A study was performed on the long-term effect of straw incorporation on soil microbial biomass C contents, C and N dynamics in both Rothamsted and Woburn soils. The results showed that for both soils,the microbial bio...A study was performed on the long-term effect of straw incorporation on soil microbial biomass C contents, C and N dynamics in both Rothamsted and Woburn soils. The results showed that for both soils,the microbial biomass C contents were significantly different among all the treatments, and followed the sequence in treatments of straw chopped and incorporated into 10 cm (CI10) > straw burnt and incorporated into 10 cm (BI10) > straw chopped and incorporated into 20 cm (CI20) > straw burnt and incorporated into 20 cm (BI20). Laboratory incubation of soils showed that the cumulative CO2 evolution was closely related to the soil microbial biomass C content. Carbon dioxide evolution rates (CO2-C, μg (g d) -1 ) decreased rapidly in the first two weeks’ incubation, then decreased more slowly. The initial K2SO4-extractable NH4-N and NO3-N contents were low and similar in all the treatments, and all increased gradually with the incubation time. However, net N immobilization was observed in chopped treatments for Rothamsted soils during the first 4 weeks. Nevertheless, more N mineralization occurred in neatment CI10 than any other treatment at the end of incubation for both soils. The Woburn soils could more easily suffer from the leaching of nitrate because the soils were more permeable and more N was mineralized during the incubation compared to the Rothamsted soils.展开更多
Abstract: Physical, chemical and biological soil properties in surface (0-5 cm) and subsurface soil (5-15 cm) were determined in a field experiment conducted with seven treatments consisted of different combinati...Abstract: Physical, chemical and biological soil properties in surface (0-5 cm) and subsurface soil (5-15 cm) were determined in a field experiment conducted with seven treatments consisted of different combinations of fertilizer N (0, 100 and 200 kg N ha^-1), P (0, 22 and 44 kg P2O5 ha^-1) and K (0, 41 and 82 kg K2O ha^-1) applied both to summer-grown maize (Zea mays L.) and winter-grown wheat (Triticum aestivum L.) crops continuously for 37 years under irrigated subtropical conditions. Application of N, P and K significantly increased water stable aggregates and had profound effects in increasing the mean weight diameter as well as the formation of macro-aggregates, which were highest in both surface (81%) and subsurface (74%) soil layers with application of 100 kg N + 22 kg P2O5 + 41 kg K2O ha^-1 (N100P22K41). The N100P22K41 treatment also enhanced total organic C (TOC) from 4.4 g kg^-1 in no-NPK control to 4.8 g kg^-1in surface layer and from 3.3 to 4.1 g kg1 in subsurface layer leading to the 20% higher TOC stocks in 0-15 cm soil. The labile C and N fractions such as water soluble C, particulate and light fraction organic matter, potentially mineralizable N and microbial biomass were also highest under the optimized balanced application of N100P22K41. Relatively higher increase in all labile fractions of C and N as proportion of TOC and total N, respectively suggested that these are potential indicators to reflect changes in management practices long before changes in TOC and TN are detectable. These results demonstrated that optimized balanced application of N, P and K is crucial for improving soil health ensuring long-term sustainability of farming systems in semiarid subtropical soils.展开更多
Crop residues are among the main inputs that allow the organic carbon(C)and nutrients to be maintained in agricultural soil.It is an important management strategy that can improve soil fertility and enhance agricultur...Crop residues are among the main inputs that allow the organic carbon(C)and nutrients to be maintained in agricultural soil.It is an important management strategy that can improve soil fertility and enhance agricultural productivity.This work aims to evaluate the extent of the changes that may occur in the soil heterotrophic microbial communities involved in organic matter decomposition and C and nitrogen(N)mineralization after the addition of crop residues.Soil microcosm experiments were performed at 28℃ for 90 days with the addition of three crop residues with contrasting biochemical qualities:pea(Pisum sativum L.),rapeseed(Brassica napus L.),and wheat(Triticum aestivum L.).Enzyme activities,C and N mineralization,and bacterial and fungal biomasses were monitored,along with the bacterial and fungal community composition,by the highthroughput sequencing of 16 S rRNA and ITS genes.The addition of crop residues caused decreases in β-glucosidase and arylamidase activities and simultaneous enhancement of the C mineralization and net N immobilization,which were linked to changes in the soil microbial communities.The addition of crop residues decreased the bacterial and fungal biomasses 90 days after treatment and there were shifts in bacterial and fungal diversity at the phyla,order,and genera levels.Some specific orders and genera were dependent on crop residue type.For example,Chloroflexales,Inquilinus,Rubricoccus,Clitocybe,and Verticillium were identified in soils with pea residues;whereas Thermoanaerobacterales,Thermacetogenum,and Hypoxylon were enriched in soils with rapeseed residues,and Halanaerobiales,Rubrobacter,and Volutella were only present in soils with wheat residues.The findings of this study suggest that soil C and N dynamics in the presence of the crop residues were driven by the selection of specific bacterial and fungal decomposers linked to the biochemical qualities of the crop residues.If crop residue decomposition processes showed specific bacterial and fungal operational taxonomic unit(OTU)signatures,this study also suggests a strong functional redundancy that exists among soil microbial communities.展开更多
Land-use conversion and unsustainable farming practices are degrading native forest ecosystems of Ghana’s humid savannah agro-ecological zone. This study assessed the impact of land-use change on soil C and N stocks ...Land-use conversion and unsustainable farming practices are degrading native forest ecosystems of Ghana’s humid savannah agro-ecological zone. This study assessed the impact of land-use change on soil C and N stocks in different land-use systems and soil types. A total of eighty (80) composite soil samples at two depths (0 - 20 cm and 20 - 50 cm) were sampled from five land use types (Forest, Woodland savannah, Grassland, Fallow and Cropland) for laboratory analyses. Particle size distribution, bulk density, pH, SOC and TN were determined using standard procedures. Results of the study indicated that C and N stocks were significantly lower in croplands (p < 0.05) compared to other land-use systems. There were significant interactions (p < 0.05) within land-use systems, soil types, and soil depth for soil C and N stocks. Acrisol and associated soils had the highest C and N stocks. A strong positive significant correlation (p < 0.05) was observed between C and N stocks with an R<sup>2</sup> value of 0.85 and 0.93 for the 0 - 20 and 20 - 50 cm depth, respectively. Soil C and N stocks in the study area were estimated to be 34.56 kg/m<sup>2</sup> and 4.63 kg/m<sup>2</sup> for soil types and 26.89 kg/m<sup>2</sup> and 3.39 kg/m2 for land use types, respectively for the 0 to 50 cm soil depth. Our findings indicated that the conversion of native forest to arable land has significantly reduced soil C and N stocks in the top 50 cm (0.50 m) soil layer by 50.77% and 47.77%, respectively. Therefore, we conclude that land-use change, soil type, and soil depth influenced soil C and N stocks of land-use systems in the humid savannah agro-ecological zone of Ghana.展开更多
Utilization of organic nitrogen (N) is an important aspect of plant N assimilation and has potential application in sustainable agriculture. The aim of this study was to investigate the plant growth, C and N accumul...Utilization of organic nitrogen (N) is an important aspect of plant N assimilation and has potential application in sustainable agriculture. The aim of this study was to investigate the plant growth, C and N accumulation in leaves and roots of tomato seedlings in response to inorganic (NH4^+-N, NO3^-N) and organic nitrogen (Gly-N). Different forms of nitrogen (NH4^+-N, NO3^--N, Gly-N) were supplied to two tomato cultivars (Shenfen 918 and Huying 932) using a hydroponics system. The plant dry biomass, chlorophyll content, root activity, total carbon and nitrogen content in roots and leaves, and total N absorption, etc. were assayed during the cultivation. Our results showed that no significant differences in plant height, dry biomass, and total N content were found within the first 16 d among three treatments; however, significant differences in treatments on 24 d and 32 d were observed, and the order was NO3^--N 〉 Gly-N 〉 NH4^+-N. Significant differences were also observed between the two tomato cultivars. Chlorophyll contents in the two cultivars were significantly increased by the Gly-N treatment, and root activity showed a significant decrease in NHa^+-N treatment. Tomato leaf total carbon content was slightly affected by different N forms; however, total carbon in root and total nitrogen in root and leaf were promoted significantly by inorganic and organic N. Among the applied N forms, the increasing effects of the NH4^+-N treatment were larger than that of the Gly-N. In a word, different N resources resulted in different physiological effects in tomatoes. Organic nitrogen (e.g., Gly-N) can be a proper resource of plant N nutrition. Tomatoes of different genotypes had different responses under organic nitrogen (e.g., Gly-N) supplies.展开更多
Freezing can increase the emissions of carbon dioxide (CO2) and nitrous oxide (N2O) and the release of labile car- bon (C) and nitrogen (N) pools into the soil. However, there is limited knowledge about how bo...Freezing can increase the emissions of carbon dioxide (CO2) and nitrous oxide (N2O) and the release of labile car- bon (C) and nitrogen (N) pools into the soil. However, there is limited knowledge about how both emissions respond differ- ently to soil freezing and their relationships to soil properties. We evaluated the effect of intensity and duration of freezing on the emissions of CO2 and N2O, net N mineralization, microbial biomass, and extractable C and N pools in soils from a mature broadleaf and Korean pine mixed forest and an adjacent secondary white birch forest in northeastern China. These soils had different contents of microbial biomass and bulk density. Intact soil cores of 0-5 cm and 5-10 cm depth sampled from the two temperate forest floors were subjected to -8, -18, and -80℃ freezing treatments for a short (10 d) and long (145 d) duration, and then respectively incubated at 10~C for 21 d. Soil cores, incubated at 10℃ for 21 d without a pretreatment of freezing, served as control. Emissions of N20 and COz after thaw varied with forest type, soil depth, and freezing treatment. The differ- ence could be induced by the soil water-filled pore space (WFPS) during incubation and availability of substrates for N20 and CO2 production, which are released by freezing. A maximum N2O emission following thawing of frozen soils was observed at approximately 80% WFPS, whereas CO2 emission from soils after thaw significantly increased with increasing WFPS. The soil dissolved organic C just after freezing treatment and CO2 emission increased with increase of freezing duration, which paralleled with a decrease in soil microbial biomass C. The cumulative net N mineralization and net ammonification after freezing treatment as well as N2O emission were significantly affected by freezing temperature. The N2O emission was nega- tively correlated to soil pH and bulk density, but positively correlated to soil KzSO4-extractable NO3 -N content and net am- monification. The CO2 emission was positively correlated to the cumulative net N mineralization and net ammonification. From the above results, it can be reasonably concluded that for a wide range of freezing temperature and freezing duration, N2O and CO2 emissions after thaw were associated mainly with the changes in soil net N mineralization and the availability of substrate liberated by freezing as well as other soil properties that influence porosity.展开更多
Increased food demand from the rapidly growing human population has caused intensive land transition from desert to farmland in arid regions of northwest China. In this developing ecosystem, the optimized fertilizatio...Increased food demand from the rapidly growing human population has caused intensive land transition from desert to farmland in arid regions of northwest China. In this developing ecosystem, the optimized fertilization strategies are becoming an urgent need for sustainable crop productivity, efficient resources use, together with the delivery of ecosystems services including soil carbon(C) and nitrogen(N) accumulation. Through a 7-year field experiment with 9 fertilization treatments in a newly cultivated farmland, we tested whether different fertilizations had significant influences on soil C and N accumulation in this developing ecosystem, and also investigated possible mechanisms for this influence. The results showed that applying organic manure in cultivated farmland significantly increased the soil C and N accumulation rates; this influence was greater when it was combined with chemical fertilizer, accumulating 2.01 t C and 0.11 t N ha^(–1) yr^(–1) in the most successful fertilization treatment. These high rates of C and N accumulation were found associated with increased input of C and N, although the relationship between the N accumulation rate and N input was not significant. The improved soil physical properties was observed under only organic manure and integrated fertilization treatments, and the significant relationship between soil C or N and soil physical properties were also found in this study. The results suggest that in newly cultivated farmland, long term organic manure and integrated fertilization can yield significant benefits for soil C and N accumulation, and deliver additional influence on physical properties.展开更多
An oak forest and three wet meadows/fens were reinvestigated after 50 years concerning tree vitality, biomass and productivity, and soil chemistry. Sulphur and nitrogen deposition has changed dramatically during these...An oak forest and three wet meadows/fens were reinvestigated after 50 years concerning tree vitality, biomass and productivity, and soil chemistry. Sulphur and nitrogen deposition has changed dramatically during these years, and the aim was to analyse the differences in both the oak forest and the open field ecosystems. Trees were re-measured and soil profiles were resampled. Important visible changes in the oak forest were stated concerning the vitality of oaks. Aboveground there was a decrease in tree biomass, production and litter fall, but a huge increase in standing dead logs. During the years, the deposition of sulphur had decreased drastically, but nitrogen deposition was still high. Soil acidification in the forest had decreased, reflected in an increased base saturation in the forest, in spite of slightly lowered pH-values. Strongly increased amounts of exchangeable Ca and Mg now appeared in the forest soil, and a substantial transport of calcium and magnesium had obviously taken place from the forest soil to the meadow and fens during the years. However, the most important soil change was the accumulation of organic matter. The increased accumulation of organic matter in turn meant increased amounts of colloid particles and microsites for ion exchange in the soil. This favoured 2-valence base cations, and especially Ca and Mg that increased very much in all the studied ecosystems. Carbon as well as nitrogen had strongly increased in the forest, meadow and fen soils. This was interpreted as a natural result of increased vegetation growth due to high nitrogen deposition, increased global annual temperature and increased carbon dioxide concentration in air. It was concluded that the decreased deposition of sulphur had had a positive effect on soil chemistry, and that the deposition of nitrogen probably had stimulated vegetation growth in general, and contributed to increased amount of organic matter in the soils. However, in this studied oak forest, the decreased vitality and many killed trees were also suspected to be a result of high nitrogen deposition. Obviously increased tree growth was counteracted by decreased stress resistance, and increased appearance of pathogens in the oak trees.展开更多
Returning rice straw and leguminous green manure alone or in combination to soil is effective in improving soil fertility in South China.Despite the popularity of this practice,our understanding o f the underlying pro...Returning rice straw and leguminous green manure alone or in combination to soil is effective in improving soil fertility in South China.Despite the popularity of this practice,our understanding o f the underlying processes for straw and manure combined application is relatively poor.In this study,rice straw(carbon(C)/nitrogen(N)ratio of 63),green manure(hairy vetch,C/N ratio of 14),and their mixtures(C/N ratio of 25 and 35)were added into a paddy soil,and their effects on soil N availability and C or N loss under waterlogged conditions were evaluated in a 100-d incubation experiment.All plant residue treatments significantly enhanced C〇2 and CH4 emissions,but decreased N2O emission.Dissolved organic C(DOC)and N(DON)and microbial biomass C in soil and water-soluble organic C and N and mineral N in the upper aqueous layer above soil were also enhanced by all the plant residue treatments except the rice straw treatment,and soil microbial biomass N and mineral N were lower in the rice straw treatment than in the other treatments.Changes in plant residue C/N ratio,DOC/DON ratio,and cellulose content significantly affected greenhouse gas emissions and active C and N concentrations in soil.Additionally,the treatment with green manure alone yielded the largest C and N losses,and incorporation of the plant residue mixture with a C/N ratio of 35 caused the largest net global warming potential(nGWP)among the amended treatments.In conclusion,the co-incorporation of rice straw and green manure can alleviate the limitation resulting from only applying rice straw(N immobilization)or the sole application of leguminous green manure(high C and N losses),and the residue mixture with a C/N ratio of 25 is a better option because of lower nGWP.展开更多
Historical records and archaeological remains indicate that the Chinese agricultural economy changed significantly from the Warring States (475-221 BC) to Han Dynasties (206 BC-220 AD), i.e., from rice-millet base...Historical records and archaeological remains indicate that the Chinese agricultural economy changed significantly from the Warring States (475-221 BC) to Han Dynasties (206 BC-220 AD), i.e., from rice-millet based agriculture to rice-millet-wheat based agriculture. However, the variation of human diets and the inner relationship between human diets and the agricultural transition during this period remain poorly understood. In this paper, the C and N stable isotopes from human and animal bones at the Shenmingpu site (SMPS), Xichuan County, Henan Province were analyzed. If some outliers (M34, M36, M102) were excluded, the mean δ13C value ((-16.7±0.8)‰, n=15) of humans in Hart Dynasties was dramatically lower than that in the Warring States ((-12.7±0.8)‰, n=14), indicating that the cultivation of rice and wheat, especially wheat, had been more widely popularized in Han Dynasties. Meanwhile, the range of 615N values of humans (6.6‰-9.3‰) in Hart Dynasties was narrower than that of the Warring States (6.2‰-10.4‰), suggesting that the animal protein resources in human foods during Han Dynasties were more concentrated. The transition of human diets and the close relationship with the change of agricultural economy in SMPS were due to more stable society, the carryout of new agricultural policies, and the emergence of new agri- cultural tools in Han Dynasties.展开更多
Soil salinization may negatively affect microbial processes related to carbon dioxide (CO2) and nitrous oxide (N20) emissions. A short-term laboratory incubation experiment was conducted to investigate the effects...Soil salinization may negatively affect microbial processes related to carbon dioxide (CO2) and nitrous oxide (N20) emissions. A short-term laboratory incubation experiment was conducted to investigate the effects of soil electrical conductivity (EC) and moisture content on CO2 and N20 emissions from sulfate-based natural saline soils. Three separate 100-m long transects were established along the salinity gradient on a salt-affected agricultural field at Mooreton, North Dakota, USA. Surface soils were collected from four equally spaced sampling positions within each transect, at the depths of 0-15 and 15-30 cm. In the laboratory, artificial soil cores were formed combining soils from both the depths in each transect, and incubated at 60% and 90% water-filled pore space (WFPS) at 25 ~C. The measured depth-weighted EC of the saturated paste extract (ECe) across the sampling positions ranged from 0.43 to 4.65 dS m-1. Potential nitrogen (N) mineralization rate and CO2 emissions decreased with increasing soil ECe, but the relative decline in soil CO2 emissions with increasing ECe was smaller at 60% WFPS than at 90% WFPS. At 60% WFPS, soil N20 emissions decreased from 133 g N20-N kg-1 soil at ECe ( 0.50 dS m-1 to 72 μg N20-N kg-1 soil at ECe = 4.65 dS m-1. In contrast, at 90% WFPS, soil N20 emissions increased from 262 g N20-N kg-1 soil at ECe : 0.81 dS m-1 to 849 g N20-N kg-1 soil at ECe : 4.65 dS m-1, suggesting that N20 emissions were linked to both soil ECe and moisture content. Therefore, spatial variability in soil ECe and pattern of rainfall over the season need to be considered when up-scaling N20 and CO2 emissions from field to landscape scales.展开更多
The effects of carbon (C) and nitrogen (N) sources on N utilization and biosynthesis of amino acids were examined in the germinating spores of the arbuscular mycorrhizal (AM) fungus Glomus intraradices Schenck ...The effects of carbon (C) and nitrogen (N) sources on N utilization and biosynthesis of amino acids were examined in the germinating spores of the arbuscular mycorrhizal (AM) fungus Glomus intraradices Schenck & Smith after exposure to various N substrates, CO2, glucose, and/or root exudates. The N uptake and de novo biosynthesis of amino acids were analyzed using stable isotopic labeling with mass spectrometric detection. High-performance liquid chromatography-based analysis was used to measure amino acid levels. In the absence of exogenous N sources and in the presence of 25 mL L^-1 CO2, the germinating AM fungal spores utilized internal N storage as well as C skeletons derived from the degradation of storage lipids to biosynthesize the free amino acids, in which serine and glycine were produced predominantly. The concentrations of internal amino acids increased gradually as the germination time increased from 0 to 1 or 2 weeks. However, asparagine and glutamine declined to the low levels; both degraded to provide the biosynthesis of other amino acids with C and N donors. The availability of exogenous inorganic N (ammonium and nitrate) and organic N (urea, arginine, and glutamine) to the AM fungal spores using only CO2 for germination generated more than 5 times more internal free amino acids than those in the absence of exogenous N. A supply of exogenous nitrate to the AM fungal spores with only CO2 gave rise to more than 10 times more asparagine than that without exogenous N. In contrast, the extra supply of exogenous glucose to the AM fungal spores generated a significant enhancement in the uptake of exogenous N sources, with more than 3 times more free amino acids being produced than those supplied with only exogenous CO2. Meanwhile, arginine was the most abundant free amino acid produced and it was incorporated into the proteins of AM funsal spores to serve as an N storage compound.展开更多
Cover crop and nitrogen (N) fertilization may maintain soil organic matter under bioenergy perennial grass where removal of aboveground biomass for feedstock to produce cellulosic ethanol can reduce soil quality. We...Cover crop and nitrogen (N) fertilization may maintain soil organic matter under bioenergy perennial grass where removal of aboveground biomass for feedstock to produce cellulosic ethanol can reduce soil quality. We evaluated the effects of cover crops and N fertilization rates on soil organic carbon (C) (SOC), total N (STN), ammonium N (NH4-N), and nitrate N (NO3-N) contents at the 0-5, 5-15, and 15-30 cm depths under perennial bioenergy grass from 2010 to 2014 in the southeastern USA. Treatments included unbalanced combinations of perennial bioenergy grass, energy cane (Saccharum spontaneum L.) or elephant grass (Pennisetum pur- pureum Schumazh.), cover crop, crimson clover (Trifolium incarnatum L.), and N fertilization rates (0, 100, and 200 kg N ha-l). Cover crop biomass and C and N contents were greater in the treatment of energy cane with cover crop and 100 kg N ha-1 than in the treatment of energy cane and elephant grass. The SOC and STN contents at 0-5 and 5-15 cm were 9%-20% greater in the treatments of elephant grass with cover crop and with or without 100 kg N ha-1 than in most of the other treatments. The soil NO3-N content at 0--5 cm was 31%-45% greater in the treatment of energy cane with cover crop and 100 kg N ha-1 than in most of the other treatments. The SOC sequestration increased from 0.1 to 1.0 Mg C ha-1 year-1 and the STN sequestration from 0.03 to 0.11 Mg N ha-1 year-1 from 2010 to 2014 for various treatments and depths. In contrast, the soil NH4-N and NO3-N contents varied among treatments, depths, and years. Soil C and N storages can be enriched and residual NO3-N content can be reduced by using elephant grass with cover crop and with or without N fertilization at a moderate rate.展开更多
It has long been recognized that plant invasions may alter carbon (C) and nitrogen (N) cycles, but the direction and magnitude of such alterations have been rarely quantified. In this study, we quantified the effe...It has long been recognized that plant invasions may alter carbon (C) and nitrogen (N) cycles, but the direction and magnitude of such alterations have been rarely quantified. In this study, we quantified the effects caused by the invasion of a noxious exotic plant, Kalanchoe daigrernontiana (Crassulaceae), on C and N mineralization and enzymatic and microbial activities in the soil of a semiarid locality in Venezuela. We compared soil parameters associated with these processes (C and N mineralization time and the cumulative values, fluorescein diacetate hydrolytic activity, and activities of dehydrogenase, β-glucosidase, glucosaminidase, and urease) between invaded and adjacent non-invaded sites. In addition, correlations among these parameters and the soil physical-chemical properties were also examined to determine if a positive feedback exists between nutrient availability and K. daigremontiana invasion. Overall, our results showed that C mineralization and transformation of organic compounds to NH4^+ were favored at sites colonized by K. daigrernontiana. With this species, we found the highest cumulative amounts of NH4^+-N and C and the lowest mineralization time. These results could be explained by higher activities of urease and glueosaminidase in soils under the influence of K. daigremontiana. In addition, higher amounts of organic matter and moisture content in invaded soils might favor C and N mineralization. In conclusion, invasion of Neotropical semiarid zones by K. daigrernontiana may influence the chemical and biological properties of the soils covered by this species, increasing nutrient bioavailability, which, in time, can facilitate the invasion process.展开更多
Here we studied whether soil systems differ if they are under the influence of live(plants)or dead organic matter systems(nest)in terms of C and N mineralization,microbiological characteristics and nematode trophic gr...Here we studied whether soil systems differ if they are under the influence of live(plants)or dead organic matter systems(nest)in terms of C and N mineralization,microbiological characteristics and nematode trophic group structure.We analyzed physicochemical and microbiological properties of soils inside and outside nests of the European shag(Phalacrocorax aristotelis L.)on the Cies Islands(NW Spain).We sampled fresh soil below dead(nests)and live organic matter(plants)(paired samples,n=7).Soil of nests had lower organic matter and higher electric conductivity and dissolved organic C and extractable N contents than the soil of plants.Microbial biomass and activity were greater in soil of nests than in soil of plants.The abundance of nematode trophic groups(bacterivores,fungivores,omnivores and herbivores)differred between soils of nests and plants,and the soil of plants supported a more abundant and diverse nematode community.The present results points to that source of organic matter promote differences in the decomposer community,being more efficient in soil of nests because C mineralization is greater.Further,this occurred independently of the complexity of the systems,higher in the soil of plants with more groups of nematodes.展开更多
Digestate, the product obtained after anaerobic digestion of organic waste for biogas production, is rich in plant nutrients and might be used to fertilize crops. Wheat (Triticum spp. L.) was fertilized with digesta...Digestate, the product obtained after anaerobic digestion of organic waste for biogas production, is rich in plant nutrients and might be used to fertilize crops. Wheat (Triticum spp. L.) was fertilized with digestate, urea, or left unfertilized and cultivated in the greenhouse for 120 d. Emissions of greenhouse gasses (carbon dioxide (CO2), methane (CH4), and nitrous oxide (N20)) were monitored and plant growth characteristics were determined at harvest. The digestate was characterized for heavy metals, pathogens, and C and N mineralization potential in an aerobic incubation experiment. No Salmonella spp., Shigella spp., or viable eggs of helminths were detected in the digested pig slurry, but the number of faecal coliforms was as high as 3.6 ~ 104 colony-forming units (CFU) g-1 dry digestate. The concentrations of heavy metals did not surpass the upper limits established by US Environmental Protection Agency (EPA). After 28 d, 17% of the organic C (436 g kg-1 dry digestate) and 8% of the organic N (6.92 g kg-1 dry digestate) were mineralized. Emissions of CO2 and CH4 were not significantly affected by fertilization in the wheat-cultivated soil, but digestate significantly increased the cumulative N20 emission by 5 times compared to the urea-amended soil and 63 times compared to the uncultivated unfertilized soil. It could be concluded that digestate was nutrient rich and low in heavy metals and pathogens, and did not affect emissions of CH4 and CO2 when applied to a soil cultivated with wheat, but increased emission of N20. Key Words: biodigester, C and N mineralization potential, faecal coliform, heavy metal, pathogen, pig slurry展开更多
文摘A study was performed on the long-term effect of straw incorporation on soil microbial biomass C contents, C and N dynamics in both Rothamsted and Woburn soils. The results showed that for both soils,the microbial biomass C contents were significantly different among all the treatments, and followed the sequence in treatments of straw chopped and incorporated into 10 cm (CI10) > straw burnt and incorporated into 10 cm (BI10) > straw chopped and incorporated into 20 cm (CI20) > straw burnt and incorporated into 20 cm (BI20). Laboratory incubation of soils showed that the cumulative CO2 evolution was closely related to the soil microbial biomass C content. Carbon dioxide evolution rates (CO2-C, μg (g d) -1 ) decreased rapidly in the first two weeks’ incubation, then decreased more slowly. The initial K2SO4-extractable NH4-N and NO3-N contents were low and similar in all the treatments, and all increased gradually with the incubation time. However, net N immobilization was observed in chopped treatments for Rothamsted soils during the first 4 weeks. Nevertheless, more N mineralization occurred in neatment CI10 than any other treatment at the end of incubation for both soils. The Woburn soils could more easily suffer from the leaching of nitrate because the soils were more permeable and more N was mineralized during the incubation compared to the Rothamsted soils.
文摘Abstract: Physical, chemical and biological soil properties in surface (0-5 cm) and subsurface soil (5-15 cm) were determined in a field experiment conducted with seven treatments consisted of different combinations of fertilizer N (0, 100 and 200 kg N ha^-1), P (0, 22 and 44 kg P2O5 ha^-1) and K (0, 41 and 82 kg K2O ha^-1) applied both to summer-grown maize (Zea mays L.) and winter-grown wheat (Triticum aestivum L.) crops continuously for 37 years under irrigated subtropical conditions. Application of N, P and K significantly increased water stable aggregates and had profound effects in increasing the mean weight diameter as well as the formation of macro-aggregates, which were highest in both surface (81%) and subsurface (74%) soil layers with application of 100 kg N + 22 kg P2O5 + 41 kg K2O ha^-1 (N100P22K41). The N100P22K41 treatment also enhanced total organic C (TOC) from 4.4 g kg^-1 in no-NPK control to 4.8 g kg^-1in surface layer and from 3.3 to 4.1 g kg1 in subsurface layer leading to the 20% higher TOC stocks in 0-15 cm soil. The labile C and N fractions such as water soluble C, particulate and light fraction organic matter, potentially mineralizable N and microbial biomass were also highest under the optimized balanced application of N100P22K41. Relatively higher increase in all labile fractions of C and N as proportion of TOC and total N, respectively suggested that these are potential indicators to reflect changes in management practices long before changes in TOC and TN are detectable. These results demonstrated that optimized balanced application of N, P and K is crucial for improving soil health ensuring long-term sustainability of farming systems in semiarid subtropical soils.
基金funded by the Normandy region and was supported by the Vivepois Project(D16-12746),France。
文摘Crop residues are among the main inputs that allow the organic carbon(C)and nutrients to be maintained in agricultural soil.It is an important management strategy that can improve soil fertility and enhance agricultural productivity.This work aims to evaluate the extent of the changes that may occur in the soil heterotrophic microbial communities involved in organic matter decomposition and C and nitrogen(N)mineralization after the addition of crop residues.Soil microcosm experiments were performed at 28℃ for 90 days with the addition of three crop residues with contrasting biochemical qualities:pea(Pisum sativum L.),rapeseed(Brassica napus L.),and wheat(Triticum aestivum L.).Enzyme activities,C and N mineralization,and bacterial and fungal biomasses were monitored,along with the bacterial and fungal community composition,by the highthroughput sequencing of 16 S rRNA and ITS genes.The addition of crop residues caused decreases in β-glucosidase and arylamidase activities and simultaneous enhancement of the C mineralization and net N immobilization,which were linked to changes in the soil microbial communities.The addition of crop residues decreased the bacterial and fungal biomasses 90 days after treatment and there were shifts in bacterial and fungal diversity at the phyla,order,and genera levels.Some specific orders and genera were dependent on crop residue type.For example,Chloroflexales,Inquilinus,Rubricoccus,Clitocybe,and Verticillium were identified in soils with pea residues;whereas Thermoanaerobacterales,Thermacetogenum,and Hypoxylon were enriched in soils with rapeseed residues,and Halanaerobiales,Rubrobacter,and Volutella were only present in soils with wheat residues.The findings of this study suggest that soil C and N dynamics in the presence of the crop residues were driven by the selection of specific bacterial and fungal decomposers linked to the biochemical qualities of the crop residues.If crop residue decomposition processes showed specific bacterial and fungal operational taxonomic unit(OTU)signatures,this study also suggests a strong functional redundancy that exists among soil microbial communities.
文摘Land-use conversion and unsustainable farming practices are degrading native forest ecosystems of Ghana’s humid savannah agro-ecological zone. This study assessed the impact of land-use change on soil C and N stocks in different land-use systems and soil types. A total of eighty (80) composite soil samples at two depths (0 - 20 cm and 20 - 50 cm) were sampled from five land use types (Forest, Woodland savannah, Grassland, Fallow and Cropland) for laboratory analyses. Particle size distribution, bulk density, pH, SOC and TN were determined using standard procedures. Results of the study indicated that C and N stocks were significantly lower in croplands (p < 0.05) compared to other land-use systems. There were significant interactions (p < 0.05) within land-use systems, soil types, and soil depth for soil C and N stocks. Acrisol and associated soils had the highest C and N stocks. A strong positive significant correlation (p < 0.05) was observed between C and N stocks with an R<sup>2</sup> value of 0.85 and 0.93 for the 0 - 20 and 20 - 50 cm depth, respectively. Soil C and N stocks in the study area were estimated to be 34.56 kg/m<sup>2</sup> and 4.63 kg/m<sup>2</sup> for soil types and 26.89 kg/m<sup>2</sup> and 3.39 kg/m2 for land use types, respectively for the 0 to 50 cm soil depth. Our findings indicated that the conversion of native forest to arable land has significantly reduced soil C and N stocks in the top 50 cm (0.50 m) soil layer by 50.77% and 47.77%, respectively. Therefore, we conclude that land-use change, soil type, and soil depth influenced soil C and N stocks of land-use systems in the humid savannah agro-ecological zone of Ghana.
基金funded by the National High Technol-ogy Research and Development Program of China (863 Program,2006AA10Z221)China Postdoctoral Science Foundation (2005038436)+1 种基金Shanghai Leading Academic Discipline Project (B209)National Key Technologies R&D Program of China during the 11th Five-Year Plan period (2008BADA7B00 2008BADA7B01)
文摘Utilization of organic nitrogen (N) is an important aspect of plant N assimilation and has potential application in sustainable agriculture. The aim of this study was to investigate the plant growth, C and N accumulation in leaves and roots of tomato seedlings in response to inorganic (NH4^+-N, NO3^-N) and organic nitrogen (Gly-N). Different forms of nitrogen (NH4^+-N, NO3^--N, Gly-N) were supplied to two tomato cultivars (Shenfen 918 and Huying 932) using a hydroponics system. The plant dry biomass, chlorophyll content, root activity, total carbon and nitrogen content in roots and leaves, and total N absorption, etc. were assayed during the cultivation. Our results showed that no significant differences in plant height, dry biomass, and total N content were found within the first 16 d among three treatments; however, significant differences in treatments on 24 d and 32 d were observed, and the order was NO3^--N 〉 Gly-N 〉 NH4^+-N. Significant differences were also observed between the two tomato cultivars. Chlorophyll contents in the two cultivars were significantly increased by the Gly-N treatment, and root activity showed a significant decrease in NHa^+-N treatment. Tomato leaf total carbon content was slightly affected by different N forms; however, total carbon in root and total nitrogen in root and leaf were promoted significantly by inorganic and organic N. Among the applied N forms, the increasing effects of the NH4^+-N treatment were larger than that of the Gly-N. In a word, different N resources resulted in different physiological effects in tomatoes. Organic nitrogen (e.g., Gly-N) can be a proper resource of plant N nutrition. Tomatoes of different genotypes had different responses under organic nitrogen (e.g., Gly-N) supplies.
基金the National Basic Research Program of China(Grant No.2010CB950602)the National Natural Science Foundation of China(Grant Nos.41175133,21228701,41275166&41321064)
文摘Freezing can increase the emissions of carbon dioxide (CO2) and nitrous oxide (N2O) and the release of labile car- bon (C) and nitrogen (N) pools into the soil. However, there is limited knowledge about how both emissions respond differ- ently to soil freezing and their relationships to soil properties. We evaluated the effect of intensity and duration of freezing on the emissions of CO2 and N2O, net N mineralization, microbial biomass, and extractable C and N pools in soils from a mature broadleaf and Korean pine mixed forest and an adjacent secondary white birch forest in northeastern China. These soils had different contents of microbial biomass and bulk density. Intact soil cores of 0-5 cm and 5-10 cm depth sampled from the two temperate forest floors were subjected to -8, -18, and -80℃ freezing treatments for a short (10 d) and long (145 d) duration, and then respectively incubated at 10~C for 21 d. Soil cores, incubated at 10℃ for 21 d without a pretreatment of freezing, served as control. Emissions of N20 and COz after thaw varied with forest type, soil depth, and freezing treatment. The differ- ence could be induced by the soil water-filled pore space (WFPS) during incubation and availability of substrates for N20 and CO2 production, which are released by freezing. A maximum N2O emission following thawing of frozen soils was observed at approximately 80% WFPS, whereas CO2 emission from soils after thaw significantly increased with increasing WFPS. The soil dissolved organic C just after freezing treatment and CO2 emission increased with increase of freezing duration, which paralleled with a decrease in soil microbial biomass C. The cumulative net N mineralization and net ammonification after freezing treatment as well as N2O emission were significantly affected by freezing temperature. The N2O emission was nega- tively correlated to soil pH and bulk density, but positively correlated to soil KzSO4-extractable NO3 -N content and net am- monification. The CO2 emission was positively correlated to the cumulative net N mineralization and net ammonification. From the above results, it can be reasonably concluded that for a wide range of freezing temperature and freezing duration, N2O and CO2 emissions after thaw were associated mainly with the changes in soil net N mineralization and the availability of substrate liberated by freezing as well as other soil properties that influence porosity.
基金funded by the National Natural Science Foundation of China (41201284, 41401337)the China Postdoctoral Science Foundation (2013M542406)
文摘Increased food demand from the rapidly growing human population has caused intensive land transition from desert to farmland in arid regions of northwest China. In this developing ecosystem, the optimized fertilization strategies are becoming an urgent need for sustainable crop productivity, efficient resources use, together with the delivery of ecosystems services including soil carbon(C) and nitrogen(N) accumulation. Through a 7-year field experiment with 9 fertilization treatments in a newly cultivated farmland, we tested whether different fertilizations had significant influences on soil C and N accumulation in this developing ecosystem, and also investigated possible mechanisms for this influence. The results showed that applying organic manure in cultivated farmland significantly increased the soil C and N accumulation rates; this influence was greater when it was combined with chemical fertilizer, accumulating 2.01 t C and 0.11 t N ha^(–1) yr^(–1) in the most successful fertilization treatment. These high rates of C and N accumulation were found associated with increased input of C and N, although the relationship between the N accumulation rate and N input was not significant. The improved soil physical properties was observed under only organic manure and integrated fertilization treatments, and the significant relationship between soil C or N and soil physical properties were also found in this study. The results suggest that in newly cultivated farmland, long term organic manure and integrated fertilization can yield significant benefits for soil C and N accumulation, and deliver additional influence on physical properties.
文摘An oak forest and three wet meadows/fens were reinvestigated after 50 years concerning tree vitality, biomass and productivity, and soil chemistry. Sulphur and nitrogen deposition has changed dramatically during these years, and the aim was to analyse the differences in both the oak forest and the open field ecosystems. Trees were re-measured and soil profiles were resampled. Important visible changes in the oak forest were stated concerning the vitality of oaks. Aboveground there was a decrease in tree biomass, production and litter fall, but a huge increase in standing dead logs. During the years, the deposition of sulphur had decreased drastically, but nitrogen deposition was still high. Soil acidification in the forest had decreased, reflected in an increased base saturation in the forest, in spite of slightly lowered pH-values. Strongly increased amounts of exchangeable Ca and Mg now appeared in the forest soil, and a substantial transport of calcium and magnesium had obviously taken place from the forest soil to the meadow and fens during the years. However, the most important soil change was the accumulation of organic matter. The increased accumulation of organic matter in turn meant increased amounts of colloid particles and microsites for ion exchange in the soil. This favoured 2-valence base cations, and especially Ca and Mg that increased very much in all the studied ecosystems. Carbon as well as nitrogen had strongly increased in the forest, meadow and fen soils. This was interpreted as a natural result of increased vegetation growth due to high nitrogen deposition, increased global annual temperature and increased carbon dioxide concentration in air. It was concluded that the decreased deposition of sulphur had had a positive effect on soil chemistry, and that the deposition of nitrogen probably had stimulated vegetation growth in general, and contributed to increased amount of organic matter in the soils. However, in this studied oak forest, the decreased vitality and many killed trees were also suspected to be a result of high nitrogen deposition. Obviously increased tree growth was counteracted by decreased stress resistance, and increased appearance of pathogens in the oak trees.
基金This work was supported by the China Agriculture Research System-Green Manure,the Virtual Joint Nitrogen Centre(N-Circle)(No.B B/N 013484/1)the Science and Technology Innovation Project of Chinese Academy of Agricultural Sciences(2013-2017)the Chinese Outstanding Talents Program in Agricultural Science.
文摘Returning rice straw and leguminous green manure alone or in combination to soil is effective in improving soil fertility in South China.Despite the popularity of this practice,our understanding o f the underlying processes for straw and manure combined application is relatively poor.In this study,rice straw(carbon(C)/nitrogen(N)ratio of 63),green manure(hairy vetch,C/N ratio of 14),and their mixtures(C/N ratio of 25 and 35)were added into a paddy soil,and their effects on soil N availability and C or N loss under waterlogged conditions were evaluated in a 100-d incubation experiment.All plant residue treatments significantly enhanced C〇2 and CH4 emissions,but decreased N2O emission.Dissolved organic C(DOC)and N(DON)and microbial biomass C in soil and water-soluble organic C and N and mineral N in the upper aqueous layer above soil were also enhanced by all the plant residue treatments except the rice straw treatment,and soil microbial biomass N and mineral N were lower in the rice straw treatment than in the other treatments.Changes in plant residue C/N ratio,DOC/DON ratio,and cellulose content significantly affected greenhouse gas emissions and active C and N concentrations in soil.Additionally,the treatment with green manure alone yielded the largest C and N losses,and incorporation of the plant residue mixture with a C/N ratio of 35 caused the largest net global warming potential(nGWP)among the amended treatments.In conclusion,the co-incorporation of rice straw and green manure can alleviate the limitation resulting from only applying rice straw(N immobilization)or the sole application of leguminous green manure(high C and N losses),and the residue mixture with a C/N ratio of 25 is a better option because of lower nGWP.
基金supported by grants from CAS Knowledge Innovation Directional Project (Grant No.KZCX2-YW-Q1-04)CAS Strategic Priority Research Program (Grant Nos.XDA05130303, XDA05130501)+2 种基金Chinese Academy of Sciences & Max-Planck Institute Partnership Group Project (Grant No.KACX1-YW-0830)National Science and Technology Ministry (Grant No.2010BAK67B03)Relic Preservation Project of South-to-North Water Diversion
文摘Historical records and archaeological remains indicate that the Chinese agricultural economy changed significantly from the Warring States (475-221 BC) to Han Dynasties (206 BC-220 AD), i.e., from rice-millet based agriculture to rice-millet-wheat based agriculture. However, the variation of human diets and the inner relationship between human diets and the agricultural transition during this period remain poorly understood. In this paper, the C and N stable isotopes from human and animal bones at the Shenmingpu site (SMPS), Xichuan County, Henan Province were analyzed. If some outliers (M34, M36, M102) were excluded, the mean δ13C value ((-16.7±0.8)‰, n=15) of humans in Hart Dynasties was dramatically lower than that in the Warring States ((-12.7±0.8)‰, n=14), indicating that the cultivation of rice and wheat, especially wheat, had been more widely popularized in Han Dynasties. Meanwhile, the range of 615N values of humans (6.6‰-9.3‰) in Hart Dynasties was narrower than that of the Warring States (6.2‰-10.4‰), suggesting that the animal protein resources in human foods during Han Dynasties were more concentrated. The transition of human diets and the close relationship with the change of agricultural economy in SMPS were due to more stable society, the carryout of new agricultural policies, and the emergence of new agri- cultural tools in Han Dynasties.
文摘Soil salinization may negatively affect microbial processes related to carbon dioxide (CO2) and nitrous oxide (N20) emissions. A short-term laboratory incubation experiment was conducted to investigate the effects of soil electrical conductivity (EC) and moisture content on CO2 and N20 emissions from sulfate-based natural saline soils. Three separate 100-m long transects were established along the salinity gradient on a salt-affected agricultural field at Mooreton, North Dakota, USA. Surface soils were collected from four equally spaced sampling positions within each transect, at the depths of 0-15 and 15-30 cm. In the laboratory, artificial soil cores were formed combining soils from both the depths in each transect, and incubated at 60% and 90% water-filled pore space (WFPS) at 25 ~C. The measured depth-weighted EC of the saturated paste extract (ECe) across the sampling positions ranged from 0.43 to 4.65 dS m-1. Potential nitrogen (N) mineralization rate and CO2 emissions decreased with increasing soil ECe, but the relative decline in soil CO2 emissions with increasing ECe was smaller at 60% WFPS than at 90% WFPS. At 60% WFPS, soil N20 emissions decreased from 133 g N20-N kg-1 soil at ECe ( 0.50 dS m-1 to 72 μg N20-N kg-1 soil at ECe = 4.65 dS m-1. In contrast, at 90% WFPS, soil N20 emissions increased from 262 g N20-N kg-1 soil at ECe : 0.81 dS m-1 to 849 g N20-N kg-1 soil at ECe : 4.65 dS m-1, suggesting that N20 emissions were linked to both soil ECe and moisture content. Therefore, spatial variability in soil ECe and pattern of rainfall over the season need to be considered when up-scaling N20 and CO2 emissions from field to landscape scales.
基金Supported by the National Natural Science Foundation of China (No. 30970101)
文摘The effects of carbon (C) and nitrogen (N) sources on N utilization and biosynthesis of amino acids were examined in the germinating spores of the arbuscular mycorrhizal (AM) fungus Glomus intraradices Schenck & Smith after exposure to various N substrates, CO2, glucose, and/or root exudates. The N uptake and de novo biosynthesis of amino acids were analyzed using stable isotopic labeling with mass spectrometric detection. High-performance liquid chromatography-based analysis was used to measure amino acid levels. In the absence of exogenous N sources and in the presence of 25 mL L^-1 CO2, the germinating AM fungal spores utilized internal N storage as well as C skeletons derived from the degradation of storage lipids to biosynthesize the free amino acids, in which serine and glycine were produced predominantly. The concentrations of internal amino acids increased gradually as the germination time increased from 0 to 1 or 2 weeks. However, asparagine and glutamine declined to the low levels; both degraded to provide the biosynthesis of other amino acids with C and N donors. The availability of exogenous inorganic N (ammonium and nitrate) and organic N (urea, arginine, and glutamine) to the AM fungal spores using only CO2 for germination generated more than 5 times more internal free amino acids than those in the absence of exogenous N. A supply of exogenous nitrate to the AM fungal spores with only CO2 gave rise to more than 10 times more asparagine than that without exogenous N. In contrast, the extra supply of exogenous glucose to the AM fungal spores generated a significant enhancement in the uptake of exogenous N sources, with more than 3 times more free amino acids being produced than those supplied with only exogenous CO2. Meanwhile, arginine was the most abundant free amino acid produced and it was incorporated into the proteins of AM funsal spores to serve as an N storage compound.
基金the financial support of the USDA-NIFA-AFRI (Grant No. GEOX-2010-03868) for conducting this research
文摘Cover crop and nitrogen (N) fertilization may maintain soil organic matter under bioenergy perennial grass where removal of aboveground biomass for feedstock to produce cellulosic ethanol can reduce soil quality. We evaluated the effects of cover crops and N fertilization rates on soil organic carbon (C) (SOC), total N (STN), ammonium N (NH4-N), and nitrate N (NO3-N) contents at the 0-5, 5-15, and 15-30 cm depths under perennial bioenergy grass from 2010 to 2014 in the southeastern USA. Treatments included unbalanced combinations of perennial bioenergy grass, energy cane (Saccharum spontaneum L.) or elephant grass (Pennisetum pur- pureum Schumazh.), cover crop, crimson clover (Trifolium incarnatum L.), and N fertilization rates (0, 100, and 200 kg N ha-l). Cover crop biomass and C and N contents were greater in the treatment of energy cane with cover crop and 100 kg N ha-1 than in the treatment of energy cane and elephant grass. The SOC and STN contents at 0-5 and 5-15 cm were 9%-20% greater in the treatments of elephant grass with cover crop and with or without 100 kg N ha-1 than in most of the other treatments. The soil NO3-N content at 0--5 cm was 31%-45% greater in the treatment of energy cane with cover crop and 100 kg N ha-1 than in most of the other treatments. The SOC sequestration increased from 0.1 to 1.0 Mg C ha-1 year-1 and the STN sequestration from 0.03 to 0.11 Mg N ha-1 year-1 from 2010 to 2014 for various treatments and depths. In contrast, the soil NH4-N and NO3-N contents varied among treatments, depths, and years. Soil C and N storages can be enriched and residual NO3-N content can be reduced by using elephant grass with cover crop and with or without N fertilization at a moderate rate.
基金supported by the Venezuelan Institute for Scientific Research to the first author
文摘It has long been recognized that plant invasions may alter carbon (C) and nitrogen (N) cycles, but the direction and magnitude of such alterations have been rarely quantified. In this study, we quantified the effects caused by the invasion of a noxious exotic plant, Kalanchoe daigrernontiana (Crassulaceae), on C and N mineralization and enzymatic and microbial activities in the soil of a semiarid locality in Venezuela. We compared soil parameters associated with these processes (C and N mineralization time and the cumulative values, fluorescein diacetate hydrolytic activity, and activities of dehydrogenase, β-glucosidase, glucosaminidase, and urease) between invaded and adjacent non-invaded sites. In addition, correlations among these parameters and the soil physical-chemical properties were also examined to determine if a positive feedback exists between nutrient availability and K. daigremontiana invasion. Overall, our results showed that C mineralization and transformation of organic compounds to NH4^+ were favored at sites colonized by K. daigrernontiana. With this species, we found the highest cumulative amounts of NH4^+-N and C and the lowest mineralization time. These results could be explained by higher activities of urease and glueosaminidase in soils under the influence of K. daigremontiana. In addition, higher amounts of organic matter and moisture content in invaded soils might favor C and N mineralization. In conclusion, invasion of Neotropical semiarid zones by K. daigrernontiana may influence the chemical and biological properties of the soils covered by this species, increasing nutrient bioavailability, which, in time, can facilitate the invasion process.
基金supported by the Spanish Ministerio de Economia y Competitividad(AGL2017-86813-R)the Xunta de Galicia(ED431B 2019/38).
文摘Here we studied whether soil systems differ if they are under the influence of live(plants)or dead organic matter systems(nest)in terms of C and N mineralization,microbiological characteristics and nematode trophic group structure.We analyzed physicochemical and microbiological properties of soils inside and outside nests of the European shag(Phalacrocorax aristotelis L.)on the Cies Islands(NW Spain).We sampled fresh soil below dead(nests)and live organic matter(plants)(paired samples,n=7).Soil of nests had lower organic matter and higher electric conductivity and dissolved organic C and extractable N contents than the soil of plants.Microbial biomass and activity were greater in soil of nests than in soil of plants.The abundance of nematode trophic groups(bacterivores,fungivores,omnivores and herbivores)differred between soils of nests and plants,and the soil of plants supported a more abundant and diverse nematode community.The present results points to that source of organic matter promote differences in the decomposer community,being more efficient in soil of nests because C mineralization is greater.Further,this occurred independently of the complexity of the systems,higher in the soil of plants with more groups of nematodes.
文摘Digestate, the product obtained after anaerobic digestion of organic waste for biogas production, is rich in plant nutrients and might be used to fertilize crops. Wheat (Triticum spp. L.) was fertilized with digestate, urea, or left unfertilized and cultivated in the greenhouse for 120 d. Emissions of greenhouse gasses (carbon dioxide (CO2), methane (CH4), and nitrous oxide (N20)) were monitored and plant growth characteristics were determined at harvest. The digestate was characterized for heavy metals, pathogens, and C and N mineralization potential in an aerobic incubation experiment. No Salmonella spp., Shigella spp., or viable eggs of helminths were detected in the digested pig slurry, but the number of faecal coliforms was as high as 3.6 ~ 104 colony-forming units (CFU) g-1 dry digestate. The concentrations of heavy metals did not surpass the upper limits established by US Environmental Protection Agency (EPA). After 28 d, 17% of the organic C (436 g kg-1 dry digestate) and 8% of the organic N (6.92 g kg-1 dry digestate) were mineralized. Emissions of CO2 and CH4 were not significantly affected by fertilization in the wheat-cultivated soil, but digestate significantly increased the cumulative N20 emission by 5 times compared to the urea-amended soil and 63 times compared to the uncultivated unfertilized soil. It could be concluded that digestate was nutrient rich and low in heavy metals and pathogens, and did not affect emissions of CH4 and CO2 when applied to a soil cultivated with wheat, but increased emission of N20. Key Words: biodigester, C and N mineralization potential, faecal coliform, heavy metal, pathogen, pig slurry