Objective:To optimize the extraction process of total flavones in Trichosanthis Fructus(composed of Trichosanthis pericarpium and Trichosanthis semen in certain proportion).Methods:The effects of the mixture ratio of ...Objective:To optimize the extraction process of total flavones in Trichosanthis Fructus(composed of Trichosanthis pericarpium and Trichosanthis semen in certain proportion).Methods:The effects of the mixture ratio of Trichosanthis pericarpium and Trichosanthis semen,ethanol concentration,ultrasonic extraction time and extraction temperature on the extraction rate of total flavonoids in Trichosanthis Fructus were investigated.The extraction process of total flavonoids in Trichosanthis Fructus was optimized by Box-Behnken response surface method combined with differential spectrophotometry.Results:The optimum extraction conditions of total flavonoids in Trichosanthis Fructus were as follows:The mixture ratio of Trichosanthis pericarpium and Trichosanthis semen was 4:6,the ethanol concentration was 70%,the ultrasonic extraction time was 60min and the extraction temperature was 40℃.Conclusion:Box-Behnken response surface method combined with differential spectrophotometry can optimize the extraction process of total flavonoids from Trichosanthis Fructus,which can provide reference for the extraction and application of total flavonoids in Trichosanthis Fructus.展开更多
Objective:The Box-Behnken response surface method combined with fingerprints was used to optimize the extraction process of total anthraquinone from Cassia seeds.Methods:A three-factor,three-level response surface tes...Objective:The Box-Behnken response surface method combined with fingerprints was used to optimize the extraction process of total anthraquinone from Cassia seeds.Methods:A three-factor,three-level response surface test was conducted based on the single-factor test with comprehensive evaluation as the measurement index.The comprehensive evaluation indexes included the extraction rate of total anthraquinone of Cassia seeds or the equivalent amount of herbs per gram of total anthraquinone of Cassia seeds,the normalized value of peak areas of 5 index components such as aurantio obtusin in the fingerprint of each sample to 16 shared peaks and the similarity of fingerprints(the reference fingerprint was established by the extraction solvent for the determination of Cassia seeds content in the Chinese Pharmacopoeia 2020 edition)with the weights of 0.2,0.5 and 0.3,respectively.Results:The best extraction process was obtained:the liquid-to-material ratio was 20:1(mL·g-1),the extraction solvent was mixture of 60%ethanol-ethyl acetate(2:1),and the extraction time was 15.12 min.The results of five sets of validation experiments showed that the overall evaluation of total anthraquinone of cassia seeds by the best process was 0.528(RSD=0.45%),and the prediction result of response surface method model was 0.531,and the relative error with the prediction result was 0.531.The relative error of the predicted results was 0.56%,and the best extraction process was consistent with the model prediction,and the obtained best process could be used for the extraction of total anthraquinone from Cassia seeds.Conclusion:The Box-Behnken response surface method combined with the fingerprint technique can be used to find the best reaction conditions and examine the interactions among the factors in a comprehensive and accurate manner,which can provide reference for the optimization and evaluation of the extraction process of Chinese medicine.展开更多
This research introduces a novel approach to enhancing bucket elevator design and operation through the integration of discrete element method(DEM)simulation,design of experiments(DOE),and metaheuristic optimization a...This research introduces a novel approach to enhancing bucket elevator design and operation through the integration of discrete element method(DEM)simulation,design of experiments(DOE),and metaheuristic optimization algorithms.Specifically,the study employs the firefly algorithm(FA),a metaheuristic optimization technique,to optimize bucket elevator parameters for maximizing transport mass and mass flow rate discharge of granular materials under specified working conditions.The experimental methodology involves several key steps:screening experiments to identify significant factors affecting bucket elevator operation,central composite design(CCD)experiments to further explore these factors,and response surface methodology(RSM)to create predictive models for transport mass and mass flow rate discharge.The FA algorithm is then applied to optimize these models,and the results are validated through simulation and empirical experiments.The study validates the optimized parameters through simulation and empirical experiments,comparing results with DEM simulation.The outcomes demonstrate the effectiveness of the FA algorithm in identifying optimal bucket parameters,showcasing less than 10%and 15%deviation for transport mass and mass flow rate discharge,respectively,between predicted and actual values.Overall,this research provides insights into the critical factors influencing bucket elevator operation and offers a systematic methodology for optimizing bucket parameters,contributing to more efficient material handling in various industrial applications.展开更多
In order to comprehensively utilize the remaining bamboo residue of bamboo products,this paper presents a research on recycling the bamboo fibers from bamboo residue for improving the performance of the asphalt mixtur...In order to comprehensively utilize the remaining bamboo residue of bamboo products,this paper presents a research on recycling the bamboo fibers from bamboo residue for improving the performance of the asphalt mixtures.First of all,the basic performance parameters of sinocalamus affinis fiber,phyllostachys pubescens fiber,green bamboo fiber were tested and analyzed,and the optimal content and length were put forward.Then,the mix ratio design of the bamboo fiber modified asphalt mixture was further designed through the response surface method,and was verified the rationality of the mix ratio.Finally,the mixture specimens were made according to the experimental design mix ratio,and the high temperature,low temperature performance and moisture susceptibility of the bamboo fiber modified mixtures asphalt were tested.The results showed that the high temperature performance,low temperature performance and moisture susceptibility of bamboo fiber modified asphalt mixtures were improved compared with the performance of SBS modified asphalt mixture.When the length of bamboo fiber is 7.25 mm and the content of 0.22%,the road performance of the asphalt mixture was optimal.Consequentially,the decomposition of bamboo residue into bamboo fiber and its application in asphalt pavement can improve the reuse of bamboo waste,with remarkable environmental benefits and great promotion value.展开更多
In this paper,the effects of different influencing factors and factor interaction on the compressive strength and permeability of recycled aggregate pervious concrete(RAPC)were studied based on the response surface me...In this paper,the effects of different influencing factors and factor interaction on the compressive strength and permeability of recycled aggregate pervious concrete(RAPC)were studied based on the response surface method(RSM).By selecting the maximum aggregate size,water cement ratio and target porosity as design variables,combined with laboratory tests and numerical analysis,the influences of three factors on the compressive strength and permeability coefficient of RAPC were revealed.The regression equation of compressive strength and permeability coefficient of recycled aggregate pervious concrete were established based on RSM,and the response surface model was optimized to determine the optimal ratio of RAPC under the conditions of meeting the mechanical and permeability properties.The results show that the mismatch item of the model is not significant,the model is credible,and the accuracy and reliability of the test are high,but the degree of uncorrelation between the test data and the model is not obvious.The sensitivity of the three factors to the compressive strength is water cement ratio>maximum coarse aggregate particle size>target porosity,and the sensitivity to the permeability coefficient is target porosity>maximum coarse aggregate particle size>water cement ratio.The absolute errors of the model prediction results and the model optimization results are 1.28 MPa and 0.19 mm/s,and the relative errors are 5.06%and 4.19%,respectively.With high accuracy,RSM can match the measured results of compressive strength and permeability coefficient of RAPC.展开更多
[Objectives]Laoshan black tea was subjected to supercritical CO_(2) extraction. [Methods]The extraction conditions of Laoshan black tea were studied by an orthogonal experiment and optimized by response surface method...[Objectives]Laoshan black tea was subjected to supercritical CO_(2) extraction. [Methods]The extraction conditions of Laoshan black tea were studied by an orthogonal experiment and optimized by response surface methodology. [Results] The optimum extraction conditions of black tea extract by supercritical CO_(2) extraction were as follows: extraction pressure 23.53 MPa, extraction time 1.73 h, and extraction temperature 49.75 ℃, with which the extract yield could reach 5.15% theoretically. [Conclusions] Based on the traditional extraction process, a supercritical extraction method optimized by response surface methodology and a unique extraction process were formed, which enriches the extraction processes and methods of natural raw materials.展开更多
Gymnodimine (GYM), a fast-acting marine toxin, is destructive to aquaculture and human health through contaminated shellfish. The current detection methods in GYM have definite drawbacks in operation, such as the dema...Gymnodimine (GYM), a fast-acting marine toxin, is destructive to aquaculture and human health through contaminated shellfish. The current detection methods in GYM have definite drawbacks in operation, such as the demand for delicate instruments and the consumption of time. Therefore, silver colloid was utilized as a surface-enhanced Raman scattering (SERS) desirable substrate for sensitive and rapid detection of GYM in lake and shellfish samples. The theoretical spectrum of GYM is calculated by density functional theory (DFT), and the substrate performance is evaluated by a rhodamine 6 G probe. Under the optimal SERS experimental condition calculated by the response surface methodology, the low limit of detection of 0.105 μM with R<sup>2</sup> of 0.9873 and a broad linearity range of 0.1 - 10 μM was achieved for GYM detection. In addition, the substrate was satisfyingly applied to detect gymnodimine in the lake and shellfish matrix samples with LOD as low as 0.148 μM and 0.170 μM, respectively. These results demonstrated a promising SERS platform for detecting marine toxins in seafood for food safety and pharmaceutical research.展开更多
Objective:The objective of this study is to study the best inclusion technology of Lavender-and fennel-mixed volatile oil by beta?cyclodextrin(β-CD) and characterize the final product thereafter.Methods:Using the sat...Objective:The objective of this study is to study the best inclusion technology of Lavender-and fennel-mixed volatile oil by beta?cyclodextrin(β-CD) and characterize the final product thereafter.Methods:Using the saturated water solution method,the volatile β-CD inclusion complex was produced.The effect of volatile oil weight ratio,inclusion temperature and inclusion time on the inclusive quality was studied by measuring the yield of inclusion and inclusion rate of volatile oil as evaluation indexes.The preparation method of inclusion complex was then optimized by the Box-Behnken response surface method.The inclusion complex was characterized by ultraviolet spectrophotometry,thin-layer chromatography,thermogravimetry and differential thermal analysis,and the microscopic imaging method.Results:The optimized conditions were the weight ratio of β-CD to volatile oil was 8.13:1(g/ml).The inclusion temperature was 44°C.The inclusion time was 1 h.Conclusion:We were able to produce an inclusion complex with high inclusion rate of volatile oil and high yield of inclusion using the preparation method mentioned above.Furthermore,the method can also improve the stability of volatile oil in abnormal savda munziq.This study can provide a good reference for the development of new preparations.展开更多
Objective:To prepare the liposomes of mangrove oil,Optimization of the formulation of mangrove oil liposomes by Box Behnken response surface methodology.Methods:Preparation of Rhododendron oil liposomes by ethanol inj...Objective:To prepare the liposomes of mangrove oil,Optimization of the formulation of mangrove oil liposomes by Box Behnken response surface methodology.Methods:Preparation of Rhododendron oil liposomes by ethanol injection probe ultrasound,Determination of gemacrone by HPLC.The ratio of lecithin to cholesterol(X1),drug lipid ratio(X2)and phospholipid concentration(X3)were used as independent variables,and encapsulation efficiency(Y)was used as dependent variable,the formulation was optimized by Box Behnken response surface method,and the entrapment efficiency was predicted.The entrapment efficiency,particle size,polydispersity index(PDI),Zeta potential and drug loading of the optimized liposomes were evaluated.Results:The optimal prescription and preparation of Folium Rhododendri Daurici oil liposome was confirmed as follows:X1=7.28:1、X2=11.34:1、X3=9.32mg·mL-1,the encapsulation efficiency was(82.55±1.66)%,the particle size was(130.531±46)nm,the polydispersity index was 0.185±05,Zeta potential was(21.970±36)mV,the drug loading was(5.941±0.12)%.Conclusion:The Box Behnken response surface method is accurate to obtain the optimal formulation of mangrove oil liposomes,it has high precision and good prediction effect.And the preparation process of mangrove oil liposomes is stable and feasible.展开更多
An effective optimization method for the shape/sizing design of composite wing structures is presented with satisfying weight-cutting results. After decoupling, a kind of two-layer cycled optimization strategy suitabl...An effective optimization method for the shape/sizing design of composite wing structures is presented with satisfying weight-cutting results. After decoupling, a kind of two-layer cycled optimization strategy suitable for these integrated shape/sizing optimization is obtained. The uniform design method is used to provide sample points, and approximation models for shape design variables. And the results of sizing optimization are construct- ed with the quadratic response surface method (QRSM). The complex method based on QRSM is used to opti- mize the shape design variables and the criteria method is adopted to optimize the sizing design variables. Compared with the conventional method, the proposed algorithm is more effective and feasible for solving complex composite optimization problems and has good efficiency in weight cutting.展开更多
Due to the size effects of rockfill materials, the settlement difference between numerical simulation and in situ monitoring of rockfill dams is a topic of general concern.The constitutive model parameters obtained fr...Due to the size effects of rockfill materials, the settlement difference between numerical simulation and in situ monitoring of rockfill dams is a topic of general concern.The constitutive model parameters obtained from laboratory triaxial tests often underestimate the deformation of high rockfill dams.Therefore, constitutive model parameters obtained by back analysis were used to calculate and predict the long-term deformation of rockfill dams.Instead of using artificial neural networks (ANNs), the response surface method (RSM) was employed to replace the finite element simulation used in the optimization iteration.Only 27 training samples were required for RSM, improving computational efficiency compared with ANN, which required 300 training samples.RSM can be used to describe the relationship between the constitutive model parameters and dam settlements.The inversion results of the Shuibuya concrete face rockfill dam (CFRD) show that the calculated settlements agree with the measured data, indicating the accuracy and efficiency of RSM.展开更多
Tooth modification technique is widely used in gear industry to improve the meshing performance of gearings. However, few of the present studies on tooth modification considers the influence of inevitable random error...Tooth modification technique is widely used in gear industry to improve the meshing performance of gearings. However, few of the present studies on tooth modification considers the influence of inevitable random errors on gear modification effects. In order to investigate the uncertainties of tooth modification amount variations on system's dynamic behaviors of a helical planetary gears, an analytical dynamic model including tooth modification parameters is proposed to carry out a deterministic analysis on the dynamics of a helical planetary gear. The dynamic meshing forces as well as the dynamic transmission errors of the sun-planet 1 gear pair with and without tooth modifications are computed and compared to show the effectiveness of tooth modifications on gear dynamics enhancement. By using response surface method, a fitted regression model for the dynamic transmission error(DTE) fluctuations is established to quantify the relationship between modification amounts and DTE fluctuations. By shifting the inevitable random errors arousing from manufacturing and installing process to tooth modification amount variations, a statistical tooth modification model is developed and a methodology combining Monte Carlo simulation and response surface method is presented for uncertainty analysis of tooth modifications. The uncertainly analysis reveals that the system's dynamic behaviors do not obey the normal distribution rule even though the design variables are normally distributed. In addition, a deterministic modification amount will not definitely achieve an optimal result for both static and dynamic transmission error fluctuation reduction simultaneously.展开更多
Because of the randomness of many impact factors influencing the dynamic assembly relationship of complex machinery, the reliability analysis of dynamic assembly relationship needs to be accomplished considering the r...Because of the randomness of many impact factors influencing the dynamic assembly relationship of complex machinery, the reliability analysis of dynamic assembly relationship needs to be accomplished considering the randomness from a probabilistic perspective. To improve the accuracy and efficiency of dynamic assembly relationship reliability analysis, the mechanical dynamic assembly reliability(MDAR) theory and a distributed collaborative response surface method(DCRSM) are proposed. The mathematic model of DCRSM is established based on the quadratic response surface function, and verified by the assembly relationship reliability analysis of aeroengine high pressure turbine(HPT) blade-tip radial running clearance(BTRRC). Through the comparison of the DCRSM, traditional response surface method(RSM) and Monte Carlo Method(MCM), the results show that the DCRSM is not able to accomplish the computational task which is impossible for the other methods when the number of simulation is more than 100 000 times, but also the computational precision for the DCRSM is basically consistent with the MCM and improved by 0.40-4.63% to the RSM, furthermore, the computational efficiency of DCRSM is up to about 188 times of the MCM and 55 times of the RSM under 10000 times simulations. The DCRSM is demonstrated to be a feasible and effective approach for markedly improving the computational efficiency and accuracy of MDAR analysis. Thus, the proposed research provides the promising theory and method for the MDAR design and optimization, and opens a novel research direction of probabilistic analysis for developing the high-performance and high-reliability of aeroengine.展开更多
A response surface method was employed to study the effect of α-amylase concentration, hydrolysis temperature and time on the production of high protein glutinous rice flour(HPGRF). The suspension of glutinous rice f...A response surface method was employed to study the effect of α-amylase concentration, hydrolysis temperature and time on the production of high protein glutinous rice flour(HPGRF). The suspension of glutinous rice flour(15%) that contained 6.52% protein was gelatinized and subsequently hydrolyzed by thermostable α-amylase. The hydrolysis yielded 0.144–0.222 g/g HPGRF with 29.4%–45.4% protein content. Hydrolysis time exerted a significant effect, while enzyme concentration and hydrolysis temperature showed insignificant effect on the protein content and production yield of HPGRF. The result of response surface method showed that the optimum condition for the production of HPGRF that contained at least 36% protein was treating gelatinized 15% glutinous rice flour suspension with 0.90 Kilo Novo α-amylase Unit(KNU)/g α-amylase at 80 oC for 99 min. By carrying out the predicted hydrolysis condition, HPGRF with 35.9% protein and 61.8% carbohydrates was resulted. The process yielded 0.172 g/g HPGRF. HPGRF contained higher amount of essential amino acids compared to glutinous rice flour. HPGRF had higher solubility and lower swelling power, and also showed no pasting peak compared with glutinous rice flour.展开更多
The production of biodiesel through a transesterification method produces a large amount of wastewater that contains high levels of chemical oxygen demand (COD) and oil and grease (O&G). Currently, flotation is t...The production of biodiesel through a transesterification method produces a large amount of wastewater that contains high levels of chemical oxygen demand (COD) and oil and grease (O&G). Currently, flotation is the conventional primary treatment for O&G removal prior to biological treatments. In this study, electrocoagulation (EC) was adopted to treat the biodiesel wastewater. The effects of initial pH, applied voltage, and reaction time on the EC process for the removal of COD, O&G, and suspended solids (SS) were investigated using one factor at a time experiment. Furthermore, the Box-Behnken design, an experimental design for response surface methodology (RSM), was used to create a set of 15 experimental runs needed for optimizing of the operating conditions. Quadratic regression models with estimated coefficients were developed to describe the pollutant removals. The experimental results show that EC could effectively reduce COD, O&G, and SS by 55.43%, 98.42%, and 96.59%, respectively, at the optimum conditions of pH 6.06, applied voltage 18.2 V, and reaction time 23.5 min. The experimental observations were in reasonable agreement with the modeled values.展开更多
In order to present a new method for analyzing the reliability of a two-link flexible robot manipulator,Lagrange dynamics differential equations of the two-link flexible robot manipulator were established by using the...In order to present a new method for analyzing the reliability of a two-link flexible robot manipulator,Lagrange dynamics differential equations of the two-link flexible robot manipulator were established by using the integrated modal method and the multi-body system dynamics method.By using the Monte Carlo method,the random sample values of the dynamic parameters were obtained and Lagrange dynamics differential equations were solved for each random sample value which revealed their displacement,speed and acceleration.On this basis,dynamic stresses and deformations were obtained.By taking the maximum values of the stresses and the deformations as output responses and the random sample values of dynamic parameters as input quantities,extremum response surface functions were established.A number of random samples were then obtained by using the Monte Carlo method and then the reliability was analyzed by using the extremum response surface method.The results show that the extremum response surface method is an efficient and fast reliability analysis method with high-accuracy for the two-link flexible robot manipulator.展开更多
A proper weapon system is very important for a na- tional defense system. Generally, it means selecting the optimal weapon system among many alternatives, which is a multiple- attribute decision making (MADM) proble...A proper weapon system is very important for a na- tional defense system. Generally, it means selecting the optimal weapon system among many alternatives, which is a multiple- attribute decision making (MADM) problem. This paper proposes a new mathematical model based on the response surface method (RSM) and the grey relational analysis (GRA). RSM is used to obtain the experimental points and analyze the factors that have a significant impact on the selection results. GRA is used to an- alyze the trend relationship between alternatives and reference series. And then an RSM model is obtained, which can be used to calculate all alternatives and obtain ranking results. A real world application is introduced to illustrate the utilization of the model for the weapon selection problem. The results show that this model can be used to help decision-makers to make a quick comparison of alternatives and select a proper weapon system from multiple alternatives, which is an effective and adaptable method for solving the weapon system selection problem.展开更多
As water depth increases, the structural safety and reliability of a system become more and more important and challenging. Therefore, the structural reliability method must be applied in ocean engineering design such...As water depth increases, the structural safety and reliability of a system become more and more important and challenging. Therefore, the structural reliability method must be applied in ocean engineering design such as offshore platform design. If the performance function is known in structural reliability analysis, the first-order second-moment method is often used. If the performance function could not be definitely expressed, the response surface method is always used because it has a very clear train of thought and simple programming. However, the traditional response surface method fits the response surface of quadratic polynomials where the problem of accuracy could not be solved, because the true limit state surface can be fitted well only in the area near the checking point. In this paper, an intelligent computing method based on the whole response surface is proposed, which can be used for the situation where the performance function could not be definitely expressed in structural reliability analysis. In this method, a response surface of the fuzzy neural network for the whole area should be constructed first, and then the structural reliability can be calculated by the genetic algorithm. In the proposed method, all the sample points for the training network come from the whole area, so the true limit state surface in the whole area can be fitted. Through calculational examples and comparative analysis, it can be known that the proposed method is much better than the traditional response surface method of quadratic polynomials, because, the amount of calculation of finite element analysis is largely reduced, the accuracy of calculation is improved, and the true limit state surface can be fitted very well in the whole area. So, the method proposed in this paper is suitable for engineering application.展开更多
Friction stir welding between AA5052-H32aluminium plates is performed by central composite design technique of response surface methodology.It is found that the welding parameters such as tool pin profile,tool rotatio...Friction stir welding between AA5052-H32aluminium plates is performed by central composite design technique of response surface methodology.It is found that the welding parameters such as tool pin profile,tool rotational speed,welding speed,and tool tilt angle play a major role in deciding the joint characteristics.The joints fabricated using tapered square pin profile tool with a tool rotational speed of600r/min,welding speed of65mm/min,and tool tilt angle of1.5°result in an unexpected weld efficiency of93.51%.Mathematical models are developed to map the correlation between the parameters and responses(ultimate tensile strength and elongation)and these models are optimized to maximize the ultimate tensile strength of the friction stir welded joint.Response plots generated from the mathematical models are used to interpret the interaction effects of the welding parameters on the response variables.Adequacy of the developed models is validated using analysis of variance(ANOVA)technique.Results from the confirmatory experiments plotted in scatter diagram show a good agreement with predicted models.Different grain structures in various zones of the weld are examined by observing the micro and macro structures of the weld.展开更多
An approach of limit state equation for surrounding rock was put forward based on deformation criterion. A method of symmetrical sampling of basic random variables adopted by classical response surface method was mend...An approach of limit state equation for surrounding rock was put forward based on deformation criterion. A method of symmetrical sampling of basic random variables adopted by classical response surface method was mended, and peak value and deflection degree of basic random variables distribution curve were took into account in the mended sampling method. A calculation way of probability moment, based on mended Rosenbluth method, suitable for non-explicit performance function was put forward. The first, second, third and fourth order moments of functional function value were calculated by mended Rosenbluth method through the first, second, third and fourth order moments of basic random variable. A probability density the function(PDF) of functional function was deduced through its first, second, third and fourth moments, the PDF in the new method took the place of the method of quadratic polynomial to approximate real functional function and reliability probability was calculated through integral by the PDF for random variable of functional function value in the new method. The result shows that the improved response surface method can adapt to various statistic distribution types of basic random variables, its calculation process is legible and need not itemtive circulation. In addition, a stability probability of surrounding rock for a tunnel was calculated by the improved method, whose workload is only 30% of classical method and its accuracy is comparative.展开更多
基金Anhui Universities Provincial Key Project of Natural Science Research(No.KJ2016SD60,KJ2015ZD41)。
文摘Objective:To optimize the extraction process of total flavones in Trichosanthis Fructus(composed of Trichosanthis pericarpium and Trichosanthis semen in certain proportion).Methods:The effects of the mixture ratio of Trichosanthis pericarpium and Trichosanthis semen,ethanol concentration,ultrasonic extraction time and extraction temperature on the extraction rate of total flavonoids in Trichosanthis Fructus were investigated.The extraction process of total flavonoids in Trichosanthis Fructus was optimized by Box-Behnken response surface method combined with differential spectrophotometry.Results:The optimum extraction conditions of total flavonoids in Trichosanthis Fructus were as follows:The mixture ratio of Trichosanthis pericarpium and Trichosanthis semen was 4:6,the ethanol concentration was 70%,the ultrasonic extraction time was 60min and the extraction temperature was 40℃.Conclusion:Box-Behnken response surface method combined with differential spectrophotometry can optimize the extraction process of total flavonoids from Trichosanthis Fructus,which can provide reference for the extraction and application of total flavonoids in Trichosanthis Fructus.
基金2018 Anhui Provincial Quality Engineering Project(No.2018jyxm1273)Major Provincial Natural Science Research Project of Anhui Universities(No.KJ2016SD60)2021 Anhui University Students’Innovation and Entrepreneurship Plan Project。
文摘Objective:The Box-Behnken response surface method combined with fingerprints was used to optimize the extraction process of total anthraquinone from Cassia seeds.Methods:A three-factor,three-level response surface test was conducted based on the single-factor test with comprehensive evaluation as the measurement index.The comprehensive evaluation indexes included the extraction rate of total anthraquinone of Cassia seeds or the equivalent amount of herbs per gram of total anthraquinone of Cassia seeds,the normalized value of peak areas of 5 index components such as aurantio obtusin in the fingerprint of each sample to 16 shared peaks and the similarity of fingerprints(the reference fingerprint was established by the extraction solvent for the determination of Cassia seeds content in the Chinese Pharmacopoeia 2020 edition)with the weights of 0.2,0.5 and 0.3,respectively.Results:The best extraction process was obtained:the liquid-to-material ratio was 20:1(mL·g-1),the extraction solvent was mixture of 60%ethanol-ethyl acetate(2:1),and the extraction time was 15.12 min.The results of five sets of validation experiments showed that the overall evaluation of total anthraquinone of cassia seeds by the best process was 0.528(RSD=0.45%),and the prediction result of response surface method model was 0.531,and the relative error with the prediction result was 0.531.The relative error of the predicted results was 0.56%,and the best extraction process was consistent with the model prediction,and the obtained best process could be used for the extraction of total anthraquinone from Cassia seeds.Conclusion:The Box-Behnken response surface method combined with the fingerprint technique can be used to find the best reaction conditions and examine the interactions among the factors in a comprehensive and accurate manner,which can provide reference for the optimization and evaluation of the extraction process of Chinese medicine.
基金This research was funded by the Faculty of Engineering,King Mongkut’s University of Technology North Bangkok.Contract No.ENG-NEW-66-39.
文摘This research introduces a novel approach to enhancing bucket elevator design and operation through the integration of discrete element method(DEM)simulation,design of experiments(DOE),and metaheuristic optimization algorithms.Specifically,the study employs the firefly algorithm(FA),a metaheuristic optimization technique,to optimize bucket elevator parameters for maximizing transport mass and mass flow rate discharge of granular materials under specified working conditions.The experimental methodology involves several key steps:screening experiments to identify significant factors affecting bucket elevator operation,central composite design(CCD)experiments to further explore these factors,and response surface methodology(RSM)to create predictive models for transport mass and mass flow rate discharge.The FA algorithm is then applied to optimize these models,and the results are validated through simulation and empirical experiments.The study validates the optimized parameters through simulation and empirical experiments,comparing results with DEM simulation.The outcomes demonstrate the effectiveness of the FA algorithm in identifying optimal bucket parameters,showcasing less than 10%and 15%deviation for transport mass and mass flow rate discharge,respectively,between predicted and actual values.Overall,this research provides insights into the critical factors influencing bucket elevator operation and offers a systematic methodology for optimizing bucket parameters,contributing to more efficient material handling in various industrial applications.
基金Funded by the Key Research and Development Projects in Shaanxi Province(No.2022SF-328)Science and Technology Project of Shaanxi Department of Transportation(Nos.19-10K,19-28K)Science and Technology Project of Henan Department of Transportation(No.2020J-2-3)。
文摘In order to comprehensively utilize the remaining bamboo residue of bamboo products,this paper presents a research on recycling the bamboo fibers from bamboo residue for improving the performance of the asphalt mixtures.First of all,the basic performance parameters of sinocalamus affinis fiber,phyllostachys pubescens fiber,green bamboo fiber were tested and analyzed,and the optimal content and length were put forward.Then,the mix ratio design of the bamboo fiber modified asphalt mixture was further designed through the response surface method,and was verified the rationality of the mix ratio.Finally,the mixture specimens were made according to the experimental design mix ratio,and the high temperature,low temperature performance and moisture susceptibility of the bamboo fiber modified mixtures asphalt were tested.The results showed that the high temperature performance,low temperature performance and moisture susceptibility of bamboo fiber modified asphalt mixtures were improved compared with the performance of SBS modified asphalt mixture.When the length of bamboo fiber is 7.25 mm and the content of 0.22%,the road performance of the asphalt mixture was optimal.Consequentially,the decomposition of bamboo residue into bamboo fiber and its application in asphalt pavement can improve the reuse of bamboo waste,with remarkable environmental benefits and great promotion value.
基金supported by the Jiangsu Water Conservancy Science and Technology Project of China(2016036).
文摘In this paper,the effects of different influencing factors and factor interaction on the compressive strength and permeability of recycled aggregate pervious concrete(RAPC)were studied based on the response surface method(RSM).By selecting the maximum aggregate size,water cement ratio and target porosity as design variables,combined with laboratory tests and numerical analysis,the influences of three factors on the compressive strength and permeability coefficient of RAPC were revealed.The regression equation of compressive strength and permeability coefficient of recycled aggregate pervious concrete were established based on RSM,and the response surface model was optimized to determine the optimal ratio of RAPC under the conditions of meeting the mechanical and permeability properties.The results show that the mismatch item of the model is not significant,the model is credible,and the accuracy and reliability of the test are high,but the degree of uncorrelation between the test data and the model is not obvious.The sensitivity of the three factors to the compressive strength is water cement ratio>maximum coarse aggregate particle size>target porosity,and the sensitivity to the permeability coefficient is target porosity>maximum coarse aggregate particle size>water cement ratio.The absolute errors of the model prediction results and the model optimization results are 1.28 MPa and 0.19 mm/s,and the relative errors are 5.06%and 4.19%,respectively.With high accuracy,RSM can match the measured results of compressive strength and permeability coefficient of RAPC.
文摘[Objectives]Laoshan black tea was subjected to supercritical CO_(2) extraction. [Methods]The extraction conditions of Laoshan black tea were studied by an orthogonal experiment and optimized by response surface methodology. [Results] The optimum extraction conditions of black tea extract by supercritical CO_(2) extraction were as follows: extraction pressure 23.53 MPa, extraction time 1.73 h, and extraction temperature 49.75 ℃, with which the extract yield could reach 5.15% theoretically. [Conclusions] Based on the traditional extraction process, a supercritical extraction method optimized by response surface methodology and a unique extraction process were formed, which enriches the extraction processes and methods of natural raw materials.
文摘Gymnodimine (GYM), a fast-acting marine toxin, is destructive to aquaculture and human health through contaminated shellfish. The current detection methods in GYM have definite drawbacks in operation, such as the demand for delicate instruments and the consumption of time. Therefore, silver colloid was utilized as a surface-enhanced Raman scattering (SERS) desirable substrate for sensitive and rapid detection of GYM in lake and shellfish samples. The theoretical spectrum of GYM is calculated by density functional theory (DFT), and the substrate performance is evaluated by a rhodamine 6 G probe. Under the optimal SERS experimental condition calculated by the response surface methodology, the low limit of detection of 0.105 μM with R<sup>2</sup> of 0.9873 and a broad linearity range of 0.1 - 10 μM was achieved for GYM detection. In addition, the substrate was satisfyingly applied to detect gymnodimine in the lake and shellfish matrix samples with LOD as low as 0.148 μM and 0.170 μM, respectively. These results demonstrated a promising SERS platform for detecting marine toxins in seafood for food safety and pharmaceutical research.
基金supported by the National Natural Science Foundation of China(no:81660667)
文摘Objective:The objective of this study is to study the best inclusion technology of Lavender-and fennel-mixed volatile oil by beta?cyclodextrin(β-CD) and characterize the final product thereafter.Methods:Using the saturated water solution method,the volatile β-CD inclusion complex was produced.The effect of volatile oil weight ratio,inclusion temperature and inclusion time on the inclusive quality was studied by measuring the yield of inclusion and inclusion rate of volatile oil as evaluation indexes.The preparation method of inclusion complex was then optimized by the Box-Behnken response surface method.The inclusion complex was characterized by ultraviolet spectrophotometry,thin-layer chromatography,thermogravimetry and differential thermal analysis,and the microscopic imaging method.Results:The optimized conditions were the weight ratio of β-CD to volatile oil was 8.13:1(g/ml).The inclusion temperature was 44°C.The inclusion time was 1 h.Conclusion:We were able to produce an inclusion complex with high inclusion rate of volatile oil and high yield of inclusion using the preparation method mentioned above.Furthermore,the method can also improve the stability of volatile oil in abnormal savda munziq.This study can provide a good reference for the development of new preparations.
基金Heilongjiang Province North Medicine and Functional Food Characteristic Discipline Construction Project(No.2018-TSXK-02)Heilongjiang Provincial Department of Education Project(No.12511574)。
文摘Objective:To prepare the liposomes of mangrove oil,Optimization of the formulation of mangrove oil liposomes by Box Behnken response surface methodology.Methods:Preparation of Rhododendron oil liposomes by ethanol injection probe ultrasound,Determination of gemacrone by HPLC.The ratio of lecithin to cholesterol(X1),drug lipid ratio(X2)and phospholipid concentration(X3)were used as independent variables,and encapsulation efficiency(Y)was used as dependent variable,the formulation was optimized by Box Behnken response surface method,and the entrapment efficiency was predicted.The entrapment efficiency,particle size,polydispersity index(PDI),Zeta potential and drug loading of the optimized liposomes were evaluated.Results:The optimal prescription and preparation of Folium Rhododendri Daurici oil liposome was confirmed as follows:X1=7.28:1、X2=11.34:1、X3=9.32mg·mL-1,the encapsulation efficiency was(82.55±1.66)%,the particle size was(130.531±46)nm,the polydispersity index was 0.185±05,Zeta potential was(21.970±36)mV,the drug loading was(5.941±0.12)%.Conclusion:The Box Behnken response surface method is accurate to obtain the optimal formulation of mangrove oil liposomes,it has high precision and good prediction effect.And the preparation process of mangrove oil liposomes is stable and feasible.
文摘An effective optimization method for the shape/sizing design of composite wing structures is presented with satisfying weight-cutting results. After decoupling, a kind of two-layer cycled optimization strategy suitable for these integrated shape/sizing optimization is obtained. The uniform design method is used to provide sample points, and approximation models for shape design variables. And the results of sizing optimization are construct- ed with the quadratic response surface method (QRSM). The complex method based on QRSM is used to opti- mize the shape design variables and the criteria method is adopted to optimize the sizing design variables. Compared with the conventional method, the proposed algorithm is more effective and feasible for solving complex composite optimization problems and has good efficiency in weight cutting.
基金supported by the National Natural Science Foundation of China(Grant No.51579193)the Science and Technology Planning Project of Guizhou Province(Grant No.[2016]1154)
文摘Due to the size effects of rockfill materials, the settlement difference between numerical simulation and in situ monitoring of rockfill dams is a topic of general concern.The constitutive model parameters obtained from laboratory triaxial tests often underestimate the deformation of high rockfill dams.Therefore, constitutive model parameters obtained by back analysis were used to calculate and predict the long-term deformation of rockfill dams.Instead of using artificial neural networks (ANNs), the response surface method (RSM) was employed to replace the finite element simulation used in the optimization iteration.Only 27 training samples were required for RSM, improving computational efficiency compared with ANN, which required 300 training samples.RSM can be used to describe the relationship between the constitutive model parameters and dam settlements.The inversion results of the Shuibuya concrete face rockfill dam (CFRD) show that the calculated settlements agree with the measured data, indicating the accuracy and efficiency of RSM.
基金Supported by National Natural Science Foundation of China(Grant No.51375013)Anhui Provincial Natural Science Foundation of China(Grant No.1208085ME64)
文摘Tooth modification technique is widely used in gear industry to improve the meshing performance of gearings. However, few of the present studies on tooth modification considers the influence of inevitable random errors on gear modification effects. In order to investigate the uncertainties of tooth modification amount variations on system's dynamic behaviors of a helical planetary gears, an analytical dynamic model including tooth modification parameters is proposed to carry out a deterministic analysis on the dynamics of a helical planetary gear. The dynamic meshing forces as well as the dynamic transmission errors of the sun-planet 1 gear pair with and without tooth modifications are computed and compared to show the effectiveness of tooth modifications on gear dynamics enhancement. By using response surface method, a fitted regression model for the dynamic transmission error(DTE) fluctuations is established to quantify the relationship between modification amounts and DTE fluctuations. By shifting the inevitable random errors arousing from manufacturing and installing process to tooth modification amount variations, a statistical tooth modification model is developed and a methodology combining Monte Carlo simulation and response surface method is presented for uncertainty analysis of tooth modifications. The uncertainly analysis reveals that the system's dynamic behaviors do not obey the normal distribution rule even though the design variables are normally distributed. In addition, a deterministic modification amount will not definitely achieve an optimal result for both static and dynamic transmission error fluctuation reduction simultaneously.
基金supported by National Natural Science Foundation of China(Grant Nos.51175017,51245027)Innovation Foundation of Beihang University for PhD Graduates,China(Grant No.YWF-12-RBYJ008)Research Fund for the Doctoral Program of Higher Education of China(Grant No.20111102110011)
文摘Because of the randomness of many impact factors influencing the dynamic assembly relationship of complex machinery, the reliability analysis of dynamic assembly relationship needs to be accomplished considering the randomness from a probabilistic perspective. To improve the accuracy and efficiency of dynamic assembly relationship reliability analysis, the mechanical dynamic assembly reliability(MDAR) theory and a distributed collaborative response surface method(DCRSM) are proposed. The mathematic model of DCRSM is established based on the quadratic response surface function, and verified by the assembly relationship reliability analysis of aeroengine high pressure turbine(HPT) blade-tip radial running clearance(BTRRC). Through the comparison of the DCRSM, traditional response surface method(RSM) and Monte Carlo Method(MCM), the results show that the DCRSM is not able to accomplish the computational task which is impossible for the other methods when the number of simulation is more than 100 000 times, but also the computational precision for the DCRSM is basically consistent with the MCM and improved by 0.40-4.63% to the RSM, furthermore, the computational efficiency of DCRSM is up to about 188 times of the MCM and 55 times of the RSM under 10000 times simulations. The DCRSM is demonstrated to be a feasible and effective approach for markedly improving the computational efficiency and accuracy of MDAR analysis. Thus, the proposed research provides the promising theory and method for the MDAR design and optimization, and opens a novel research direction of probabilistic analysis for developing the high-performance and high-reliability of aeroengine.
文摘A response surface method was employed to study the effect of α-amylase concentration, hydrolysis temperature and time on the production of high protein glutinous rice flour(HPGRF). The suspension of glutinous rice flour(15%) that contained 6.52% protein was gelatinized and subsequently hydrolyzed by thermostable α-amylase. The hydrolysis yielded 0.144–0.222 g/g HPGRF with 29.4%–45.4% protein content. Hydrolysis time exerted a significant effect, while enzyme concentration and hydrolysis temperature showed insignificant effect on the protein content and production yield of HPGRF. The result of response surface method showed that the optimum condition for the production of HPGRF that contained at least 36% protein was treating gelatinized 15% glutinous rice flour suspension with 0.90 Kilo Novo α-amylase Unit(KNU)/g α-amylase at 80 oC for 99 min. By carrying out the predicted hydrolysis condition, HPGRF with 35.9% protein and 61.8% carbohydrates was resulted. The process yielded 0.172 g/g HPGRF. HPGRF contained higher amount of essential amino acids compared to glutinous rice flour. HPGRF had higher solubility and lower swelling power, and also showed no pasting peak compared with glutinous rice flour.
基金supported by the Energy Policy and Planning Office, Ministry of Energy Royal Thai Government under the grant for supporting conservation of energy
文摘The production of biodiesel through a transesterification method produces a large amount of wastewater that contains high levels of chemical oxygen demand (COD) and oil and grease (O&G). Currently, flotation is the conventional primary treatment for O&G removal prior to biological treatments. In this study, electrocoagulation (EC) was adopted to treat the biodiesel wastewater. The effects of initial pH, applied voltage, and reaction time on the EC process for the removal of COD, O&G, and suspended solids (SS) were investigated using one factor at a time experiment. Furthermore, the Box-Behnken design, an experimental design for response surface methodology (RSM), was used to create a set of 15 experimental runs needed for optimizing of the operating conditions. Quadratic regression models with estimated coefficients were developed to describe the pollutant removals. The experimental results show that EC could effectively reduce COD, O&G, and SS by 55.43%, 98.42%, and 96.59%, respectively, at the optimum conditions of pH 6.06, applied voltage 18.2 V, and reaction time 23.5 min. The experimental observations were in reasonable agreement with the modeled values.
基金Project(2006AA04Z405) supported by the National High Technology Research and Development Program of ChinaProject(3102019) supported by Beijing Municipal Natural Science Foundation,China
文摘In order to present a new method for analyzing the reliability of a two-link flexible robot manipulator,Lagrange dynamics differential equations of the two-link flexible robot manipulator were established by using the integrated modal method and the multi-body system dynamics method.By using the Monte Carlo method,the random sample values of the dynamic parameters were obtained and Lagrange dynamics differential equations were solved for each random sample value which revealed their displacement,speed and acceleration.On this basis,dynamic stresses and deformations were obtained.By taking the maximum values of the stresses and the deformations as output responses and the random sample values of dynamic parameters as input quantities,extremum response surface functions were established.A number of random samples were then obtained by using the Monte Carlo method and then the reliability was analyzed by using the extremum response surface method.The results show that the extremum response surface method is an efficient and fast reliability analysis method with high-accuracy for the two-link flexible robot manipulator.
基金supported by the National Natural Science Foundation of China(51375389)
文摘A proper weapon system is very important for a na- tional defense system. Generally, it means selecting the optimal weapon system among many alternatives, which is a multiple- attribute decision making (MADM) problem. This paper proposes a new mathematical model based on the response surface method (RSM) and the grey relational analysis (GRA). RSM is used to obtain the experimental points and analyze the factors that have a significant impact on the selection results. GRA is used to an- alyze the trend relationship between alternatives and reference series. And then an RSM model is obtained, which can be used to calculate all alternatives and obtain ranking results. A real world application is introduced to illustrate the utilization of the model for the weapon selection problem. The results show that this model can be used to help decision-makers to make a quick comparison of alternatives and select a proper weapon system from multiple alternatives, which is an effective and adaptable method for solving the weapon system selection problem.
文摘As water depth increases, the structural safety and reliability of a system become more and more important and challenging. Therefore, the structural reliability method must be applied in ocean engineering design such as offshore platform design. If the performance function is known in structural reliability analysis, the first-order second-moment method is often used. If the performance function could not be definitely expressed, the response surface method is always used because it has a very clear train of thought and simple programming. However, the traditional response surface method fits the response surface of quadratic polynomials where the problem of accuracy could not be solved, because the true limit state surface can be fitted well only in the area near the checking point. In this paper, an intelligent computing method based on the whole response surface is proposed, which can be used for the situation where the performance function could not be definitely expressed in structural reliability analysis. In this method, a response surface of the fuzzy neural network for the whole area should be constructed first, and then the structural reliability can be calculated by the genetic algorithm. In the proposed method, all the sample points for the training network come from the whole area, so the true limit state surface in the whole area can be fitted. Through calculational examples and comparative analysis, it can be known that the proposed method is much better than the traditional response surface method of quadratic polynomials, because, the amount of calculation of finite element analysis is largely reduced, the accuracy of calculation is improved, and the true limit state surface can be fitted very well in the whole area. So, the method proposed in this paper is suitable for engineering application.
文摘Friction stir welding between AA5052-H32aluminium plates is performed by central composite design technique of response surface methodology.It is found that the welding parameters such as tool pin profile,tool rotational speed,welding speed,and tool tilt angle play a major role in deciding the joint characteristics.The joints fabricated using tapered square pin profile tool with a tool rotational speed of600r/min,welding speed of65mm/min,and tool tilt angle of1.5°result in an unexpected weld efficiency of93.51%.Mathematical models are developed to map the correlation between the parameters and responses(ultimate tensile strength and elongation)and these models are optimized to maximize the ultimate tensile strength of the friction stir welded joint.Response plots generated from the mathematical models are used to interpret the interaction effects of the welding parameters on the response variables.Adequacy of the developed models is validated using analysis of variance(ANOVA)technique.Results from the confirmatory experiments plotted in scatter diagram show a good agreement with predicted models.Different grain structures in various zones of the weld are examined by observing the micro and macro structures of the weld.
基金Project(50378036) supported by the National Natural Science Foundation of China Project (200503) supported by the Foundation ofCommunications Department of Hunan Province, China
文摘An approach of limit state equation for surrounding rock was put forward based on deformation criterion. A method of symmetrical sampling of basic random variables adopted by classical response surface method was mended, and peak value and deflection degree of basic random variables distribution curve were took into account in the mended sampling method. A calculation way of probability moment, based on mended Rosenbluth method, suitable for non-explicit performance function was put forward. The first, second, third and fourth order moments of functional function value were calculated by mended Rosenbluth method through the first, second, third and fourth order moments of basic random variable. A probability density the function(PDF) of functional function was deduced through its first, second, third and fourth moments, the PDF in the new method took the place of the method of quadratic polynomial to approximate real functional function and reliability probability was calculated through integral by the PDF for random variable of functional function value in the new method. The result shows that the improved response surface method can adapt to various statistic distribution types of basic random variables, its calculation process is legible and need not itemtive circulation. In addition, a stability probability of surrounding rock for a tunnel was calculated by the improved method, whose workload is only 30% of classical method and its accuracy is comparative.