504)
文摘Applying the improved Rayleigh SchrSdinger perturbation theory based on an integral equation to helium-like ions in ground states and treating electron correlations as perturbations, we obtain the second-order corrections to wavefunctions consisting of a few terms and the third-order corrections to energicity. It is demonstrated that the corrected wavefunctions are bounded and quadratically integrable, and the corresponding perturbation series is convergent. The results clear off the previous distrust for the convergence in the quantum perturbation theory and show a reciprocal development on the quantum perturbation problem of the ground state helium-like systems.
文摘The main topic in this note is to discuss the boundedness of pseudo-differential operators and para-product nptfators on ihe Holder and Sobotev space;, respectively It is the preparation of the thoery of Gibbs - Butzer deffereftital operators and differential equations.
基金The research was supported by the NSF of Henan Province.
文摘Lp(Rn) boundedness is considered for the higher-dimensional Marcinkiewicz integral which was introduced by Stein. Some conditions implying the Lp(Rn) boundedness for the Marcinkiewicz integral are obtained.
基金supported by the Young Scholars Development Fund of SWPU(202199010087)the Scientific Research Starting Project of SWPU(2021QHZ016)+2 种基金supported by the National Natural Science Foundation of China(11771062and 11971082)the Fundamental Research Funds for the Central Universities(2019CDJCYJ001)Chongqing Key Laboratory of Analytic Mathematics and Applications。
文摘This work explores the predator-prey chemotaxis system with two chemicals {u_(t) = Δu + ∇ ・ (u∇v) + μ_(1)u(1 − u − α_(1)w), x ∈ Ω, t > 0,v_(t )= Δv −α_(1)v + β_(1)w, x ∈ Ω, t > 0,w_(t) = Δw − ξ∇ ・ (w∇z) + μ_(2)w(1 + α_(2)u − w), x ∈ Ω, t > 0,z_(t) =Δz −α_(2)z +β_(2)u, x ∈ Ω, t > 0, in an arbitrary smooth bounded domainΩ■R^(n) under homogeneous Neumann boundary conditions.The parameters in the system are positive.We first prove that if n≤3,the corresponding initial-boundary value problem admits a unique global bounded classical solution,under the assumption thatχ,ξ,μ_(i),a_(i),α_(i) andβ_(i)(i=1,2)satisfy some suitable conditions.Subsequently,we also analyse the asymptotic behavior of solutions to the above system and show that·when a_(1)<1 and bothμ1/χ^(2) andμ2/ξ^(2) are sufficiently large,the global solution(u,v,w,z)of this system exponentially converges to(1-a_(1)/1+a_(1)a_(2),β_(1)(1+a_(2))/α_(1)(1+a_(1)a_(2)),1+a_(2)/1+a_(1)a_(2),β_(2)(1-a_(1))/α_(2)(1+a_(1)a_(2)))as t→∞;·when a1>1 andμ_(2)/ξ_(2) is sufficiently large,the global bounded classical solution(u,v,w,z)of this system exponentially converges to(0,α_(1)/β_(1),1,0)as t→∞;·when a1=1 andμ_(2)/ξ_(2) is sufficiently large,the global bounded classical solution(u,v,w,z)of this system polynomially converges to(0,α_(1)/β_(1),1,0)as t→∞.
基金supported by Hubei Provincial Natural Science Foundation(2020CFB602).
文摘In this paper we consider the initial Neumann boundary value problem for a degenerate Keller-Segel model which features a signal-dependent non-increasing motility function.The main obstacle of analysis comes from the possible degeneracy when the signal concentration becomes unbounded.In the current work,we are interested in the boundedness and exponential stability of the classical solution in higher dimensions.With the aid of a Lyapunov functional and a delicate Alikakos-Moser type iteration,we are able to establish a time-independent upper bound of the concentration provided that the motility function decreases algebraically.Then we further prove the uniform-in-time boundedness of the solution by constructing an estimation involving a weighted energy.Finally,thanks to the Lyapunov functional again,we prove the exponential stabilization toward the spatially homogeneous steady states.Our boundedness result improves those in[1]and the exponential stabilization is obtained for the first time.
基金supported by the National Natural Science Foundation of China (No. 60874006)
文摘The uniformly ultimate boundedness of discontinuous systems with time-delay in the sense of Filippov solutions is discussed.Based on the Lyapunov-Krasovskii functional,the Lyapunov theorem for the globally strongly uniformly ultimate boundedness of retarded discontinuous systems is presented.Furthermore,the result is applied to a class of mechanical systems with a retarded discontinuous friction item.
基金This research is supported by National Natural Science Foundation of China(19971046) RFDP(2001005513)
文摘In this paper, some results concerning the relationship between the bounded-ness of some spheres and the local boundedness of the .F*-space are presented. Moreover, some results about the compactness are also given.
基金The project is sponsored by National Science Foundation of China (10671020)
文摘In this article, the author studies the boundedness and convergence for the non-Liénard type differential equation {^·x=a(y)-f(x),^·y=b(y)β(x)-g(x)+e(t),where a(y), b(y), f(x), g(x),β(x) are real continuous functions in y ∈ R or x ∈ R, β(x) ≥ 0 for all x and e(t) is a real continuous function on R^+ = {t : t ≥ 0} such that the equation has a unique solution for the initial value problem. The necessary and sufficient conditions are obtained and some of the results in the literatures are improved and extended.